NEWFORMS OF HALF-INTEGRAL WEIGHT: THE MINUS
SPACE OF S /5(T'o(8M))

EHUD MOSHE BARUCH AND SOMA PURKAIT

ABsTRACT. We compute generators and relations for a certain 2-adic
Hecke algebra of level 8 associated with the double cover of SL2 and a
2-adic Hecke algebra of level 4 associated with PGL2. We show that
these two Hecke algebras are isomorphic as expected from the Shimura
correspondence. We use the 2-adic generators to define classical Hecke
operators on the space of holomorphic modular forms of weight k +1/2
and level 8M where M is odd and square-free. Using these operators and
our previous results on half-integral weight forms of level 4M we define
a subspace of the space of half-integral weight forms as a common —1
eigenspace of certain Hecke operators. Using the relations and a result
of Ueda we show that this subspace, which we call the minus space,
is isomorphic as a Hecke module under the Ueda correspondence to the
space of new forms of weight 2k and level 4V . We observe that the forms
in the minus space satisfy a Fourier coefficient condition that gives the
complement of the plus space but does not define the minus space.

1. INTRODUCTION

It has been observed by Waldspurger [16] that the theory of half-integral
weight modular forms is more complicated for levels of the forms 8M and
16 M where M is an odd integer. In particular, one of the Waldspurger’s
hypothesis, (H2), for his celebrated formula for central twisted L-values for an
integral weight newform requires the newform to be either not supercuspidal
at 2 or has level divisible by 16, that is, the corresponding half-integral
weight “newform” should have level 4M or level divisible by 32. Ueda in an
unpublished work [14] observed that the levels 2¥M where 2 < k < 6 pose
greater difficulties than general k. In this work we complete the work of
Ueda to obtain a decomposition of the space of holomorphic forms of weight
k +1/2 and level 8M where M is odd and square-free. An attempt at such
theory has been made by Manickam, Meher and Ramakrishnan [9] but our
results and methods differ completely. For more details on this difference see
Remark 2 in Section 5.
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Kohnen [5, 6] defines the plus space S;+1/2(4M) to be a subspace of

Sk+1/2(Fo(4M)) which is the positive eigenspace of a certain Hecke oper-
ator. In the case M = 1, Loke and Savin [7| gave an interpretation of the
Kohnen plus space in representation theory language using a 2-adic Hecke
algebra of level 4. Manickam, Ramakrishnan and Vasudevan [8] defined a
new subspace inside this space as an orthogonal complement of certain sub-
spaces. In [3| we used the Hecke algebra approach to show that the new
subspace is given as a common —1 eigenspace of certain Hecke operators. In
this paper we extend this approach by considering 2-adic Hecke algebras of
level 8 and describe it using generators and relations. We obtain an isomor-
phism between certain 2-adic Hecke algebras which is part of the Shimura
correspondence. We translate 2-adic Hecke elements into classical Hecke op-
erators that satisfy the relations coming from the 2-adic elements. Once we
have these operators and relations we combine it with our results for the
case 4M to define the minus space of level 8M as a common —1 eigenspace
of certain classical Hecke operators. Using the Ueda Hecke isomorphism be-
tween Sy /9(T0(8M)) and Sz (To(4M)) we show that the minus space at
level 8 M is Hecke isomorphic to the subspace of new forms in Soi(I'g(4M))
and satisfies the strong multiplicity one. Further, if f = ">, a,¢" is in the
minus space at level 8M then a,, = 0 for (—1)*n = 0,1 (mod 4). This condi-
tion is exactly opposite to Kohnen’s plus space Fourier coefficient condition
and is contrary to the assertion of |9].

2. PRELIMINARIES AND NOTATION

We will be following the notation of our paper [3]. Let k, N denote
positive integers with 4 dividing N. Let G be the set of all ordered pairs
(o, ¢(2)) where a = (¢%) € GL3 (R) and ¢(z) is a holomorphic function on
the upper half plane H such that ¢(z)? = tdet(a)~/2(cz + d) with ¢ in the
unit circle S*. For ¢ = (o, ¢(z)) € G define the slash operator |[¢];41/2 on
functions f on H by

FllClkrry2(2) = flaz)(d(2) 72

For an even Dirichlet character y modulo N let
Ag(N, x) == {a" = (o, jiy(o,2)) €G [ € To(N)} < G.

where jy(a,2) = x(d)e;* (5) (cz + d)'/?, here ¢4 = 1 or i according as
d=1or3 (mod4) and (§) is as in Shimura’s notation [11]. The space of
holomorphic cusp forms Sy /2(Io(NV), x) satisfies

f‘[a*]k—i-l/Q(z) = f(2)
for all @ € Ag(N, x) and we have the well-known family of Hecke operators
{Tp2 b pivs {Up2}piv o0 Spq1/2(To(IV), x) (please refer to [11] for details).

Let SLy (Qp) be the non-trivial central extension of SLa(Q)) by po = {£1}
given by the Kubota-Gelbart 2-cocycle defined below.
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For g = (CCL Z) € SL2(Qp), define

(g) = ¢ ifc#0,
=Vad ife=o:;

if p = o0, set sp(g) = 1 while for a finite prime p

(¢;d), if ed # 0 and ord,(c) is odd,
snl9) = 1 else

Define the 2-cocycle o, on SL2(Q,) as follows:
op(g,h) = (1(gh)7(9), 7(gh)7 (), sp(g)sp(h)sp(gh).
Then the double cover é\lig((@p) is the set SL2(Q)p) x p2 with the group law

(9. €1)(h, €2) = (gh, e1e204(g, D).
For any subgroup H of SL2(Q,), we shall denote by H the complete inverse

image of H in SLy(Q),).
We consider the following subgroups of SLa(Z)):

1@@%:{(ig>emﬂmwzcew@},

m@w_{@ @eK%ﬂ:azl(mﬁﬁ@%.

By [4, Proposition 2.§], éig((@p) splits over SLy(Z,) for odd primes p, while
éig(@g) does not split over SLa(Z2) and instead splits over the subgroup
K3(4). Tt follows that the center My of éig((@g) is a cyclic group of order 4
generated by (—1,1).

For an open compact subgroup S of éig((@p) and a genuine character -y
of S, let H(S,~) be the subalgebra of C?(ﬁQ(Qp)) defined by

{f € C(SLa(Qy)) : f(kgh') =7 (k)yF(K)£(§) for § € SL2(Q,), k, K € S}
under the usual convolution
fon®= [ A@hG R = [ ARG,

SL2(Qp) SL2(Qp)

Loke and Savin [7] described H(KZ2(4),) for a certain «y of order 4 using gen-

erators and relations. We in [3] described H (K (p),~) for odd primes p and
certain quadratic characters . We translated the elements of the local Hecke
algebras to obtain classical operators @), Q;, W2 on Sjy1 /(T (2" M) for p
strictly dividing M, M odd and operators Qo, @é, W, on Skt1/2(Lo(4M)).
We shall be using these operators and their properties in Section 5 of this
paper.
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We now set up some more notation. For s € Qq, t € QJ let us define the
following elements of SLa(Q2):

s =(p 1) = (3 V) 0= (1 o) mo=(5 )

Let N = {(z(s),€) : s € Qa, € = 1}, N = {(y(s),¢€) : s € Qg, e = =£1}
and T = {(h(t),e) : t € QF, € = £1} be the subgroups of SLy(Q2). Then
the normalizer Néig(@g)(T) of T in SL2(Q2) consists of elements (h(t),€),

(w(t),e) for t € Q5.

3. HECKE ALGEBRA OF SLy(Qq) MODULO K2(8)

In this section we shall be describing the local Hecke algebra H(S,~) for
S=K 2( ) and certain genuine characters vy described below.

