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Abstract. We compute generators and relations for a certain 2-adic
Hecke algebra of level 8 associated with the double cover of SL2 and a
2-adic Hecke algebra of level 4 associated with PGL2. We show that
these two Hecke algebras are isomorphic as expected from the Shimura
correspondence. We use the 2-adic generators to define classical Hecke
operators on the space of holomorphic modular forms of weight k + 1/2
and level 8M whereM is odd and square-free. Using these operators and
our previous results on half-integral weight forms of level 4M we define
a subspace of the space of half-integral weight forms as a common −1
eigenspace of certain Hecke operators. Using the relations and a result
of Ueda we show that this subspace, which we call the minus space,
is isomorphic as a Hecke module under the Ueda correspondence to the
space of new forms of weight 2k and level 4M . We observe that the forms
in the minus space satisfy a Fourier coefficient condition that gives the
complement of the plus space but does not define the minus space.

1. Introduction

It has been observed by Waldspurger [16] that the theory of half-integral
weight modular forms is more complicated for levels of the forms 8M and
16M where M is an odd integer. In particular, one of the Waldspurger’s
hypothesis, (H2), for his celebrated formula for central twisted L-values for an
integral weight newform requires the newform to be either not supercuspidal
at 2 or has level divisible by 16, that is, the corresponding half-integral
weight “newform” should have level 4M or level divisible by 32. Ueda in an
unpublished work [14] observed that the levels 2kM where 2 ≤ k ≤ 6 pose
greater difficulties than general k. In this work we complete the work of
Ueda to obtain a decomposition of the space of holomorphic forms of weight
k + 1/2 and level 8M where M is odd and square-free. An attempt at such
theory has been made by Manickam, Meher and Ramakrishnan [9] but our
results and methods differ completely. For more details on this difference see
Remark 2 in Section 5.
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Kohnen [5, 6] defines the plus space S+
k+1/2(4M) to be a subspace of

Sk+1/2(Γ0(4M)) which is the positive eigenspace of a certain Hecke oper-
ator. In the case M = 1, Loke and Savin [7] gave an interpretation of the
Kohnen plus space in representation theory language using a 2-adic Hecke
algebra of level 4. Manickam, Ramakrishnan and Vasudevan [8] defined a
new subspace inside this space as an orthogonal complement of certain sub-
spaces. In [3] we used the Hecke algebra approach to show that the new
subspace is given as a common −1 eigenspace of certain Hecke operators. In
this paper we extend this approach by considering 2-adic Hecke algebras of
level 8 and describe it using generators and relations. We obtain an isomor-
phism between certain 2-adic Hecke algebras which is part of the Shimura
correspondence. We translate 2-adic Hecke elements into classical Hecke op-
erators that satisfy the relations coming from the 2-adic elements. Once we
have these operators and relations we combine it with our results for the
case 4M to define the minus space of level 8M as a common −1 eigenspace
of certain classical Hecke operators. Using the Ueda Hecke isomorphism be-
tween Sk+1/2(Γ0(8M)) and S2k(Γ0(4M)) we show that the minus space at
level 8M is Hecke isomorphic to the subspace of new forms in S2k(Γ0(4M))
and satisfies the strong multiplicity one. Further, if f =

∑∞
n=1 anq

n is in the
minus space at level 8M then an = 0 for (−1)kn ≡ 0, 1 (mod 4). This condi-
tion is exactly opposite to Kohnen’s plus space Fourier coefficient condition
and is contrary to the assertion of [9].

2. Preliminaries and Notation

We will be following the notation of our paper [3]. Let k, N denote
positive integers with 4 dividing N . Let G be the set of all ordered pairs
(α, φ(z)) where α =

(
a b
c d

)
∈ GL+

2 (R) and φ(z) is a holomorphic function on
the upper half plane H such that φ(z)2 = tdet(α)−1/2(cz + d) with t in the
unit circle S1. For ζ = (α, φ(z)) ∈ G define the slash operator |[ζ]k+1/2 on
functions f on H by

f |[ζ]k+1/2(z) = f(αz)(φ(z))−2k−1.

For an even Dirichlet character χ modulo N let

∆0(N,χ) := {α∗ = (α, jχ(α, z)) ∈ G | α ∈ Γ0(N)} ≤ G.

where jχ(α, z) = χ(d)ε−1d
(
c
d

)
(cz + d)1/2, here εd = 1 or i according as

d ≡ 1 or 3 (mod 4) and
(
c
d

)
is as in Shimura’s notation [11]. The space of

holomorphic cusp forms Sk+1/2(Γ0(N), χ) satisfies

f |[α∗]k+1/2(z) = f(z)

for all α ∈ ∆0(N,χ) and we have the well-known family of Hecke operators
{Tp2}p-N , {Up2}p|N on Sk+1/2(Γ0(N), χ) (please refer to [11] for details).

Let S̃L2(Qp) be the non-trivial central extension of SL2(Qp) by µ2 = {±1}
given by the Kubota-Gelbart 2-cocycle defined below.
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For g =

(
a b
c d

)
∈ SL2(Qp), define

τ(g) =

{
c if c 6= 0,

d if c = 0;

if p =∞, set sp(g) = 1 while for a finite prime p

sp(g) =

{
(c, d)p if cd 6= 0 and ordp(c) is odd,
1 else.

Define the 2-cocycle σp on SL2(Qp) as follows:

σp(g, h) = (τ(gh)τ(g), τ(gh)τ(h))p sp(g)sp(h)sp(gh).

Then the double cover S̃L2(Qp) is the set SL2(Qp)× µ2 with the group law

(g, ε1)(h, ε2) = (gh, ε1ε2σp(g, h)).

For any subgroup H of SL2(Qp), we shall denote by H the complete inverse
image of H in S̃L2(Qp).

We consider the following subgroups of SL2(Zp):

Kp
0 (pn) =

{(
a b
c d

)
∈ SL2(Zp) : c ∈ pnZp

}
,

Kp
1 (pn) =

{(
a b
c d

)
∈ Kp

0 (pn) : a ≡ 1 (mod pnZp)
}
.

By [4, Proposition 2.8], S̃L2(Qp) splits over SL2(Zp) for odd primes p, while
S̃L2(Q2) does not split over SL2(Z2) and instead splits over the subgroup
K2

1 (4). It follows that the center M2 of S̃L2(Q2) is a cyclic group of order 4
generated by (−I, 1).

For an open compact subgroup S of S̃L2(Qp) and a genuine character γ
of S, let H(S, γ) be the subalgebra of C∞c (S̃L2(Qp)) defined by

{f ∈ C∞c (S̃L2(Qp)) : f(k̃g̃k̃′) = γ(k̃)γ(k̃′)f(g̃) for g̃ ∈ S̃L2(Qp), k̃, k̃′ ∈ S}
under the usual convolution

f1 ∗ f2(h̃) =

∫
S̃L2(Qp)

f1(g̃)f2(g̃
−1h̃)dg̃ =

∫
S̃L2(Qp)

f1(h̃g̃)f2(g̃
−1)dg̃,

Loke and Savin [7] describedH(K2
0 (4), γ) for a certain γ of order 4 using gen-

erators and relations. We in [3] described H(Kp
0 (p), γ) for odd primes p and

certain quadratic characters γ. We translated the elements of the local Hecke
algebras to obtain classical operators Q̃p, Q̃′p, W̃p2 on Sk+1/2(Γ0(2

nM)) for p
strictly dividing M , M odd and operators Q̃2, Q̃′2, W̃4 on Sk+1/2(Γ0(4M)).
We shall be using these operators and their properties in Section 5 of this
paper.
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We now set up some more notation. For s ∈ Q2, t ∈ Q×2 let us define the
following elements of SL2(Q2):

x(s) =

(
1 s
0 1

)
, y(s) =

(
1 0
s 1

)
, w(t) =

(
0 t
−t−1 0

)
, h(t) =

(
t 0
0 t−1

)
.