Let v be a genuine central character given by sending (—1, 1) to a primitive
fourth root of unity. We extend v to K2(8) as follows. Extend v to K7(8) x
M so that it is trivial on K#(8). Since K2(8)/(K%(8) x Ma) is generated
by (h(5),1) it is enough to define it on (h(5),1). Since (h(5),1) has order
2 there are two choices for v((h(5),1)). We will denote the resulting two

characters of K3(8) by x1 and xa:

ifu=1,5 (mod 8Z2)

1
x1((h(u),1)) = {’y((—[, 1)) ifu=3,7 (mod8%Zy),’

1 ifu=1 (mod 8Zs)
_ J((—1,1)) ifu=7 (mod 8Zy)
xa((h(w), 1)) = -1 ifu=5 (mod 8Zs)
—v((=1,1)) ifu=3 (mod 8Zs).
Note that for v = x1, x2 and (A,e) = (z(s),1)(h(u),1)(y(t),1)(I,€ed) €

K2(8) (|3, Lemma A.4]) we have
14, €) = y(x(s), Dy (h(u), )y (y(1), )y (I, €0) = v(h(u), )y(I, ). (1)

From now on we shall denote KZ(8) by simply K. Also for g € SLy(Q2)
we put g := (g,1) € SL, (Q2). We shall describe the Hecke algebra H (K, ~)
using generators and relations.

We have the following proposition. The proof is a routine calculation.

Proposition 3.1. A complete set of representatives for the double cosets of
SL2(Q2) modulo Ko consists of g, where g varies over the following elements
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of SL2(Q2):
h(2"), w(2") formneZ, h(2")y(4),h(2")y(2) forn >0,
YRR,y (2R ), w2 )y(2), yRJw(2 ),y 2w @ y(2) forn > 1,
w@My(), yDwE™), yDwE ")y),

Y@My, yuw@ @) forn =2
and  y(2)w(2")y(6).

We will now compute the support of H (Ko, x1) and H(Ky, x2). We first
have the following lemma on vanishing.

Lemma 3.2. The Hecke algebra H(K, x1) vanishes on the double cosets of
K represented by

¥(2),y(2)w(2™"), w(27")y(2),7(2)w(27")y(2),

R(2M7(2),5(2)h(27), 5(2)w (27 )7(6) forn>1
and

TR ), FATE ) forn>2.

The Hecke algebra H (K, x2) vanishes on the double cosets of K¢ repre-
sented by

5(4), GARE ™), FE)F() forn>1,
52w (2 )5(6),
and
y(2)w(27")y(4), y(4)w(2")y(2),
w(27")y(4),y(Hw(27"), y(4)w(27")y(4) where n > 2.
Proof. Recall that ([3, Lemma 3.1]) H(Ky,~) is ~supported on ¢ if and only

if for every k € K := KoN§Kog~' we have fy([k' 1. §7Y) = 1. So to check
the vanishing at g we need to just find suitable k.

For example, for A = y(2)w(27"), take B = <_3 2

-8 5

R 54222 2
[B ’A ]:<<8_’_3.22n+1 -3 7_1 .

The above commutator is of the form

((‘03 _*3> (mod 8Z), —1)

and in its triangular decomposition (as in equation (1)) § = 1. Since x1
takes value —1, the vanishing of H (K, x1) follows on the double coset of A.
The vanishing of H(Kg,x1), H(Ko,X2) at the double cosets listed in the
lemma follow similarly. O

>. Then? S KZ

and
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Lemma 3.3. H(Fg,za) and H(Kg,x2) are supported on the double cosets
of Ko represented by h(2") and w(27") for n € Z.
H (Ko, x1) is supported on y(4) while H(Ky, x2) is supported on y(2).

Proof. The proof is similar to the proof of [3, Lemma 3.5] and mainly uses
[3, Lemma 3.1, Lemma 3.2 and Lemma A.3|.

We illustrate the case of support of H(Kg, x2) on (2). The rest involve
similar calculations.

We note that

a—2b b a b
Ky) = {(<c+2(a—d)—4b 2b+d) E1) : <c d) € Ko, ordsy(b) > 1}

has a triangular decomposition Kyg) = NE7@ 7552 N5 where

NE5@ = {(2(s), £1) : ordy(b) > 1}, TFKuw = TKo  NFKix) = NFo,
For B = z(s) where orda(s) > 1 (we may assume s # 0) we have

1425+ 452 252 )

1 4-1 _
B~ A BA_( —4s —2s+1

and so(B71A71BA) = (—s,2s + 1), when orday(s) is odd, 1 else. Thus for
orda(s) > 2 we have so(B~'A7'BA) = 1. If s = 2u with u a unit,
(=5, =25+ 1)y = (—2u, —4u+1),

= (=2, —du+ 1), (—u, —du + 1),

= (=2,-3), = —1.
As before, since orda(s) > 1 the d-factor in the triangular decomposition of
(B, )7, %(2)] is 1 and so
x2((h(5),—-1))=—-1x—-1=1 ifords(s) =1
1 if orda(s) > 2

x2((B, 7%, %(2)]) = { 7
For B = h(u) and B = y(t) in Ky we check that [(B, €)~!, 7(4)] €
K2(8) x {1} and so 2 takes value 1. O

We note the following decomposition of double cosets into union of single
cosets that would be useful in obtaining generators and relations among the
Hecke algebra elements.

Lemma 3.4. (a) Forn >0,
Koh(@MKo= |J z)h@MKo= | Koh(2")y(8s).
SE€Zo /22" s SE€EZ2 /22" Ly
(b) Forn>1,
Koh(2MKo= | w@B9)r2 ™MEKo= |J Koh(27")a(s).

SEZLs 227 Lo SE€EZs /22" Lo
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(¢c) Forn > 2,

Kow(2_")K0 =

U

5622/22"’_322
(d)
Kow(2 Ky =

U

SEZy /27

(e) Forn >0,

Kow(Q")KO

U

$€Zy /227437,

y(8s)w(27") Ko

r(s)w(2 Ky =

X

U

8622/22"_322

U Kow(27Ha(s).

SEZy /27y

(s)w(2") Ko

U

$€Zy /22737,

(f) Koy(4)Ko = Koy(4) = y(4)Ko.

(9) Forn > 1,

Koh(2")y(4) Ko =

U

SEZLy /22n Ty

(h) Forn>1,

Koy(4)h(27") Ko

(i) Forn > 2,

Kow(27")y(4) Ko

(j) Forn > 2,

Koy(4)w(2™") Ko =

(k) Forn > 2,

Koy(4)w(27")y(4) Ko

()
Koy(2)Ko =

U

SEZL2 /QZQ

z(s)h(2")y(4) Ko =

2(s)y(2) Ko =

SELy /221 Ty

U

8622/22"22

U Koy ")a(s).

SEZLo /22" Lo

y(4+8s)h(27") Ky

U

SEZLo /2273y

U

SE€ELg /223y

y(8s)w(27")y(4) Ko

Kow(2~")y(4 + 85).

U

SEZo /22137,

U

SE€EZLo 2273y

y(4+ 8s)w(27") Ky

Koy(4)w(2™")y(8s).

U

SEZo/22n—37,

U

SE€ELo /223y

y(4 +8s)w(27")y(4) Ko

Koy(4)w(2™")y(4 + 8s).

U Koy(2)z(s).

SGZQ/QZQ

Kow(27™)y(8s).

Kow(2™)x(s).

U Koh(2")y(4+8s).
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(m)

SGZQ/QZQ

U Koy@uw(z als).

SE€ Lo /272

(n)
Kow(2™)y(2)Ko = U z(s)w(271)y(2) Ko

SE€EZL2 /2702

U Kow@ y@)a(s).