Let N = {(x(s), ε) : s ∈ Q2, ε = ±1}, N̄ = {(y(s), ε) : s ∈ Q2, ε = ±1}
and T = {(h(t), ε) : t ∈ Q×2 , ε = ±1} be the subgroups of S̃L2(Q2). Then
the normalizer N

S̃L2(Q2)
(T ) of T in S̃L2(Q2) consists of elements (h(t), ε),

(w(t), ε) for t ∈ Q×2 .

3. Hecke Algebra of S̃L2(Q2) modulo K2
0 (8)

In this section we shall be describing the local Hecke algebra H(S, γ) for
S = K2

0 (8) and certain genuine characters γ described below.
Let γ be a genuine central character given by sending (−I, 1) to a primitive

fourth root of unity. We extend γ to K2
0 (8) as follows. Extend γ to K2

1 (8)×
M2 so that it is trivial on K2

1 (8). Since K2
0 (8)/(K2

1 (8) ×M2) is generated
by (h(5), 1) it is enough to define it on (h(5), 1). Since (h(5), 1) has order
2 there are two choices for γ((h(5), 1)). We will denote the resulting two
characters of K2

0 (8) by χ1 and χ2:

χ1((h(u), 1)) =

{
1 if u ≡ 1, 5 (mod 8Z2)

γ((−I, 1)) if u ≡ 3, 7 (mod 8Z2),
,

χ2((h(u), 1)) =


1 if u ≡ 1 (mod 8Z2)

γ((−I, 1)) if u ≡ 7 (mod 8Z2)

−1 if u ≡ 5 (mod 8Z2)

−γ((−I, 1)) if u ≡ 3 (mod 8Z2).

Note that for γ = χ1, χ2 and (A, ε) = (x(s), 1)(h(u), 1)(y(t), 1)(I, εδ) ∈
K2

0 (8) ([3, Lemma A.4]) we have

γ(A, ε) = γ(x(s), 1)γ(h(u), 1)γ(y(t), 1)γ(I, εδ) = γ(h(u), 1)γ(I, εδ). (1)

From now on we shall denote K2
0 (8) by simply K0. Also for g ∈ S̃L2(Q2)

we put g := (g, 1) ∈ S̃L2(Q2). We shall describe the Hecke algebra H(K0, γ)
using generators and relations.

We have the following proposition. The proof is a routine calculation.

Proposition 3.1. A complete set of representatives for the double cosets of
S̃L2(Q2) modulo K0 consists of g, where g varies over the following elements
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of SL2(Q2):

h(2n), w(2n) for n ∈ Z, h(2n)y(4), h(2n)y(2) for n ≥ 0,

y(4)h(2−n), y(2)h(2−n), w(2−n)y(2), y(2)w(2−n), y(2)w(2−n)y(2) for n ≥ 1,

w(2−n)y(4), y(4)w(2−n), y(4)w(2−n)y(4),

y(2)w(2−n)y(4), y(4)w(2−n)y(2) for n ≥ 2

and y(2)w(2−1)y(6).

We will now compute the support of H(K0, χ1) and H(K0, χ2). We first
have the following lemma on vanishing.

Lemma 3.2. The Hecke algebra H(K0, χ1) vanishes on the double cosets of
K0 represented by

y(2), y(2)w(2−n), w(2−n)y(2), y(2)w(2−n)y(2),

h(2n)y(2), y(2)h(2−n), y(2)w(2−1)y(6) for n ≥ 1

and

y(2)w(2−n)y(4), y(4)w(2−n)y(2) for n ≥ 2.

The Hecke algebra H(K0, χ2) vanishes on the double cosets of K0 repre-
sented by

y(4), y(4)h(2−n), h(2n)y(4) for n ≥ 1,

y(2)w(2−1)y(6),

and

y(2)w(2−n)y(4), y(4)w(2−n)y(2),

w(2−n)y(4), y(4)w(2−n), y(4)w(2−n)y(4) where n ≥ 2.

Proof. Recall that ([3, Lemma 3.1]) H(K0, γ) is supported on g̃ if and only
if for every k̃ ∈ Kg̃ := K0 ∩ g̃K0g̃

−1 we have γ([k̃−1, g̃−1]) = 1. So to check
the vanishing at g̃ we need to just find suitable k̃.

For example, for A = y(2)w(2−n), take B =

(
−3 2
−8 5

)
. Then B ∈ KA

and

[B
−1
, A
−1

] =

((
5 + 22n+2 −2

8 + 3 · 22n+1 −3

)
, −1

)
.

The above commutator is of the form((
−3 ∗
0 −3

)
(mod 8Z2), −1

)
and in its triangular decomposition (as in equation (1)) δ = 1. Since χ1

takes value −1, the vanishing of H(K0, χ1) follows on the double coset of A.
The vanishing of H(K0, χ1), H(K0, χ2) at the double cosets listed in the
lemma follow similarly. �
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Lemma 3.3. H(K0, χ1) and H(K0, χ2) are supported on the double cosets
of K0 represented by h(2n) and w(2−n) for n ∈ Z.
H(K0, χ1) is supported on y(4) while H(K0, χ2) is supported on y(2).

Proof. The proof is similar to the proof of [3, Lemma 3.5] and mainly uses
[3, Lemma 3.1, Lemma 3.2 and Lemma A.3].

We illustrate the case of support of H(K0, χ2) on y(2). The rest involve
similar calculations.

We note that

Ky(2) =

{
(

(
a− 2b b

c+ 2(a− d)− 4b 2b+ d

)
,±1) :

(
a b
c d

)
∈ K0, ord2(b) ≥ 1

}
has a triangular decomposition Ky(2) = NKy(2)TKy(2)N̄Ky(2) where

NKy(2) = {(x(s),±1) : ord2(b) ≥ 1}, TKy(2) = TK0 , N̄Ky(2) = N̄K0 .

For B = x(s) where ord2(s) ≥ 1 (we may assume s 6= 0) we have

B−1A−1BA =

(
1 + 2s+ 4s2 2s2

−4s −2s+ 1

)
and s2(B−1A−1BA) = (−s, 2s+ 1)2 when ord2(s) is odd, 1 else. Thus for
ord2(s) ≥ 2 we have s2(B−1A−1BA) = 1. If s = 2u with u a unit,

(−s,−2s+ 1)2 = (−2u,−4u+ 1)2
= (−2,−4u+ 1)2 (−u,−4u+ 1)2
= (−2,−3)2 = −1.

As before, since ord2(s) ≥ 1 the δ-factor in the triangular decomposition of
[(B, ε)−1, y(2)] is 1 and so

χ2([(B, ε)
−1, y(2)]) =

{
χ2((h(5),−1)) = −1×−1 = 1 if ord2(s) = 1,

1 if ord2(s) ≥ 2.

For B = h(u) and B = y(t) in Ky(2) we check that [(B, ε)−1, y(4)] ∈
K2

1 (8)× {1} and so χ2 takes value 1. �

We note the following decomposition of double cosets into union of single
cosets that would be useful in obtaining generators and relations among the
Hecke algebra elements.

Lemma 3.4. (a) For n ≥ 0,

K0h(2n)K0 =
⋃

s∈Z2/22nZ2

x(s)h(2n)K0 =
⋃

s∈Z2/22nZ2

K0h(2n)y(8s).

(b) For n ≥ 1,

K0h(2−n)K0 =
⋃

s∈Z2/22nZ2

y(8s)h(2−n)K0 =
⋃

s∈Z2/22nZ2

K0h(2−n)x(s).
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(c) For n ≥ 2,

K0w(2−n)K0 =
⋃

s∈Z2/22n−3Z2

y(8s)w(2−n)K0 =
⋃

s∈Z2/22n−3Z2

K0w(2−n)y(8s).

(d)

K0w(2−1)K0 =
⋃

s∈Z2/2Z2

x(s)w(2−1)K0 =
⋃

s∈Z2/2Z2

K0w(2−1)x(s).

(e) For n ≥ 0,

K0w(2n)K0 =
⋃

s∈Z2/22n+3Z2

x(s)w(2n)K0 =
⋃

s∈Z2/22n+3Z2

K0w(2n)x(s).

(f) K0y(4)K0 = K0y(4) = y(4)K0.
(g) For n ≥ 1,

K0h(2n)y(4)K0 =
⋃

s∈Z2/22nZ2

x(s)h(2n)y(4)K0 =
⋃

s∈Z2/22nZ2

K0h(2n)y(4 + 8s).