SE€EZL2 /2L

(o)
Koy(2)w(2™1)y(2)Ko = Koy(2)w(2™)y(2) = y(2)w(2™1)y(2) Ko.
(p) Forn>2,

Koy@ue K= | y@+4sw@ ")k,
SEZLo 2272y

= U Koy@uw@ (s,
SEZLo 22727
(q) Forn > 2,

Kow(2™™)y(2) Ky = U vB)w@™y(@)K,
SE€ELo |22~ 2y

= U Kow@™My2+4s).
SEZLs 22727
(r) Forn>1,

Kh@)y@Ko= ) a(sh2 (@)K
SE€EZgo /221117,
= |J K@ we+4s) |J  Koy(H)h2")y(2 + 4s).
SEZLo [22" Lo SEZLo |22 Lo
(s) Forn>1,
Koy@h@ Ko=) Koy@h(2")a(s)

$E€Tn /220 +17,
= U v@+4n@ MK, ] y2+4s)h(2")y(4) Ko.
$E€Zo /22Ty $€Z3 /2277,

(t) Forn > 2,

Koy(2)w(27")y(2) Ko

= U yet+asw@my@K,  |J  y@+4s)w@ y6) K,
SE€ELo /2212 SE€ELo /227274

= U  Kow@uwemye+4s) | Koy6)w@ ")y(2+ 4s).
SE€EZo /2227 SEZLo )22 =27
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Using Lemma 3.3, [3, Lemma 3.4] and the above decomposition we have
the following corollary.

Corollary 3.5. H(Kq,x1) is supported on

y(4)h(27"), h(2")y(4) forn>1
and
y(@w(27"), w27")y(4), y(4)w(2 ")y (4) forn > 2.
H(Kog,x2) is supported on
y(2)w(27"), w(27")y(2) forn >2
and
h(2™)5(2), 7(2)h(27") forn > 1.

Note that we cannot use the argument in the proof of the above corollary
to show support of H (Ko, x2) on the double cosets of w(271)7(2), 5(2)w(271)
and 7(2)w(27™)y(2) for n > 1. In these cases we check the support directly
as in Lemma 3.3.

Thus we have the following proposition.

Proposition 3.6. H(KZ(8),x1) is supported on precisely the double cosets
of Kg(S) represented by
{h(2"), W2 ez UT(4) U{R(2")7(4), T(4RE2T)}nx1
U{y(@w(27"), w2 ")y(4), y(4)w(27")y(4)n>e-

H(KZ(8),x2) is supported on precisely the double cosets of K3(8) repre-
sented by

{h(2"), W(27")}nez U 7(2)

U {m@mw2™), w(27y(2), (2)w2"y(2), M2M2), T2hE2T")}nx1-
3.1. Generators and Relations. Let v be either x; or x2. Following Loke
and Savin [7] we extend the character v on Mj to the normalizer subgroup

NS~I:2(Q2)(T) of torus T" in SLy(Q2) by defining vy(h(2")) = 1 for all n € Z
" Lt (1)
— +’Y 4
’Y(w(l)) = \/§ =: {8,

an 8-th root of unity.
For n € Z, define the elements 7, and U,, of H(KZ(8),v) supported re-

)
spectively on the K2(8) double cosets of (h(2"),1) and (w(27"), 1) such that
Ta(k(R(2"), DE") = 7 (k)T((A(2"), D)7 (K), (2)
Un (k(w(27"), DE) = F(k)7((w(2™"), D))T(K)  for k, k' € K§(8).
We use the decomposition Lemma 3.4 and |3, Lemma 3.4] to obtain the
following relations in H(K3(8),7).

Lemma 3.7. (1) If mn > 0 then Tp * Ty, = Tinn-
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(2) Forn <0, Uy * Tn =Uitn, and forn >0, T, xU; = Ui—p.
(8) Forn >0, Uy * Ty = Usyy, and forn <0, Ty, xUs = Us—y,.
(4) For m > 2, Uy x Uy, = Trn—1 and Uy, x Uy = Ti—m-
(5) Form <1, Uy x Uy, = Trn—2 and Uy, x Us = To—p, .

3.2. The algebra H(KZ(8),x1). Consider the case when v = x3. Since
H(Ky,x1) is supported on Koy(4)Ko, we define V to be an element of
H (Ko, x1) that is supported precisely on Ko¥(4)Ko such that V(7(4)) = 1.
Now since p(7(4))u(y(4)) = wu(y(8)), using Lemma |3, Lemma 3.4] we get
that V = V is supported precisely on Ko(8)Ko = Ko and

VV((I1,1)) =V V(H®)) = VFHMA)V[EH)) =1,

so we get that V+)V = 1. o o
Similarly, U; * V is supported precisely at Kow(2~1)5(4) K and its value
at w(27H)y(4) is Uy (w(271)) as V(y(4)) = 1. But note that

FQ@(Qi 1 )5(4)F0 = Foﬁ(Qfl )fo,

wrmo=((4, ) (¢ 7))
U (@(271) = th * V(w2 )y(4))

_ 9 -1 P 1 -2
v (% 7)) men (7))
=U *V(@(27)),

and thus Uy * V = U;. Similarly we get V «x Uy = U .

in fact

SO

Lemma 3.8. For V, U; € H(Ky, x1) we have following relations:

(1) VvV =1.
(2) ul*V:Z/ﬁ:V*L{I.

Proposition 3.9. (1) Us x Uy = 2.

(2) Uy «Up =2+ 2V.

(3) Uy xV x Uy = /2 V x Uy x V.

(4) Uy x Uy = 8+2\/§U0+8V.

(5) Uy *V = Uy =V x Uy and consequently % * (% —4) (% +2)=0.

We shall use the following version of [3, Lemma 3.3].

Lemma 3.10. Let f1, fo € H(v), and fi is supported on Koz Ko = U~ Kod;
and fy is supported on KojKo, and let Ko ' Ko = U?Zl B;Ko. Then

frxfa@ = F1(38) (8

J=1
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and the non-zero summands are those for which there exists a j such that
g,@j € Kya.

Proof of Proposition 3.9. We shall prove (3). The proofs of (1) and (2) are
similar. Let Wy = Us*xV and Z5 = VxUs * ). Then using the decomposition
in Lemma 3.4 and [3, Lemma 3.4] we see that W,, Zy are respectively
supported on

Row(2 25K, and  Kop(4)ym2 2)g(4)Ko

and  Wo(w(272)y(4) = 7(@(1)) = Z2(g(4)w(272)y(4))-
So to get the identity we will first compute the support of Ws * Us.
Using Lemma 3.4,
?0@(272)y(4)F0 = U Fods and FQ@(272)71F0 = U Btfo
5=0,1 t=0,1
where 3
G = WP +88), B = F-SOm(-22),

The matrix part of 3ia; ! are

(‘01 __1{4> ift=s5=0, <_81 _ﬁ/‘l) ift=1, s=0,
<_01 __3{4> ift=0, s=1, <_81 _‘j;)/4> ift=s=1.

Running g over the double coset representatives we see that gétagl € Ko
implies that § is in the double coset of 7(4)w(272)7(4). Thus Wy * Us is
supported on Koy(4)w(272)7(4)Ko. Consequently
UQ *V*UQ = WQ*UQ = OzZQ,
where one can compute « by computing Ws * Us(g) with
§=7(A)w2*)g(4) =: (C,e) and €= o2(y(4), w(27?))oa(y(4)w(27?), y(4)).
By Lemma 3.10,
Wa s Us(§) = > WalgBila(B; ") = Us(@(272)) D Walghh)-
t=0,1 t=0,1

Let Ay = w(272)y(4 + 8s) and B; = y(—8t)w(—272). Then the matrix part
of gpiag ! is OBy A; Y which is

-1 -1\ . 1 0\ .
<0 _1> ift=0, s=1, <8 1) ift=1, s=0,

and the sigma-factor of §B;a; "' is eno(C, B;A7') where
0= o(w(272),y(4 + 8s))o(As, A7 Do (y(—8t), w(—272))a (B, A Y).
Now 7 turns out to be —1 whent =0, s=1and 1 whent =1, s =0. Thus

b= (7 T1) v e, o= (3 7). oo,
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Thus
Wy Us(§) = 7(@(1))*(v((—=1,1)) + 1).
Hence a« = V2 and Us x Vs Uy = V2 Z9 = V2 V xlUs * V.
The proofs of (4), (5) now follow using (1), (2), (3) above, Lemma 3.8 and
the relation Uy = 71 * Uy = Uy * U x U O

For n > 1, define
Rp:=TaxV, S:=VxT_,,
and for n > 2,
Wi i=Up YV, YVp:=VxU, and Z,:=V*xU,*)V.

Note that by Lemma 3.4 and |3, Lemma 3.4|, Ry, Sn, Wh, Vo, 2, are
respectively supported on the Ky double cosets of

L(2M)7(4), FARERT), w(2T")F4), FA)w(2™") and FA)w(2")H(4).
Thus it follows from Proposition 3.6 that T, Uy, for n € Z, V, Ry, Sy for
n > 1 and Wy, Y, Z, for n > 2 form basis elements of H(Ky,x1) as a
vector space. Indeed it follows from Lemma 3.7 that U, Us and V generate

H(Kg,x1) as an algebra.

Let 1 . .
Uy = —Uy, U= —-Uy and Uy = ——Up.
1 \/51 2 \/52 0 2\/50

Using relations above, we obtain the following theorem.

Theorem 1. The Hecke algebra H(KZ(8),x1) is generated by Us, Us and V
modulo the relations:
—2
(1) Uy =1+,
—2
(2) Uy =1,
(3) UhY =VU =U,
(4) UsVUs = VULV .

3.3. The algebra H(KZ(8),x2). Take v = x2, we will similarly get gener-
ators and relations for the Hecke algebra H(K2(8),x2).

Define Z| € H(K, x2) supported only on the double coset of 7(2)w(2~1)7(2)
such that Z{(y(2)w(271)y(2)) = 1. Note that 7(2)w(2~1)y(2) = 7(1/2) and

it normalizes K. As before we get that Z{ x Z] = 1.
Define V' € H(K2(8), x2) supported precisely on K(y(2)K( such that

_1+((-L1)
(CLID,

V'(5(2),1)
We have the following proposition.

Proposition 3.11. (1) Z1«xUy x 21 = V.
(3) Uy x Uy = 2+ 2 Z{.
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(4) L[l * L(l = 2.
(5) Uy x 21 % Uy =2 V' =2 Z] x Uy * 2.
Proof. For (1) observe that

w12 = (5 7)1 = v )

Thus )| := Uy * Z] is supported precisely on Kog(2)w (27 1)Ky and its value

at 7(2)w(271) is L\gl)) Further, since

s(1/25we ) = (2 1) D =F@(-o-1).0)

we get that Z] * )] is supported precisely at K3(2)K and that

1—~((=11)) _1+1((=L1))

21+ N([@(2) = NG W(=11)) = — 5 V'(%(2)).

Part (2) follows similarly. For (3), (4), (5) we follow as in Proposition 3.9. O

Let Zjlz = %Z/ﬁ and Zj{; = %L{g.

Theorem 2. The Hecke algebra H(K3(8),xz2) is generated by U, Us and
Z1 modulo the relations:
2
(1) Uy =1,
—~2
(2) Uy =1+ Z,
(3) UnZ! = Us = Zllhs,
(4) UhZiUh = ZiUh Z;.

3.4. Local Shimura correspondence. Loke and Savin |7] observed an iso-

morphism between the Hecke algbera H(KZ(4),7v) (7 a genuine character of

K2(4) of order 4) and PGL2(Q3) Iwahori Hecke algebra and called it local
Shimura correspondence. In this subsection we prove that the Hecke alge-
bra H(K2(8),x:), i = 1,2, is isomorphic to the Hecke algebra of GL2(Q2)
corresponding to Ky(4) modulo scalars (here Ky(p™) denotes the subgroup

of GLy(Z,p) with (2,1)-entry in p"Z,). We thus verify local Shimura corre-
spondence between level 8 Hecke algebras of SL, (Q2) and the level 4 Hecke
algebra of PGL2(Q2).

In |2] we give generators and relations for the subalgebra of the Hecke
algebra of GL2(Q)) corresponding to Ko(p™) that is supported on GL2(Z))
for any prime p and natural number n but do not consider the full Hecke
algebra. We will now describe the full Hecke algebra H(GL2(Q2)//Ko(4)).
In this subsection we will follow the notation of [2].

For t € Q5 , we consider the following elements of GL2(Q2):

aw=(g 1), v =(n ). s0=(g 9)-
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Note that we are also using notation w(t) for denoting anti-diagonal elements
of SL2(Qz2), but we hope that this abuse of notation is clear from the context.
We have the following lemma.

Lemma 3.12. A complete set of representatives for the double cosets of
GL2(Q2) mod Ko(4) (up to central elements z(t)) consists of:

a2, w2") forneZ, d2")y(2) forn>0, y(2)d2™") forn>1,
and  y(2)w(2"), w(2")y(2), y(2Jw(2")y(2) forn >2.

We also note the following decomposition of Ky(4) double cosets.

Lemma 3.13. (a) Forn >0,
Ko@) d@Mko) = |J  a)d@)K@) = |J  Ko()d@")y(as).
SEZL2 /2" 7o SEZL2 /2" s
(b) Forn>1,
Ko@de K@) = ] ys)deME@ = |  Ko@)d@ "e(s).
SEZLo /2" 7o SE€EZo /2" 7o
(c) Forn > 2,
Ko@uwMEo®) = |J yMsjw@)Ke@)= |J  Ko(@w(2")y(4s).
SEZLo /27270 SEZLs /2" 2o
(d) Forn <1,
Kow2MEKy4) = |J w4 = ) Kodw@")z(s).
SELo 227" Lo SELy 227" s

Using the above lemma and since y(2) normalizes Ky(4), we can further
obtain decomposition of double cosets Ky(4)gKo(4) where g varies over all
the double coset representatives noted in Lemma 3.12.

Note that in this case Hecke algbera H(GL2(Q2)//Ko(4)) does not involve
any character, so it is trivially supported on all the double cosets. Let X,
be the characteristic function of Ky(4)gK(4) and let

7; = Xd(gn), Z/{n = Xw(gn), V= Xy(g) and Z = XZ(Q)

be elements of the Hecke algebra H(GL2(Q2)//Ko(4)) (again note that there
is a conflict of notation with the Hecke algebra elements of éig(@g) but we
will see that the elements satisfy exactly the same relations). It is easy to
see that Z is in the center and that Z" = X (gn).

Using [2, Lemma 3.1] and the above decomposition we obtain the following
relations in H(GL2(Q2)//Ko(4)).

Lemma 3.14. (1) If mn > 0 then Tp * T, = Tintn-
(2) Forn <0, Uy * Tp =Uin, and forn >0, Ty xU = Z"Ui—p,.
(8) Forn >0, Uy % Ty, = Usyn, and for n <0, Ty xUs = Z"Us—y,.
(4) Form > 2, Uy Uy, = ZTm—1 and Uy, xUy = Z™ T,
(5) Form <1, Us Uy, = Z?Tr—2 and Up, xUs = Z™To_pp,.
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We have the following proposition.