(h) For n ≥ 1,

K0y(4)h(2−n)K0 =
⋃

s∈Z2/22nZ2

y(4 + 8s)h(2−n)K0

=
⋃

s∈Z2/22nZ2

K0y(4)h(2−n)x(s).

(i) For n ≥ 2,

K0w(2−n)y(4)K0 =
⋃

s∈Z2/22n−3Z2

y(8s)w(2−n)y(4)K0

=
⋃

s∈Z2/22n−3Z2

K0w(2−n)y(4 + 8s).

(j) For n ≥ 2,

K0y(4)w(2−n)K0 =
⋃

s∈Z2/22n−3Z2

y(4 + 8s)w(2−n)K0

=
⋃

s∈Z2/22n−3Z2

K0y(4)w(2−n)y(8s).

(k) For n ≥ 2,

K0y(4)w(2−n)y(4)K0 =
⋃

s∈Z2/22n−3Z2

y(4 + 8s)w(2−n)y(4)K0

=
⋃

s∈Z2/22n−3Z2

K0y(4)w(2−n)y(4 + 8s).

(l)

K0y(2)K0 =
⋃

s∈Z2/2Z2

x(s)y(2)K0 =
⋃

s∈Z2/2Z2

K0y(2)x(s).
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(m)

K0y(2)w(2−1)K0 =
⋃

s∈Z2/2Z2

x(s)y(2)w(2−1)K0

=
⋃

s∈Z2/2Z2

K0y(2)w(2−1)x(s).

(n)

K0w(2−1)y(2)K0 =
⋃

s∈Z2/2Z2

x(s)w(2−1)y(2)K0

=
⋃

s∈Z2/2Z2

K0w(2−1)y(2)x(s).

(o)

K0y(2)w(2−1)y(2)K0 = K0y(2)w(2−1)y(2) = y(2)w(2−1)y(2)K0.

(p) For n ≥ 2,

K0y(2)w(2−n)K0 =
⋃

s∈Z2/22n−2Z2

y(2 + 4s)w(2−n)K0

=
⋃

s∈Z2/22n−2Z2

K0y(2)w(2−n)y(8s).

(q) For n ≥ 2,

K0w(2−n)y(2)K0 =
⋃

s∈Z2/22n−2Z2

y(8s)w(2−n)y(2)K0

=
⋃

s∈Z2/22n−2Z2

K0w(2−n)y(2 + 4s).

(r) For n ≥ 1,

K0h(2n)y(2)K0 =
⋃

s∈Z2/22n+1Z2

x(s)h(2n)y(2)K0

=
⋃

s∈Z2/22nZ2

K0h(2n)y(2 + 4s)
⋃

s∈Z2/22nZ2

K0y(4)h(2n)y(2 + 4s).

(s) For n ≥ 1,

K0y(2)h(2−n)K0 =
⋃

s∈Z2/22n+1Z2

K0y(2)h(2−n)x(s)

=
⋃

s∈Z2/22nZ2

y(2 + 4s)h(2−n)K0

⋃
s∈Z2/22nZ2

y(2 + 4s)h(2−n)y(4)K0.

(t) For n ≥ 2,

K0y(2)w(2−n)y(2)K0

=
⋃

s∈Z2/22n−2Z2

y(2 + 4s)w(2−n)y(2)K0

⋃
s∈Z2/22n−2Z2

y(2 + 4s)w(2−n)y(6)K0

=
⋃

s∈Z2/22n−2Z2

K0y(2)w(2−n)y(2 + 4s)
⋃

s∈Z2/22n−2Z2

K0y(6)w(2−n)y(2 + 4s).
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Using Lemma 3.3, [3, Lemma 3.4] and the above decomposition we have
the following corollary.

Corollary 3.5. H(K0, χ1) is supported on

y(4)h(2−n), h(2n)y(4) for n ≥ 1

and
y(4)w(2−n), w(2−n)y(4), y(4)w(2−n)y(4) for n ≥ 2.

H(K0, χ2) is supported on

y(2)w(2−n), w(2−n)y(2) for n ≥ 2

and
h(2n)y(2), y(2)h(2−n) for n ≥ 1.

Note that we cannot use the argument in the proof of the above corollary
to show support ofH(K0, χ2) on the double cosets of w(2−1)y(2), y(2)w(2−1)
and y(2)w(2−n)y(2) for n ≥ 1. In these cases we check the support directly
as in Lemma 3.3.

Thus we have the following proposition.

Proposition 3.6. H(K2
0 (8), χ1) is supported on precisely the double cosets

of K2
0 (8) represented by

{h(2n), w(2−n)}n∈Z ∪ y(4) ∪ {h(2n)y(4), y(4)h(2−n)}n≥1
∪ {y(4)w(2−n), w(2−n)y(4), y(4)w(2−n)y(4)}n≥2.

H(K2
0 (8), χ2) is supported on precisely the double cosets of K2

0 (8) repre-
sented by

{h(2n), w(2−n)}n∈Z ∪ y(2)

∪ {y(2)w(2−n), w(2−n)y(2), y(2)w(2−n)y(2), h(2n)y(2), y(2)h(2−n)}n≥1.

3.1. Generators and Relations. Let γ be either χ1 or χ2. Following Loke
and Savin [7] we extend the character γ on M2 to the normalizer subgroup
N

S̃L2(Q2)
(T ) of torus T in S̃L2(Q2) by defining γ(h(2n)) = 1 for all n ∈ Z

and
γ(w(1)) =

1 + γ((−I, 1))√
2

=: ϕ8,

an 8-th root of unity.
For n ∈ Z, define the elements Tn and Un of H(K2

0 (8), γ) supported re-
spectively on the K2

0 (8) double cosets of (h(2n), 1) and (w(2−n), 1) such that

Tn(k̃(h(2n), 1)k̃′) = γ(k̃)γ((h(2n), 1))γ(k̃′), (2)

Un(k̃(w(2−n), 1)k̃′) = γ(k̃)γ((w(2−n), 1))γ(k̃′) for k̃, k̃′ ∈ K2
0 (8).

We use the decomposition Lemma 3.4 and [3, Lemma 3.4] to obtain the
following relations in H(K2

0 (8), γ).

Lemma 3.7. (1) If mn ≥ 0 then Tm ∗ Tn = Tm+n.



10 EHUD MOSHE BARUCH AND SOMA PURKAIT

(2) For n ≤ 0, U1 ∗ Tn = U1+n, and for n ≥ 0, Tn ∗ U1 = U1−n.
(3) For n ≥ 0, U2 ∗ Tn = U2+n, and for n ≤ 0, Tn ∗ U2 = U2−n.
(4) For m ≥ 2, U1 ∗ Um = Tm−1 and Um ∗ U1 = T1−m.
(5) For m ≤ 1, U2 ∗ Um = Tm−2 and Um ∗ U2 = T2−m.

3.2. The algebra H(K2
0 (8), χ1). Consider the case when γ = χ1. Since

H(K0, χ1) is supported on K0y(4)K0, we define V to be an element of
H(K0, χ1) that is supported precisely on K0y(4)K0 such that V(y(4)) = 1.
Now since µ(y(4))µ(y(4)) = µ(y(8)), using Lemma [3, Lemma 3.4] we get
that V ∗ V is supported precisely on K0y(8)K0 = K0 and

V ∗ V((I, 1)) = V ∗ V(y(8)) = V(y(4))V(y(4)) = 1,

so we get that V ∗ V = 1.
Similarly, U1 ∗ V is supported precisely at K0w(2−1)y(4)K0 and its value

at w(2−1)y(4) is U1(w(2−1)) as V(y(4)) = 1. But note that

K0w(2−1)y(4)K0 = K0w(2−1)K0,

in fact

w(2−1)y(4) =

((
9 −1
−8 1

)
, 1

)
w(2−1)

((
1 −2
0 1

)
, 1

)
,

so

U1(w(2−1)) = U1 ∗ V(w(2−1)y(4))

= U1 ∗ V
(((

9 −1
−8 1

)
, 1

)
w(2−1)

((
1 −2
0 1

)
, 1

))
= U1 ∗ V(w(2−1)),

and thus U1 ∗ V = U1. Similarly we get V ∗ U1 = U1.

Lemma 3.8. For V, U1 ∈ H(K0, χ1) we have following relations:
(1) V ∗ V = 1.
(2) U1 ∗ V = U1 = V ∗ U1.

Proposition 3.9. (1) U2 ∗ U2 = 2.
(2) U1 ∗ U1 = 2 + 2V.
(3) U2 ∗ V ∗ U2 =

√
2 V ∗ U2 ∗ V.

(4) U0 ∗ U0 = 8 + 2
√

2 U0 + 8V.
(5) U0 ∗ V = U0 = V ∗ U0 and consequently U0√

2
∗ ( U0√

2
− 4) ∗ ( U0√

2
+ 2) = 0.

We shall use the following version of [3, Lemma 3.3].

Lemma 3.10. Let f1, f2 ∈ H(γ), and f1 is supported onK0x̃K0 =
⋃m
i=1K0α̃i

and f2 is supported on K0ỹK0, and let K0ỹ
−1K0 =

⋃n
j=1 β̃jK0. Then

f1 ∗ f2(g̃) =
n∑
j=1

f1(g̃β̃j)f2(β̃
−1
j )
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and the non-zero summands are those for which there exists a j such that
g̃β̃j ∈ K0α̃i.

Proof of Proposition 3.9. We shall prove (3). The proofs of (1) and (2) are
similar. LetW2 = U2 ∗V and Z2 = V ∗U2 ∗V. Then using the decomposition
in Lemma 3.4 and [3, Lemma 3.4] we see that W2, Z2 are respectively
supported on

K0w(2−2)y(4)K0 and K0y(4)w(2−2)y(4)K0

and W2(w(2−2)y(4)) = γ(w(1)) = Z2(y(4)w(2−2)y(4)).

So to get the identity we will first compute the support of W2 ∗ U2.
Using Lemma 3.4,

K0w(2−2)y(4)K0 =
⋃
s=0,1

K0α̃s and K0w(2−2)−1K0 =
⋃
t=0,1

β̃tK0

where
α̃s = w(2−2)y(4 + 8s), β̃t = y(−8t)w(−2−2),

The matrix part of β̃tα̃−1s are(
−1 −1/4
0 −1

)
if t = s = 0,

(
−1 −1/4
8 1

)
if t = 1, s = 0,(

−1 −3/4
0 −1

)
if t = 0, s = 1,

(
−1 −3/4
8 5

)
if t = s = 1.

Running g̃ over the double coset representatives we see that g̃β̃tα̃−1s ∈ K0

implies that g̃ is in the double coset of y(4)w(2−2)y(4). Thus W2 ∗ U2 is
supported on K0y(4)w(2−2)y(4)K0. Consequently

U2 ∗ V ∗ U2 =W2 ∗ U2 = αZ2,

where one can compute α by computing W2 ∗ U2(g̃) with

g̃ = y(4)w(2−2)y(4) =: (C, ε) and ε = σ2(y(4), w(2−2))σ2(y(4)w(2−2), y(4)).

By Lemma 3.10,

W2 ∗ U2(g̃) =
∑
t=0,1

W2(g̃β̃t)U2(β̃−1t ) = U2(w(2−2))
∑
t=0,1

W2(g̃β̃t).

Let As = w(2−2)y(4 + 8s) and Bt = y(−8t)w(−2−2). Then the matrix part
of g̃β̃tα̃−1s is CBtA−1s which is(

−1 −1
0 −1

)
if t = 0, s = 1,

(
1 0
8 1

)
if t = 1, s = 0,

and the sigma-factor of g̃β̃tα̃−1s is εησ(C,BtA
−1
s ) where

η := σ(w(2−2), y(4 + 8s))σ(As, A
−1
s )σ(y(−8t), w(−2−2))σ(Bt, A

−1
s ).

Now η turns out to be −1 when t = 0, s = 1 and 1 when t = 1, s = 0. Thus

g̃β̃0 = (

(
−1 −1
0 −1

)
,−1)w(2−2)y(4)y(8), g̃β̃1 = (

(
1 0
8 1

)
, 1)w(2−2)y(4).
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Thus
W2 ∗ U2(g̃) = γ(w(1))2(γ((−I, 1)) + 1).

Hence α =
√

2 and U2 ∗ V ∗ U2 =
√

2 Z2 =
√

2 V ∗ U2 ∗ V.
The proofs of (4), (5) now follow using (1), (2), (3) above, Lemma 3.8 and

the relation U0 = T1 ∗ U1 = U1 ∗ U2 ∗ U1. �

For n ≥ 1, define

Rn := Tn ∗ V, Sn := V ∗ T−n,
and for n ≥ 2,

Wn := Un ∗ V, Yn := V ∗ Un and Zn := V ∗ Un ∗ V.
Note that by Lemma 3.4 and [3, Lemma 3.4], Rn, Sn, Wn, Yn, Zn are
respectively supported on the K0 double cosets of

h(2n)y(4), y(4)h(2−n), w(2−n)y(4), y(4)w(2−n) and y(4)w(2−n)y(4).

Thus it follows from Proposition 3.6 that Tn, Un for n ∈ Z, V, Rn, Sn for
n ≥ 1 and Wn, Yn, Zn for n ≥ 2 form basis elements of H(K0, χ1) as a
vector space. Indeed it follows from Lemma 3.7 that U1, U2 and V generate
H(K0, χ1) as an algebra.

Let
Û1 =

1√
2
U1, Û2 =

1√
2
U2 and Û0 =

1

2
√

2
U0.

Using relations above, we obtain the following theorem.

Theorem 1. The Hecke algebra H(K2
0 (8), χ1) is generated by Û1, Û2 and V

modulo the relations:
(1) Û1

2
= 1 + V,

(2) Û2
2

= 1,
(3) Û1V = VÛ1 = Û1,
(4) Û2VÛ2 = VÛ2V.

3.3. The algebra H(K2
0 (8), χ2). Take γ = χ2, we will similarly get gener-

ators and relations for the Hecke algebra H(K2
0 (8), χ2).

Define Z ′1 ∈ H(K0, χ2) supported only on the double coset of y(2)w(2−1)y(2)
such that Z ′1(y(2)w(2−1)y(2)) = 1. Note that y(2)w(2−1)y(2) = x(1/2) and
it normalizes K0. As before we get that Z ′1 ∗ Z ′1 = 1.

Define V ′ ∈ H(K2
0 (8), χ2) supported precisely on K0y(2)K0 such that

V ′(y(2), 1) =
1 + γ((−I, 1))√

2
.

We have the following proposition.

Proposition 3.11. (1) Z ′1 ∗ U1 ∗ Z ′1 = V ′.
(2) U2 ∗ Z ′1 = U2 = Z ′1 ∗ U2.
(3) U2 ∗ U2 = 2 + 2 Z ′1.
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(4) U1 ∗ U1 = 2.
(5) U1 ∗ Z ′1 ∗ U1 =

√
2 V ′ =

√
2 Z ′1 ∗ U1 ∗ Z ′1.

Proof. For (1) observe that

w(2−1)x(1/2) = (

(
0 1/2
−2 −1

)
,−1) = y(2)w(2−1)x(1).

Thus Y ′1 := U1 ∗Z ′1 is supported precisely on K0y(2)w(2−1)K0 and its value
at y(2)w(2−1) is 1−γ((−I,1))√

2
. Further, since

x(1/2)y(2)w(2−1) = (

(
−1 1
−2 1

)
, 1) = y(2)(−x(−1), 1)

we get that Z ′1 ∗ Y ′1 is supported precisely at K0y(2)K0 and that

Z ′1 ∗ Y ′1(y(2)) =
1− γ((−I, 1))√

2
γ((−I, 1)) =

1 + γ((−I, 1))√
2

= V ′(y(2)).