Proposition 3.15. (1) VYV =1.
(2) Uy «Uy =2Z(1 4 V).
(3) Uy xV =Uy =V *U.
(4) Us x Uy = Z2.
(6) Uy * Uy =4+ 2 Uy + 4V.
(7) U@*V:U():V*Uo.

Proof. Note that V, Uy are elements of the subalgebra supported on GL2(Zj,)
and the relations (1), (6), (7) follow directly from |2, Proposition 3.10, 3.12].
The relations (3), (4) and the braid relation (5) follow easily as the above
lemma. For relation (2) we use [2, Lemma 3.2]. For s = 0,1, let a; =
x(s)w(2). Then Uy * U, is supported on those g € GLa(Q2) for which there
exists s, t € {0,1} such that

(asar) g = (12 y 5_/?/2> g € Ko(4).

Checking this for g as it varies over all the double coset representatives we
get that the support is precisely on z(2) and y(2)z(2). Further, we get that

U x U (y(2)2(2) = D Un(as)th (o 'y (2)2(2))

s=0,1
-1 0 11
=U1(041 (_4 _1>)+U1(041 (0 1)):2.
Similarly U; * U;(2(2)) = 2. Thus we obtain (2). O

The remaining basis elements of H(GL2(Q2)//Ko(4)) are precisely T, *V,
V*T ,forn>1 and U, *xV,V xU, and V xU, xV for n > 2.
We have the following theorem.

Theorem 3. The Hecke algebra

H(GL2(Q2)//Ko(4))/(Z)
is generated by Uy, Us, V with the defining relations:
(1) Ui =2(1+V),
(2) Uy =1,
(3) UhY = VU = U,
(4) UVUs = VUV .

Corollary 3.16. We have the following isomorphism of Hecke algebras:

H(K§(8),x1) = H(K§(8), x2) = H(GL2(Q2)//Ko(4))/(Z2).

The Hecke algebra generators and relations described above allow a study

of the representation theory of the maximal compact with (K2(8),7) equi-
variant vectors and also the infinite-dimensional genuine representations of
SL(2) with such vectors. We will pursue this study in a subsequent work.
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4. TRANSLATION OF ADELIC TO CLASSICAL.

We follow the notation as in Section 4 of [3]. Let k be a natural number, M

be odd and x be an even Dirichlet character modulo 8M. Let xo = x (;I)k

We consider the central character v of My such that y((—1I,1)) = —2F+!
and let x1, X2 be the extension of v as in the previous section.
Let Ajy1/2(8M, x0) be the set of adelic cuspidal automorphic forms
@ : SLy(A) —» C

satisfying certain properties as considered by Waldspurger [16]. By Gelbart-
Waldspurger there is an isomorphism between

Aji172(8M, x0) = Spy1/2(To(8M), x),
®; < f, inducing a ring isomorphism
q : Endc(Agy1/2(8M, x0)) = Ende(Sky1/2(Lo(8M), x))-

We will use g to translate certain elements in H(KZ(8), x1) and H (K3 (8), x2)
to classical operators on Sy 1/2(I'o(8M)) and Sy 1/2(T0(8M), (2)) respec-
tively. Thus the classical operators so obtained satisfy the local Hecke algebra
relations noted in the previous section. These relations are crucial for the
results obtained in the next section.

Proposition 4.1. Let T1, Uy, Us, V € H(KF(8),x1) and f € Sy11/2(To(8M)).

(1) q(T)(F)(z) = 27+ (2 + 5)/4) = 2872020 f)(2).
(2) qU)(£)(z) = B (7)™ () 21 Wi, dw, (2)]is12(2), where

dn m
W= <4M 8)

with n,m € 7 such that 8n — mM =1 and dw,(z) = (2Mz + 4)'/2.
(3) aUe)(H)(=) =75 (5) "7 S F1W. dws (i jo(2), where

Wy = <16n—8mM3 m)

16M — 128Ms 16
with n,m € Z such that 16n — mM =1 and
dwi(2) = ((AM — 32Ms)z + 4)*/2.

4 NG = M g3y §) M+ DYoo)

Proof. The proof follows by similar calculations as in [3]. O
We similarly have the following proposition.

Proposition 4.2. Let f € Sjy1/2(F'0(8M), (g)) Let Wy, Wy, be as in the
above proposition. For Ty, Uy, Us, Z1, V' € H(KZ(8),x2) we have

(1) a(T))(H)(z) = 27 CHD2 30 F((2 + 9)/4),
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k+3/2

(2) q<u1 f 2) =25 (7)) 2 211 Wi, b (kg1 2(2),
(3) qUe)(F)(z) = 25 (52)" 2 (Z) Lo FIWs, dws (2)]1/2(2),
(4) a(Z >< ><z> flz—1).

From now on we consider the case of trivial character. Define operators

— Uy

W :i=¢q| —=
T <ﬂ>

on Sy11/2(To(8M)) where Us, V are elements in H(KF(8),x1). Note that

both V4 and Wg are involutions. Define 174' to be the conjugate of Vi by Wg.
We have the following corollary from Theorem 1.

Corollary 4.3. WSQ =1, 1742 =1.

and  Vj:=q(V)

Corollary 4.4. Sy /5(I'o(4M)) is contained in the +1 eigenspace of Vi and
qUE) =4 on Sgy12(To(4M)).

Proof. The first assertion follows directly. For the second one, observe that
Wy in Proposition 4.1 is same as W in [3, Remark 5]. So for f € Sy /5(T'0(4M)),

we have q(U)(f) = 2%4(]“). In particular, ¢(U?)(f) = 4f as Wy is an invo-
lution on Sy, /o(Lo(4M)). O

Lemma 4.5. Let T, T’ be elements of H(KZ(8),x1) respectively supported
on the double cosets of 5, 1 € SLa(Qs) such that T'(571) = T(3). Then the
L2-inner product (®,TV) = (T'®, ) for any ®, ¥ € Apy1/2(8M, (;l)k)

Proof. The L2-inner product

(@, TW) = O(h)T T (h)dh

/smsm(@))\ SLa(A)/ 2

/ - @(h)/ T (x)U(hx)dzdh
50(SL2(Q)\ SL2(A)/p2 K§(8)8KF(8)

®(h)¥(hz)dhdx (Fubini)

KZ(8)5KZ(8 /8@<SL2<@>>\ﬁ2(A)/uz
T (z=1)®(hx)dx ¥ (h)dh

/5@<SL2<Q> )\ SLa(4)/pz /f<§<s>§—1f<§<s>

T (2)®(hx)dx U (h)dh

50(SL2(Q))\ SLa(A) /2 /KS(8>§-1K3<8>
= (T'®, ).
O

Proposition 4.6. The operators Wg, Y74, ‘74’ are self-adjoint with respect to
the Petersson inner product.

Proof. By Gelbart [4, (3.10)] for f,g € Sj41/2(T0(8M)) the Petersson inner
product (f,g) equals a constant times the L%-inner product (®f, ®,). In
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particular, if ' is an operator on S}, 41 /2(T'0(8M)) such that T' = ¢(7) where
T € H(KZ(8),x1), then (f,Tg) equals the constant times (@7, T ®,).

Since the K2(8) double cosets of (y(4),1) and (w(272),1) equal respec-
tively that of (y(4),1)~! and (w(272),1)!, by Lemma 4.5 we are done. [J

4.1. Comparison with Kohnen’s projection map. Kohnen |6, page 37|
and later Ueda-Yamana [15] define function

Pa(f) = FlIE+ € Nksay2

- ()

We have the following observation.