Part (2) follows similarly. For (3), (4), (5) we follow as in Proposition 3.9. �

Let Û1 = 1√
2
U1 and Û2 = 1√

2
U2.

Theorem 2. The Hecke algebra H(K2
0 (8), χ2) is generated by Û1, Û2 and

Z ′1 modulo the relations:

(1) Û1
2

= 1,
(2) Û2

2
= 1 + Z ′1,

(3) Û2Z ′1 = Û2 = Z ′1Û2,
(4) Û1Z ′1Û1 = Z ′1Û1Z ′1.

3.4. Local Shimura correspondence. Loke and Savin [7] observed an iso-
morphism between the Hecke algbera H(K2

0 (4), γ) (γ a genuine character of
K2

0 (4) of order 4) and PGL2(Q2) Iwahori Hecke algebra and called it local
Shimura correspondence. In this subsection we prove that the Hecke alge-
bra H(K2

0 (8), χi), i = 1, 2, is isomorphic to the Hecke algebra of GL2(Q2)
corresponding to K0(4) modulo scalars (here K0(p

n) denotes the subgroup
of GL2(Zp) with (2, 1)-entry in pnZp). We thus verify local Shimura corre-
spondence between level 8 Hecke algebras of S̃L2(Q2) and the level 4 Hecke
algebra of PGL2(Q2).

In [2] we give generators and relations for the subalgebra of the Hecke
algebra of GL2(Qp) corresponding to K0(p

n) that is supported on GL2(Zp)
for any prime p and natural number n but do not consider the full Hecke
algebra. We will now describe the full Hecke algebra H(GL2(Q2)//K0(4)).
In this subsection we will follow the notation of [2].

For t ∈ Q×2 , we consider the following elements of GL2(Q2):

d(t) =

(
t 0
0 1

)
, w(2n) =

(
0 −1
2n 0

)
, z(t) =

(
t 0
0 t

)
.
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Note that we are also using notation w(t) for denoting anti-diagonal elements
of SL2(Q2), but we hope that this abuse of notation is clear from the context.

We have the following lemma.

Lemma 3.12. A complete set of representatives for the double cosets of
GL2(Q2) mod K0(4) (up to central elements z(t)) consists of:

d(2n), w(2n) for n ∈ Z, d(2n)y(2) for n ≥ 0, y(2)d(2−n) for n ≥ 1,
and y(2)w(2n), w(2n)y(2), y(2)w(2n)y(2) for n ≥ 2.

We also note the following decomposition of K0(4) double cosets.

Lemma 3.13. (a) For n ≥ 0,

K0(4)d(2n)K0(4) =
⋃

s∈Z2/2nZ2

x(s)d(2n)K0(4) =
⋃

s∈Z2/2nZ2

K0(4)d(2n)y(4s).

(b) For n ≥ 1,

K0(4)d(2−n)K0(4) =
⋃

s∈Z2/2nZ2

y(4s)d(2−n)K0(4) =
⋃

s∈Z2/2nZ2

K0(4)d(2−n)x(s).

(c) For n ≥ 2,

K0(4)w(2n)K0(4) =
⋃

s∈Z2/2n−2Z2

y(4s)w(2n)K0(4) =
⋃

s∈Z2/2n−2Z2

K0(4)w(2n)y(4s).

(d) For n ≤ 1,

K0(4)w(2n)K0(4) =
⋃

s∈Z2/22−nZ2

x(s)w(2n)K0(4) =
⋃

s∈Z2/22−nZ2

K0(4)w(2n)x(s).

Using the above lemma and since y(2) normalizes K0(4), we can further
obtain decomposition of double cosets K0(4)gK0(4) where g varies over all
the double coset representatives noted in Lemma 3.12.

Note that in this case Hecke algbera H(GL2(Q2)//K0(4)) does not involve
any character, so it is trivially supported on all the double cosets. Let Xg

be the characteristic function of K0(4)gK0(4) and let

Tn = Xd(2n), Un = Xw(2n), V = Xy(2) and Z = Xz(2)

be elements of the Hecke algebra H(GL2(Q2)//K0(4)) (again note that there
is a conflict of notation with the Hecke algebra elements of S̃L2(Q2) but we
will see that the elements satisfy exactly the same relations). It is easy to
see that Z is in the center and that Zn = Xz(2n).

Using [2, Lemma 3.1] and the above decomposition we obtain the following
relations in H(GL2(Q2)//K0(4)).

Lemma 3.14. (1) If mn ≥ 0 then Tm ∗ Tn = Tm+n.
(2) For n ≤ 0, U1 ∗ Tn = U1+n, and for n ≥ 0, Tn ∗ U1 = ZnU1−n.
(3) For n ≥ 0, U2 ∗ Tn = U2+n, and for n ≤ 0, Tn ∗ U2 = ZnU2−n.
(4) For m ≥ 2, U1 ∗ Um = ZTm−1 and Um ∗ U1 = ZmT1−m.
(5) For m ≤ 1, U2 ∗ Um = Z2Tm−2 and Um ∗ U2 = ZmT2−m.
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We have the following proposition.

Proposition 3.15. (1) V ∗ V = 1.
(2) U1 ∗ U1 = 2Z(1 + V).
(3) U1 ∗ V = U1 = V ∗ U1.
(4) U2 ∗ U2 = Z2.
(5) U2 ∗ V ∗ U2 = ZV ∗ U2 ∗ V.
(6) U0 ∗ U0 = 4 + 2 U0 + 4V.
(7) U0 ∗ V = U0 = V ∗ U0.

Proof. Note that V, U0 are elements of the subalgebra supported on GL2(Zp)
and the relations (1), (6), (7) follow directly from [2, Proposition 3.10, 3.12].
The relations (3), (4) and the braid relation (5) follow easily as the above
lemma. For relation (2) we use [2, Lemma 3.2]. For s = 0, 1, let αs =
x(s)w(2). Then U1 ∗ U1 is supported on those g ∈ GL2(Q2) for which there
exists s, t ∈ {0, 1} such that

(αsαt)
−1g =

(
−1/2 s/2
−t st− 1/2

)
g ∈ K0(4).

Checking this for g as it varies over all the double coset representatives we
get that the support is precisely on z(2) and y(2)z(2). Further, we get that

U1 ∗ U1(y(2)z(2)) =
∑
s=0,1

U1(αs)U1(α−1s y(2)z(2))

= U1(α1

(
−1 0
−4 −1

)
) + U1(α1

(
1 1
0 1

)
) = 2.

Similarly U1 ∗ U1(z(2)) = 2. Thus we obtain (2). �

The remaining basis elements of H(GL2(Q2)//K0(4)) are precisely Tn ∗V,
V ∗ T−n for n ≥ 1, and Un ∗ V, V ∗ Un and V ∗ Un ∗ V for n ≥ 2.

We have the following theorem.

Theorem 3. The Hecke algebra

H(GL2(Q2)//K0(4))/〈Z〉
is generated by U1, U2, V with the defining relations:

(1) U2
1 = 2(1 + V),

(2) U2
2 = 1,

(3) U1V = VU1 = U1,
(4) U2VU2 = VU2V.

Corollary 3.16. We have the following isomorphism of Hecke algebras:

H(K2
0 (8), χ1) ∼= H(K2

0 (8), χ2) ∼= H(GL2(Q2)//K0(4))/〈Z〉.

The Hecke algebra generators and relations described above allow a study
of the representation theory of the maximal compact with (K2

0 (8), γ) equi-
variant vectors and also the infinite-dimensional genuine representations of
S̃L(2) with such vectors. We will pursue this study in a subsequent work.
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4. Translation of adelic to classical.

We follow the notation as in Section 4 of [3]. Let k be a natural number,M
be odd and χ be an even Dirichlet character modulo 8M . Let χ0 = χ

(−1
·
)k.

We consider the central character γ of M2 such that γ((−I, 1)) = −i2k+1

and let χ1, χ2 be the extension of γ as in the previous section.
Let Ak+1/2(8M,χ0) be the set of adelic cuspidal automorphic forms

Φ : S̃L2(A)→ C
satisfying certain properties as considered by Waldspurger [16]. By Gelbart-
Waldspurger there is an isomorphism between

Ak+1/2(8M,χ0)→ Sk+1/2(Γ0(8M), χ),

Φf ↔ f , inducing a ring isomorphism

q : EndC(Ak+1/2(8M,χ0))→ EndC(Sk+1/2(Γ0(8M), χ)).

We will use q to translate certain elements inH(K2
0 (8), χ1) andH(K2

0 (8), χ2)
to classical operators on Sk+1/2(Γ0(8M)) and Sk+1/2(Γ0(8M),

(
2
·
)
) respec-

tively. Thus the classical operators so obtained satisfy the local Hecke algebra
relations noted in the previous section. These relations are crucial for the
results obtained in the next section.

Proposition 4.1. Let T1, U1, U2, V ∈ H(K2
0 (8), χ1) and f ∈ Sk+1/2(Γ0(8M)).

(1) q(T1)(f)(z) = 2−(2k+1)/2
∑3

s=0 f((z + s)/4) = 2(3−2k)/2U4(f)(z).

(2) q(U1)(f)(z) = ϕ8

(−1
M

)k+3/2 ( 2
M

)
2f |[W4, φW4(z)]k+1/2(z), where

W4 =

(
4n m
4M 8

)
with n,m ∈ Z such that 8n−mM = 1 and φW4(z) = (2Mz + 4)1/2.

(3) q(U2)(f)(z) = ϕ8

(−1
M

)k+3/2∑1
s=0 f |[W8, φW8(z)]k+1/2(z), where

W8 =

(
16n− 8mMs m

16M − 128Ms 16

)
with n,m ∈ Z such that 16n−mM = 1 and

φW8(z) = ((4M − 32Ms)z + 4)1/2.

(4) q(V)(f)(z) = f |[
(

1 0
4M 1

)
, (4Mz + 1)1/2]k+1/2(z).

Proof. The proof follows by similar calculations as in [3]. �

We similarly have the following proposition.

Proposition 4.2. Let f ∈ Sk+1/2(Γ0(8M),
(
2
·
)
). Let W4, W8, be as in the

above proposition. For T1, U1, U2, Z ′1, V ′ ∈ H(K2
0 (8), χ2) we have

(1) q(T1)(f)(z) = 2−(2k+1)/2
∑3

s=0 f((z + s)/4),
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(2) q(U1)(f)(z) = ϕ8

(−1
M

)k+3/2
2f |[W4, φW4(z)]k+1/2(z),

(3) q(U2)(f)(z) = ϕ8

(−1
M

)k+3/2 ( 2
M

)∑1
s=0 f |[W8, φW8(z)]k+1/2(z),

(4) q(Z ′1)(f)(z) = f(z − 1
2).

From now on we consider the case of trivial character. Define operators

W̃8 := q

(
U2√

2

)
and Ṽ4 := q(V)

on Sk+1/2(Γ0(8M)) where U2, V are elements in H(K2
0 (8), χ1). Note that

both Ṽ4 and W̃8 are involutions. Define Ṽ ′4 to be the conjugate of Ṽ4 by W̃8.
We have the following corollary from Theorem 1.

Corollary 4.3. W̃ 2
8 = 1, Ṽ 2

4 = 1.

Corollary 4.4. Sk+1/2(Γ0(4M)) is contained in the +1 eigenspace of Ṽ4 and
q(U2

1 ) = 4 on Sk+1/2(Γ0(4M)).

Proof. The first assertion follows directly. For the second one, observe that
W4 in Proposition 4.1 is same asW in [3, Remark 5]. So for f ∈ Sk+1/2(Γ0(4M)),
we have q(U1)(f) = 2W̃4(f). In particular, q(U2

1 )(f) = 4f as W̃4 is an invo-
lution on Sk/2(Γ0(4M)). �

Lemma 4.5. Let T , T ′ be elements of H(K2
0 (8), χ1) respectively supported

on the double cosets of s̃, s̃−1 ∈ S̃L2(Q2) such that T ′(s̃−1) = T (s̃). Then the
L2-inner product 〈Φ, T Ψ〉 = 〈T ′Φ,Ψ〉 for any Φ, Ψ ∈ Ak+1/2(8M,

(−1
·
)k

).

Proof. The L2-inner product

〈Φ, T Ψ〉 =

∫
sQ(SL2(Q))\ S̃L2(A)/µ2

Φ(h)T Ψ(h)dh

=

∫
sQ(SL2(Q))\ S̃L2(A)/µ2

Φ(h)

∫
K2

0 (8)s̃K
2
0 (8)

T (x)Ψ(hx)dxdh

=

∫
K2

0 (8)s̃K
2
0 (8)

T (x)

∫
sQ(SL2(Q))\ S̃L2(A)/µ2

Φ(h)Ψ(hx)dhdx (Fubini)

=

∫
sQ(SL2(Q))\ S̃L2(A)/µ2

∫
K2

0 (8)s̃
−1K2

0 (8)

T (x−1)Φ(hx)dx Ψ(h)dh

=

∫
sQ(SL2(Q))\ S̃L2(A)/µ2

∫
K2

0 (8)s̃
−1K2

0 (8)

T ′(x)Φ(hx)dx Ψ(h)dh

= 〈T ′Φ,Ψ〉.
�

Proposition 4.6. The operators W̃8, Ṽ4, Ṽ
′
4 are self-adjoint with respect to

the Petersson inner product.

Proof. By Gelbart [4, (3.10)] for f, g ∈ Sk+1/2(Γ0(8M)) the Petersson inner
product 〈f, g〉 equals a constant times the L2-inner product 〈Φf ,Φg〉. In
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particular, if T is an operator on Sk+1/2(Γ0(8M)) such that T = q(T ) where
T ∈ H(K2

0 (8), χ1), then 〈f, Tg〉 equals the constant times 〈Φf , T Φg〉.
Since the K2

0 (8) double cosets of (y(4), 1) and (w(2−2), 1) equal respec-
tively that of (y(4), 1)−1 and (w(2−2), 1)−1, by Lemma 4.5 we are done. �

4.1. Comparison with Kohnen’s projection map. Kohnen [6, page 37]
and later Ueda-Yamana [15] define function

P8(f) = f |[ξ + ξ−1]k+1/2

where
ξ =

((
4 1
0 4

)
, eπi/4

)
.

We have the following observation.

Proposition 4.7. Let f ∈ Sk+1/2(Γ0(8M)). Then

q(Z2)(f) =

(
2

2k + 1

)
P8(f).

Proof. Using [15, equation (2.2)], we can write

P8(f) = e−(2k+1)πi/4
1∑
s=0

f |[
(

4− 8Ms 1
−32Ms 4

)
, (−8Msz + 1)1/2]k+1/2.

Now the proof essentially follows by observing that Z2 is precisely supported
on the double coset of

K2
0 (8)

(
1 1/4
0 1

)
K2

0 (8) = K2
0 (8)

(
1 −1/4
0 1

)
K2

0 (8)

=

1⋃
s=0

(
1 −1/4

8Ms 1− 2Ms

)
K2

0 (8).

Indeed, computing as before we obtain

q(Z2)(f) = Z2

(((
1 −1/4
0 1

)
, 1

))
e(2k+1)πi/4P8(f).

Also it is easy to check that

Z2

(((
1 −1/4
0 1

)
, 1

))
= Z2

(((
1 1/4
0 1

)
, 1

))
γ(−I,−1) = ϕ8(−i2k+1)

and that
(

2
2k+1

)
ϕ8(−i2k+1) = e−(2k+1)πi/4. �

Now using the relation in Proposition 3.9(3) we have

Corollary 4.8. 1√
2

(
2

2k+1

)
P8 = Ṽ4W̃8Ṽ4 = W̃8Ṽ4W̃8 = Ṽ ′4.

Extending Kohnen’s definition, Ueda-Yamana [15] define the plus space
S+
k+1/2(8M) to consist of f =

∑∞
n=1 anq

n ∈ Sk+1/2(Γ0(8M)) such that an =

0 for (−1)kn ≡ 2, 3 (mod 4).
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Corollary 4.9. S+
k+1/2(8M) is the +1 eigenspace of Ṽ ′4. The −1 eigenspace

of Ṽ ′4 consists of f such that an = 0 for (−1)kn ≡ 0, 1 (mod 4).