Proposition 4.7. Let f € Siy1/2(T0(8M)). Then

W20 = (557 ) PO

where

Proof. Using [15, equation (2.2)], we can write

e 4—8Ms 1
Py(f) = e~ GRHm/A %7 fH( 320 4) (8M sz 4 )Pl
s=0

Now the proof essentially follows by observing that Z, is precisely supported
on the double coset of

1o (5 1)@ =m0 (, ))&

! 1 —1/4
- U <8Ms 1-— 2/]\Js> Kg(S).
s=0

Indeed, computing as before we obtain

a(22)(f) = 25 <<<é - 4) 1)) eBHEUTP(f).

Also it is easy to check that

({6 V))-5(( )9 wen s

and that (527 ) Fs(—i+) = e GRrDT/L, 0

Now using the relation in Proposition 3.9(3) we have

Corollary 4.8. % (ﬁ) Py = VuWsVy = WeViWg = ‘74’

Extending Kohnen’s definition, Ueda-Yamana [15] define the plus space

S,j+1/2(8M) to consist of f =7 | ang” € Sp11/2(To(8M)) such that a, =

0 for (—1)*n = 2,3 (mod 4).
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Corollary 4.9. Sk+1/2(8M) is the +1 eigenspace of ‘74’. The —1 eigenspace
of V4 consists of f such that a, = 0 for (=1)*n =0,1 (mod 4).

Proof. From |6, equation(2)],

B(f) =2 <2k+1) Zanq —Zanq

where Z , respectlvely Z , runs over n with (—=1)*n = 0,1 (mod 4),
respectively (—1)¥n = 2,3 (mod 4). The result now follows using the above
corollary. O

Consider the projection map gy [15] onto the plus space which take
> o ang™ to ZS) ang™.

Corollary 4.10. If f belongs to the —1 eigenspace 0f‘~/4' then pr(f) = 0.

5. MINUS SPACE OF Sy 1/2(I'0(8M))
Let M be odd and square-free. In this section we shall define the minus
space S, 8M) and show that there is a Hecke algebra isomorphism be-
tween S,

o1 /2(8M ) and SV (I'o(4M)). We shall give a characterization of
the minus space as common —1 eigenspace of certain operators. The method
we employ is similar to [3]. The main tools that we use are the generators
and relations of Theorem 1 and their translation into classical operators.
We also need the operators @p, @;, sz on Sy1/2(T0(2"M)) for p | M and

operators Qa, Qb, W, on Skt1/2(Fo(4M)) that we defined in [3].

The following proposition is crucial to our study of the minus space. To
prove it we will use the relations in Theorem 1 including the crucial braid
relation (Theorem 1(4)).

Proposition 5.1. (1) Let f € Spq1/2(Lo(4M). Then
fe Sk+1/2(4M) — Wsf=/F.
(2) k+1/2(4M) + W45;+1/2(4M) + W8W4Sk+1/2(4M) is a direct sum.
(3) k+1/2(4M) + W85;+1/2(4M) is a direct sum.

+1/2(

Proof. We first prove (1). For f € Sy 1/2(I'0(4M) we have

q(b\{;)f Wef = f = q (u\l/?)f=q(U1)f=>q<\%>f=q(U1)f
L

Y ) f=qUd)f =Af = WUy f = 2Ff

— Q4(f) =2f = [ € S, ,(4M).

The second implication follows from Lemma 3.7 while the third and fourth
follow from Corollary 4.4. For the last part, see |3, Section 4.3|. Now let f €
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51;11/2

follows from Corollary 4.9 that 174’(]") = f, ie.,
WsVaWs(f) = VaWsVa(f) = f.

Using Corollary 4.4 we get that WNfg f=r

We now prove (2). Let f, g, h € S];‘:-l/Q

(4M). Since f satisfies the plus-space Fourier coefficient condition, it

(4M) be such that

f+aqlh)g+q (U\Q/L;) h=0

(note that q(U;) = 2W, on Skt1/2(L0(4M))). Applying (V) to the above
equation and using Corollary 4.4 and Lemma 3.8(2) we get

f+aqlh)g+q (VL\{/Q;h) h=0.

Let h' = q(Uh)h € Sky1/2(To(4M)). Subtracting the above equations we
have q(Us)h' = q(VUz)h'. Next, applying ¢(Us) to the above and using
Proposition 3.9(1),(3) we have v2h' = q(VUsV)R'. As V? = 1 and us-

ing Corollary 4.4, we get ¢ (%) R = h'. Now part (1) implies that h' €

S;+1/2(4M). Thus b’/ =0 as
o1 (AM) (YWAS,E | (4M) = {0}

(follows as in [3, Proposition 6.17]) and consequently f =g =h = 0.

For (3) observe that S, /2(4M ) is contained in the +1 eigenspace of
V, and WgS];+1/2(4M) is contained in the +1 eigenspace of V. Let f #
0 belong to the intersection. Then Vif = f = V/f. Now using V| =
q (%) =q <V$2§V) (Proposition 3.9(3)) we get ¢ (%) (f) = f. Thus by
(1), fe S;H/Q(ZLM) N S];+1/2(4M), a contradiction. O

We recall the following theorem of Ueda.

Theorem 4. (Ueda [12]) Let M be odd and square-free. There exists an
isomorphism of vector spaces ¥ : Syy1/2(Fo(8M)) — Sor(Lo(4M)) satisfying

T,(0(f)) = U(T,2(f)) for all primes p coprime to 2M.

We first construct the minus space at level 8. In the above theorem take
M = 1. It follows using Proposition 5.1, Atkin-Lehner and dimension equal-
ity (see [3, Corollary 6.1]) that

Lemma 5.2. ¢ maps S*(4) & WiSt(4) & WeW4ST(4) isomorphically onto
Sak(To(1)) ® V(2)S2k(To(1)) ® V(4)S2k(To(1)).

Also, since S7(4) is Hecke isomorphic to S5%(I'g(2)) 3] we have

Lemma 5.3. ¢ maps S~ (4) & WSS_(ZI) isomorphically onto S5 (I'o(2)) ®
V(2)555™ (Lo(2))-
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Let
E = (ST(4) ® WuST(4) @ WeWaST(4)) @ (S™(4) & WeS™(4)).

Thus 1 maps E Hecke isomorphically onto SS4(I'(4)).

Define SI;+1/2(8) to be the orthogonal complement of E.

Theorem 5. Slc_+1/2
p odd; these eigenforms are also eigenfunctions under Uy. If two eigenforms

mn 51;_1/2(8) share the same eigenvalues for all T2, then they are a scalar

multiple of each other; v induces a Hecke algebra isomorphism.:

Sir1/2(8) = 52" (Fo(4))-

(8) has a basis of eigenforms for all the operators Ty,

Proof. The proof uses Lemmas 5.2 and 5.3, Theorem 4 and follows by the
argument in [3, Theorem 5|. O

Proposition 5.4. If [ € S,;H/Q(S) is a Hecke eigenform for all the Hecke

operators T2, p odd prime, then Wg(f) = £f.
Further, for any f € S,C_+1/2(8), we have

Usf =0 and Vif =—f=V/J.

Proof. Let f € Sl;+1/2(8) be a Hecke eigenform under all such T)2. Let g =

Wg( f). Since Wg commutes with T2, p odd, we get that g is an eigenform
for all T)» with the same eigenvalues as f. Since F' := 9(f) € S5V (T'0(4))
is a newform, by [1] ¢(g) is a scalar multiple of ¢ (f). Thus g is a scalar

multiple of f. Since W82 =1, we get the first assertion.

Further, by [1], since F' is a newform of level 4, Uy(F) = 0. Since the
Shimura lift [11], She(f), for any square-free ¢ is also an eigenform for all T},
with the same eigenvalues as F', by [1] Sh; f is a scalar multiple of F. Thus

Shy(Usf) = Ua(Shy f) =0

for all square-free ¢ and hence we get that Uyf = 0.
Now

0=Us(f) =q(Th)f = qUhlla) f.