Proof. From [6, equation(2)],

P8(f) =
√

2

(
2

2k + 1

)
(

(1)∑
n

anq
n −

(2)∑
n

anq
n)

where
∑(1)

n , respectively
∑(2)

n , runs over n with (−1)kn ≡ 0, 1 (mod 4),
respectively (−1)kn ≡ 2, 3 (mod 4). The result now follows using the above
corollary. �

Consider the projection map ℘k [15] onto the plus space which take∑
n anq

n to
∑(1)

n anq
n.

Corollary 4.10. If f belongs to the −1 eigenspace of Ṽ ′4 then ℘k(f) = 0.

5. Minus space of Sk+1/2(Γ0(8M))

Let M be odd and square-free. In this section we shall define the minus
space S−k+1/2(8M) and show that there is a Hecke algebra isomorphism be-
tween S−k+1/2(8M) and Snew

2k (Γ0(4M)). We shall give a characterization of
the minus space as common −1 eigenspace of certain operators. The method
we employ is similar to [3]. The main tools that we use are the generators
and relations of Theorem 1 and their translation into classical operators.
We also need the operators Q̃p, Q̃′p, W̃p2 on Sk+1/2(Γ0(2

nM)) for p |M and
operators Q̃2, Q̃′2, W̃4 on Sk+1/2(Γ0(4M)) that we defined in [3].

The following proposition is crucial to our study of the minus space. To
prove it we will use the relations in Theorem 1 including the crucial braid
relation (Theorem 1(4)).

Proposition 5.1. (1) Let f ∈ Sk+1/2(Γ0(4M). Then
f ∈ S+

k+1/2(4M) ⇐⇒ W̃8f = f .

(2) S+
k+1/2(4M) + W̃4S

+
k+1/2(4M) + W̃8W̃4S

+
k+1/2(4M) is a direct sum.

(3) S−k+1/2(4M) + W̃8S
−
k+1/2(4M) is a direct sum.

Proof. We first prove (1). For f ∈ Sk+1/2(Γ0(4M) we have

q

(
U2√

2

)
f = W̃8f = f =⇒ q

(
U1U2√

2

)
f = q(U1)f =⇒ q

(
T1√

2

)
f = q(U1)f

=⇒ q

(
U1T1√

2

)
f = q(U2

1 )f = 4f =⇒ W̃4U4f = 2kf

=⇒ Q̃′2(f) = 2f =⇒ f ∈ S+
k+1/2(4M).

The second implication follows from Lemma 3.7 while the third and fourth
follow from Corollary 4.4. For the last part, see [3, Section 4.3]. Now let f ∈
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S+
k+1/2(4M). Since f satisfies the plus-space Fourier coefficient condition, it

follows from Corollary 4.9 that Ṽ ′4(f) = f , i.e.,

W̃8Ṽ4W̃8(f) = Ṽ4W̃8Ṽ4(f) = f.

Using Corollary 4.4 we get that W̃8f = f .
We now prove (2). Let f, g, h ∈ S+

k+1/2(4M) be such that

f + q(U1)g + q

(
U2U1√

2

)
h = 0

(note that q(U1) = 2W̃4 on Sk+1/2(Γ0(4M))). Applying q(V) to the above
equation and using Corollary 4.4 and Lemma 3.8(2) we get

f + q(U1)g + q

(
VU2U1√

2

)
h = 0.

Let h′ = q(U1)h ∈ Sk+1/2(Γ0(4M)). Subtracting the above equations we
have q(U2)h′ = q(VU2)h′. Next, applying q(U2) to the above and using
Proposition 3.9(1),(3) we have

√
2h′ = q(VU2V)h′. As V2 = 1 and us-

ing Corollary 4.4, we get q
(
U2√
2

)
h′ = h′. Now part (1) implies that h′ ∈

S+
k+1/2(4M). Thus h′ = 0 as

S+
k+1/2(4M)

⋂
W̃4S

+
k+1/2(4M) = {0}

(follows as in [3, Proposition 6.17]) and consequently f = g = h = 0.
For (3) observe that S−k+1/2(4M) is contained in the +1 eigenspace of

Ṽ4 and W̃8S
−
k+1/2(4M) is contained in the +1 eigenspace of Ṽ ′4 . Let f 6=

0 belong to the intersection. Then Ṽ4f = f = Ṽ ′4f . Now using Ṽ ′4 =

q
(U2VU2

2

)
= q

(
VU2V√

2

)
(Proposition 3.9(3)) we get q

(
U2√
2

)
(f) = f . Thus by

(1), f ∈ S+
k+1/2(4M) ∩ S−k+1/2(4M), a contradiction. �

We recall the following theorem of Ueda.

Theorem 4. (Ueda [12]) Let M be odd and square-free. There exists an
isomorphism of vector spaces ψ : Sk+1/2(Γ0(8M))→ S2k(Γ0(4M)) satisfying

Tp(ψ(f)) = ψ(Tp2(f)) for all primes p coprime to 2M.

We first construct the minus space at level 8. In the above theorem take
M = 1. It follows using Proposition 5.1, Atkin-Lehner and dimension equal-
ity (see [3, Corollary 6.1]) that

Lemma 5.2. ψ maps S+(4)⊕ W̃4S
+(4)⊕ W̃8W̃4S

+(4) isomorphically onto
S2k(Γ0(1))⊕ V (2)S2k(Γ0(1))⊕ V (4)S2k(Γ0(1)).

Also, since S−(4) is Hecke isomorphic to Snew
2k (Γ0(2)) [3] we have

Lemma 5.3. ψ maps S−(4)⊕ W̃8S
−(4) isomorphically onto Snew

2k (Γ0(2))⊕
V (2)Snew

2k (Γ0(2)).
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Let

E := (S+(4)⊕ W̃4S
+(4)⊕ W̃8W̃4S

+(4)) ⊕ (S−(4)⊕ W̃8S
−(4)).

Thus ψ maps E Hecke isomorphically onto Sold
2k (Γ0(4)).

Define S−k+1/2(8) to be the orthogonal complement of E.

Theorem 5. S−k+1/2(8) has a basis of eigenforms for all the operators Tp2,
p odd; these eigenforms are also eigenfunctions under U4. If two eigenforms
in S−k+1/2(8) share the same eigenvalues for all Tp2 , then they are a scalar
multiple of each other; ψ induces a Hecke algebra isomorphism:

S−k+1/2(8) ∼= Snew
2k (Γ0(4)).

Proof. The proof uses Lemmas 5.2 and 5.3, Theorem 4 and follows by the
argument in [3, Theorem 5]. �

Proposition 5.4. If f ∈ S−k+1/2(8) is a Hecke eigenform for all the Hecke

operators Tp2, p odd prime, then W̃8(f) = ±f .
Further, for any f ∈ S−k+1/2(8), we have

U4f = 0 and Ṽ4f = −f = Ṽ ′4f.

Proof. Let f ∈ S−k+1/2(8) be a Hecke eigenform under all such Tp2 . Let g =

W̃8(f). Since W̃8 commutes with Tp2 , p odd, we get that g is an eigenform
for all Tp2 with the same eigenvalues as f . Since F := ψ(f) ∈ Snew

2k (Γ0(4))
is a newform, by [1] ψ(g) is a scalar multiple of ψ(f). Thus g is a scalar
multiple of f . Since W̃ 2

8 = 1, we get the first assertion.
Further, by [1], since F is a newform of level 4, U2(F ) = 0. Since the

Shimura lift [11], Sht(f), for any square-free t is also an eigenform for all Tp
with the same eigenvalues as F , by [1] Sht f is a scalar multiple of F . Thus

Sht(U4f) = U2(Sht f) = 0

for all square-free t and hence we get that U4f = 0.
Now

0 = U4(f) = q(T1)f = q(U1U2)f.

Since W̃8(f) = ±f we have q(U1)f = 0. As U12 = 2 + 2V (Proposition 3.9
(2)) we get Ṽ4f = −f . Consequently Ṽ ′4f = −f .

Since S−k+1/2(8) has a basis of eigenforms under Tp2 , it follows for all

f ∈ S−k+1/2(8) that we have U4f = 0 and Ṽ4f = −f = Ṽ ′4f . �

Theorem 6. Let f ∈ Sk+1/2(Γ0(8)). Then

f ∈ S−k+1/2(8) ⇐⇒ Ṽ4f = −f = Ṽ ′4f.