Since Ws(f)Nz +f we have q(h)f =0. As U2 =242V (Proposition 3.9
(2)) we get Vif = —f. Consequently V,f = —f.

Since S, /2(8) has a basis of eigenforms under T, it follows for all

f€5,;+1/2(8)thatwehaveU4f:0and]N/Zlf:_f:f/éllf. 0
Theorem 6. Let f € Sk+1/2(1‘0(8))‘ Then,
f €818 = Vif = —f = VIf.

Proof. 1f f € S];+1/2(8) then by Proposition 5.4 the conditions hold.
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Conversely, let Vi f=—f= ‘74’ f. Since
St1/2(To(4)) = S*(4) @ WaST(4) @ 5~(4)

is contained in the +1 eigenspace of Vj and Ws(WST(4) & S~(4)) is con-
tained in the +1 eigenspace of V; and Vj, V] are self-adjoint, it follows that
f€851/2(8) O

Note that since 17;1’ is self-adjoint, we can write Syy1/2(I'0(8)) as a direct

sum of +1 and —1 eigenspaces of 174 . As noted in Corollary 4.9, Sljﬂ /2( )

is the +1 eigenspace of ‘74’, let us denote by S,Ifﬂ /2 (8) the —1 eigenspace of
V/. In particular, Sﬁ‘im( ) is the subspace of Sy /2(T'0(8)) consisting of
forms >_°° | a,g"™ such that a, = 0 for (—1)*n = 0,1 (mod 4). Further, for
a given newform F' of level dividing 4, let Sy /2(8, F') denote the subspace
of forms that are Shimura-equivalent to F' (i.e., forms f that are eigenforms

under T)» with the same eigenvalues as F' under T}, for all odd primes p).
Then we have the following simple observation.

Proposition 5.5. (1) S, ,(8) = S*(4) & WsAT(4) & Wy S~ (4) where

At (4) = W4ST(4).
(2) Given a newform F of weight 2k and level dividing 4, there exists a
unique Shimura-equivalent form in Sy /2(8, F) N S,rg“fiﬂ( ).

Proof. Let
S = S5T(4)d WAt (4) ® WeS—(4), R:=AT(4)® S (4) @ S (8)

(here and later S™(8) is a simplified notation for S, /2( )). It follows from

Corollary 4.4 that S C Sk 1 /2(8). To prove equality it is enough to show

that RN Slj—i—l/Q( ) = {0}. Let f + g + h belong to the intersection where

fEAJr() g€ S(4), he 5™ (8). Thus‘/;l(f—l—g—l—h) f+ g+ h. Since
V4 = V4W8V4, by Corollary 4.4, it follows that ng + ng =f+4+g9+ 2Vih.
Since Vj preserves S~ (8) and as each of the terms in the above relation is in
the direct summand, we are done.

For (2), since T}, for odd prime p commutes with 174’, we get that 174’ pre-
serves the space Sy 1/2(8, F). Now it follows from (1) and Lemmas 5.2 and
5.3 that for a weight 2k newform of level 1 there are two Shimura-equivalent
forms in the space S,/ 12 (8), while for a weight 2k newform of level 2 there

is precisely one Shimura-equivalent form in Sk 41 /2(8). Consequently, using

dimension equality we obtain (2). The case of a newform of level 4 is already
considered in Theorem 5. (]

We now define the minus space at level 8M for M odd square-free. Let
1% M =pip2---pg, and for each i = 1,..., k define M; = M /p;. Note that
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by [3, Corollary 4.3 (4)] Sj41/2(I'0(8M;)) is contained in the p; eigenspace
of @Pi' Now following the proof of [3, Proposition 6.4 we obtain

Proposition 5.6. Sy.41/2(To(8M;)) W2 Sps1/2(To(8M;)) = {0}.
Using Atkin-Lehner [1] and dimension equality we have the following.

Corollary 5.7. ¢ maps Sk+1/2(F0(8Mi))@Wp25k+1/2(F0(8Mi)) isomorphi-
cally onto
Sak(Lo(4M;)) & V (pi) Sak (To(414;)).

Let S;7"°¥(4M) be the new space inside the Kohnen plus subspace of

k+1/2

Skt1/2(4M) and S]:+1/2(4M) as defined in [3]. Then by Proposition 5.1 and
Atkin-Lehner we have similarly

Corollary 5.8. ¢ maps 5,1 (4M) & WS, [\ (4M) & Ws WS, [175 (4M)
tsomorphically onto

Sai” (Lo(M)) © V(2) 3™ (To(M)) @ V (4) S5 (Lo (M)

Corollary 5.9. @ maps S’,;+1/2(4M) & /W785’];+1/2(4M) isomorphically onto

Sai" (Lo (2M)) © V(2)S3¢™ (To (2M)).

We note the following observation.
Remark 1. Since Sl;+l/2
W851;+1/2(4M) is contained in the +1 eigenspace of V] and hence is con-
tained inside S,:r_H/Q(SM). In [15], Ueda-Yamana defined a newspace inside
S;+1/2(8M) and proved that it is Hecke isomorphic to S5V (T'o(2M)). Us-

ing the above corollary and following Proposition 5.5 we see that the plus

newspace identified by [15] is the space WSSI;H/Q(ZLM), Note that Y~/4’ does

not preserve the space Syy1/2(F'0(4M)) and so we do not expect a Fourier

coefficient condition for 51;_1/2(4]\4), as also observed in [3].

(4M) is contained in the +1 eigenspace of Vi,

Now let
B; = Spy1/2(To(8M;)) © ngsml/z(Fo(SMi))a i=1,....k

Define
k — —~— —~—
E=>)" B (S,y75 (4M) @ WS 175 (4M) & WsWaS 75 (4M))
=1
® 51;+1/2(4M) ® WBSI;+1/2(4M)'

Proposition 5.10. Under ¢ the space EE maps isomorphically onto the old
space S (Lo (4M)).
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Proof. This follows from Corollaries 5.7 and 5.8 and 5.9 and from the de-
composition

Sk (To(4M)) (Z Sar(To(4M;)) & V(pi)SQk(FO(4Mi))>
@ (S (Lo(M)) & V(2) 53 (Lo (M) & V (4) S5 (Lo (M)
@ Sy (To(2M)) & V(2) 53 (Lo (2M)).
O
We now define the minus space to be the orthogonal complement of E,
Sk+1/2(4M) =’

Theorem 7. The space Slc+1/2(
operators T2, where q is an odd prime satisfying (¢, M) = 1. Under v,

+1/2(8M) maps isomorphically onto the space S5 (Io(4M)).
If two forms in Sk+1/2(
Ty, (q,2M) = 1, then they are the same up to a scalar factor. Moreover,
S_ (8M) has the strong multiplicity one property in the full space of level

k+1/2
8M.

M) has a basis of eigenforms for all the

the space S

8M) have the same eigenvalues for all the operators

We give the characterization of our minus space. We have the following
proposition.

Proposition 5.11. Let [ € Sk+1/2(8M) be a Hecke eigenform for all the

Hecke opemtors Ty, q pmme and q coprime to 2M. Then for any prime p

dividing M, W 2 ==+f, Wg(f) = xf. Moreover, Up(f) = —pF=I\(p)f and
Us(f)=0 where Ap) = £1.

Consequently, for any f € Sk+1/2(8M) we have @p(f) =—f= @;(f) for
all primes p dividing M and V4f =—f= Y~/4’f

Proof. The proof follows similarly to the proof of Proposition 5.11 and proofs
of [3, Propositions 6.12, 6.13, 6.14]. O

Theorem 8. Let f € Syi1/2(8M). Then f € k+1/2( M) if and only if

@p(f) = —f = @;(f) for every prime p dividing M and 174(]“") = —f =
Vi(f).

Proof. One side of the implication follows from Proposition 5.11. For the
converse, we use Corollary 4.4, that Sj1/2(I'0(8M/p)) is contained in the
p eigenspace of @p for all p dividing M and that the operators are self-
adjoint. O

Corollary 5.12. If f =377 anq™ € S, M) then

+1/2(
an=0 for (~1)fn=0,1 (mod 4).
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In particular, the projection map gy, is identically zero on the minus space

Stt1/2(8M).

Proof. The proof follows from the above theorem and Corollaries 4.8 and
4.9. O

Remark 2. The above corollary contradicts some of the results of [9]. In
particular, in Section 8 of their paper the authors assert that the projection
map pr on the newforms at level 8M is itself, i.e. their newspace at level
8M (which corresponds to Sy (I'g(4M))) satisfies the plus space condition.
However, our results above and the example below present a contrary picture
Saf f =300 ang™ is in the newspace at level 8M then a, = 0 for (—=1)Fn =
0,1 (mod 4), i.e., pr(f) =0.

Remark 3. We note that Theorems 6 and 8 are analogous to |2, Theorem
9] in the integral weight scenario. Indeed Theorem 8 can be restated as f €

S,;+1/2(8M) if and onflg if @p(;fv) =—f= @;(f) for every prime p dividing
M and q(Uy)f =0 = Wsq(U)Ws(f).
Remark 4. We note that the decomposition of the space Sy /2(T'o(8M)) is

completely analogous to that of Sor(To(4M)) when we look at it through the
local Hecke algebra. We illustrate this in the case M = 1.

Sak(To(4)) =(S2k(To(1)) ® q(U1)S2x(Lo(1)) & q(Ua) S2k(L'o(1)))
@ (g (To(2)) ® q(U2) 52 (T0(2))) ® S5 (Lo(4))-

In the above Uy, Us are elements in the Hecke algebra H(GL2(Q2)//Ko(4))

coming from the double cosets of(g ) ( ) respectively. Also, it follows

from [2] that q(Ue)a(th)Sax(To(1)) = a(th)Sar(To(1).
Now let us look at the space Sy1/2(F'o(8M)). We have

Skr1/2(To(8)) =(AT(4) @ qUh) AT (4) & q(U) AT (4))
©(57(4) @ qt)S™(4)) @ 5 (8).

Here Uy, Us are elements in the Hecke algebra H(K3(8),x1) coming from
w(271), w(272) respectively. Recall from [3] that

AT(4) = WSt (4) = q(th) S (4).
Further, by Proposition 5.1,
q(Uo)qUr) AT (4) = q(Us) ST (4) = ST(4) = q(th) AT (4).

Example 1. The space S3/5(I'0(152)) is 8-dimensional and there are four

primitive Hecke eigenforms of weight 2 and level dividing 76, namely Fig of
level 19, G3g, Hsg of level 38 and Krg of level 76. We have

53/2(F0(152)) = 53/2(152, Flg) &) 53/2(152, Ggg) &) 53/2(152, Hgg) &) 33/2(152, K76).
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We compute the Shimura decomposition [10]. As we would expect from the
above remark, S3/5(152, Fg) is 3-dimensional space and is spanned by

A=a+d —2¢" = ¢ —¢""+2¢” +2¢* + 2¢"* — 3¢"° + O(¢™),
fo=g* — 2¢1 — 2416 1 2410 1 g2 — 2¢% 1 3¢ 1 2¢% — ¢% 1+ O(¢¥),
Fa=q" — g —2¢8 1 g1 4+ 2% + ¢35 — 263 — ¢ 1 2¢% — 7 + O(¢™),
Ss /2(152, Gsg) is 2-dimensional space and is spanned by
=20 + 5 +2¢° — ¢\ — ¢ — 3¢% — 44> + 363 + 5¢%2 + O(¢™),
go =g+ q" — q'% — 2¢% — 3¢2 + ¢4 — g% 1+ 2¢% + 3 + 2647 + O(¢™),
S3/5(152, H3s) is 2-dimensional space and is spanned by
hi=q? + 20 — 3¢'8 — g™ — 2418 — ¢! +2¢22 + ¢ + O(¢*®)
he = ¢ — ® + ¢ — ¢ — ¢ — 3 — 2¢%0 4 ¢*® 1+ O(¢™)
and S3/5(152, K76) is 1-dimensional space and is spanned by
k= =g g1 22— 22— 2¢2 —2¢% 3 1265 1 ¢ — 241+ 0(¢™).

The Kohnen plus space 33;2(152) is 4-dimensional and it is spanned by
{f2, f3,92,ha}.  We further note that Ss5(76, F19) is 2-dimensional and
spanned by {f1 + f3, fo — f3} and 537/2(76) is 2-dimensional and spanned by

{91 — g2, h1 — ha}. The minus space at level 152, S; . (152), is 1-dimensional

3/2
and spanned by k1, and is Shimura equivalent to Krs. Note that ki satisfies
the Fourier coefficient condition as noted in Corollary 5.12.

We finally look at the minus space of level 8M with character (2) Fol-
lowing Ueda [13], we define

78+ Sk+1/2(Lo(8M)) — Spp1/2(To(8M), <2>)

given by the action

8a b Mec\ L1y, 1/2
| K ) <> 8Y4(i(Mcz + d))
8Me 8d d ht1/2

where a, b, ¢, d are such that 8ad — Mbc = 1 and b = d = 1 (mod 8).
The above action is independent of the choice of a, b, ¢, d satisfying the
conditions. It is routine to check that

TsAo(8M)7g ' = Ag(8M, <2>)

and that 73 = 1 on Sy41/2(T'0(8M)). Further, we check that 73 commutes
with Hecke operators T),» for all p odd, giving a Hecke isomorphism from

Sit1/2(To(8M)) to Syi1/2(To(8M), (2)).
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Define the minus space

Siva(8M, <2)) — RSy p(8M).
It follows that S, /2(8M (2)) maps Hecke isomorphically onto S5e¥ (I'g(4M)).
Further, 5, (8M, (2)) has asimilar characterization: g € 5’k+1/2(8]\47 (2))
if and only if Tng?gl( )=—g= TngTs (g) for every prime p dividing M
and ?g%?gl(g) =—g= ?8Y~/4’?g1

Let 21 € H(K3(8), x2)-

Proposition 5.13. The action of ?8‘74?8_1 equates the action of q(Z]) on
Skt1/2(Lo(8M), (2)). In particular, Sk+1/2(8M, (2)) is contained in the —1
eigenspace of q(Z7).

Proof. By Propositions 4.1 and 4.2, V4 acts by (.59, k1172 and q(27)
acts by |[<(1) _11/2> s Ukg1/2. We check that

= (e D)2(6 1) )= (G ) o)

Cy =32Mda*> and Dy=1+4Mab+ 16Ma’.
As D; = 1 (mod 4), ep, = 1. Note that (DM1> = 1 and hence (%) =

<%) = (D%> Thus the right hand side belongs to Ag(8M, (2)) and we
are done. O

Remark 5. We note that when M = 1, the action of Tg is same as that of
I(Crk 81/4(—12)1/2]k+1/2 and we can check that

T U

TgWgTS 1 =(q (ﬂ)
(Proposition 4.2) on Sii1/2(To(8), (2)); recall that % € H(KZ(8),x2) is an
involution. Thus g € Sk+1/2 (2) ) if and only if

q(Z21)(9)=-9=q¢ <uli1u1> (9)-
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