Proof. If f ∈ S−k+1/2(8) then by Proposition 5.4 the conditions hold.
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Conversely, let Ṽ4f = −f = Ṽ ′4f . Since

Sk+1/2(Γ0(4)) = S+(4)⊕ W̃4S
+(4)⊕ S−(4)

is contained in the +1 eigenspace of Ṽ4 and W̃8(W̃4S
+(4) ⊕ S−(4)) is con-

tained in the +1 eigenspace of Ṽ ′4 and Ṽ4, Ṽ ′4 are self-adjoint, it follows that
f ∈ S−k+1/2(8). �

Note that since Ṽ ′4 is self-adjoint, we can write Sk+1/2(Γ0(8)) as a direct
sum of +1 and −1 eigenspaces of Ṽ ′4 . As noted in Corollary 4.9, S+

k+1/2(8)

is the +1 eigenspace of Ṽ ′4 , let us denote by Smin
k+1/2(8) the −1 eigenspace of

Ṽ ′4 . In particular, Smin
k+1/2(8) is the subspace of Sk+1/2(Γ0(8)) consisting of

forms
∑∞

n=1 anq
n such that an = 0 for (−1)kn ≡ 0, 1 (mod 4). Further, for

a given newform F of level dividing 4, let Sk+1/2(8, F ) denote the subspace
of forms that are Shimura-equivalent to F (i.e., forms f that are eigenforms
under Tp2 with the same eigenvalues as F under Tp for all odd primes p).
Then we have the following simple observation.

Proposition 5.5. (1) S+
k+1/2(8) = S+(4)⊕ W̃8A

+(4)⊕ W̃8S
−(4) where

A+(4) = W̃4S
+(4).

(2) Given a newform F of weight 2k and level dividing 4, there exists a
unique Shimura-equivalent form in Sk+1/2(8, F ) ∩ Smin

k+1/2(8).

Proof. Let

S := S+(4)⊕ W̃8A
+(4)⊕ W̃8S

−(4), R := A+(4)⊕ S−(4)⊕ S−(8)

(here and later S−(8) is a simplified notation for S−k+1/2(8)). It follows from
Corollary 4.4 that S ⊆ S+

k+1/2(8). To prove equality it is enough to show
that R ∩ S+

k+1/2(8) = {0}. Let f + g + h belong to the intersection where

f ∈ A+(4), g ∈ S−(4), h ∈ S−(8). Thus Ṽ ′4(f + g + h) = f + g + h. Since
Ṽ ′4 = Ṽ4W̃8Ṽ4, by Corollary 4.4, it follows that W̃8f + W̃8g = f + g + 2Ṽ4h.
Since Ṽ4 preserves S−(8) and as each of the terms in the above relation is in
the direct summand, we are done.

For (2), since Tp2 for odd prime p commutes with Ṽ ′4 , we get that Ṽ ′4 pre-
serves the space Sk+1/2(8, F ). Now it follows from (1) and Lemmas 5.2 and
5.3 that for a weight 2k newform of level 1 there are two Shimura-equivalent
forms in the space S+

k+1/2(8), while for a weight 2k newform of level 2 there
is precisely one Shimura-equivalent form in S+

k+1/2(8). Consequently, using
dimension equality we obtain (2). The case of a newform of level 4 is already
considered in Theorem 5. �

We now define the minus space at level 8M for M odd square-free. Let
1 6= M = p1p2 · · · pk, and for each i = 1, . . . , k define Mi = M/pi. Note that
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by [3, Corollary 4.3 (4)] Sk+1/2(Γ0(8Mi)) is contained in the pi eigenspace
of Q̃pi . Now following the proof of [3, Proposition 6.4] we obtain

Proposition 5.6. Sk+1/2(Γ0(8Mi))
⋂
W̃p2i

Sk+1/2(Γ0(8Mi)) = {0}.

Using Atkin-Lehner [1] and dimension equality we have the following.

Corollary 5.7. ψ maps Sk+1/2(Γ0(8Mi))⊕W̃p2i
Sk+1/2(Γ0(8Mi)) isomorphi-

cally onto
S2k(Γ0(4Mi))⊕ V (pi)S2k(Γ0(4Mi)).

Let S+,new
k+1/2(4M) be the new space inside the Kohnen plus subspace of

Sk+1/2(4M) and S−k+1/2(4M) as defined in [3]. Then by Proposition 5.1 and
Atkin-Lehner we have similarly

Corollary 5.8. ψ maps S+,new
k+1/2(4M)⊕ W̃4S

+,new
k+1/2(4M)⊕ W̃8W̃4S

+,new
k+1/2(4M)

isomorphically onto

Snew
2k (Γ0(M))⊕ V (2)Snew

2k (Γ0(M))⊕ V (4)Snew
2k (Γ0(M)).

Corollary 5.9. ψ maps S−k+1/2(4M)⊕ W̃8S
−
k+1/2(4M) isomorphically onto

Snew
2k (Γ0(2M))⊕ V (2)Snew

2k (Γ0(2M)).

We note the following observation.

Remark 1. Since S−k+1/2(4M) is contained in the +1 eigenspace of Ṽ4,

W̃8S
−
k+1/2(4M) is contained in the +1 eigenspace of Ṽ ′4 and hence is con-

tained inside S+
k+1/2(8M). In [15], Ueda-Yamana defined a newspace inside

S+
k+1/2(8M) and proved that it is Hecke isomorphic to Snew

2k (Γ0(2M)). Us-
ing the above corollary and following Proposition 5.5 we see that the plus
newspace identified by [15] is the space W̃8S

−
k+1/2(4M). Note that Ṽ ′4 does

not preserve the space Sk+1/2(Γ0(4M)) and so we do not expect a Fourier
coefficient condition for S−k+1/2(4M), as also observed in [3].

Now let

Bi = Sk+1/2(Γ0(8Mi))⊕ W̃p2i
Sk+1/2(Γ0(8Mi)), i = 1, . . . , k.

Define

E =

k∑
i=1

Bi⊕(S+,new
k+1/2(4M)⊕ W̃4S

+,new
k+1/2(4M)⊕ W̃8W̃4S

+,new
k+1/2(4M))

⊕ S−k+1/2(4M)⊕ W̃8S
−
k+1/2(4M).

Proposition 5.10. Under ψ the space E maps isomorphically onto the old
space Sold

2k (Γ0(4M)).
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Proof. This follows from Corollaries 5.7 and 5.8 and 5.9 and from the de-
composition

Sold
2k (Γ0(4M)) =

(
k∑
i=1

S2k(Γ0(4Mi))⊕ V (pi)S2k(Γ0(4Mi))

)
⊕ (Snew

2k (Γ0(M))⊕ V (2)Snew
2k (Γ0(M))⊕ V (4)Snew

2k (Γ0(M)))

⊕ Snew
2k (Γ0(2M))⊕ V (2)Snew

2k (Γ0(2M)).

�

We now define the minus space to be the orthogonal complement of E,

S−k+1/2(4M) := E⊥.

Theorem 7. The space S−k+1/2(8M) has a basis of eigenforms for all the
operators Tq2, where q is an odd prime satisfying (q,M) = 1. Under ψ,
the space S−k+1/2(8M) maps isomorphically onto the space Snew

2k (Γ0(4M)).
If two forms in S−k+1/2(8M) have the same eigenvalues for all the operators
Tq2, (q, 2M) = 1, then they are the same up to a scalar factor. Moreover,
S−k+1/2(8M) has the strong multiplicity one property in the full space of level
8M .

We give the characterization of our minus space. We have the following
proposition.

Proposition 5.11. Let f ∈ S−k+1/2(8M) be a Hecke eigenform for all the
Hecke operators Tq2, q prime and q coprime to 2M . Then for any prime p
dividing M , W̃p2 = ±f , W̃8(f) = ±f . Moreover, Up2(f) = −pk−1λ(p)f and
U4(f) = 0 where λ(p) = ±1.

Consequently, for any f ∈ S−k+1/2(8M) we have Q̃p(f) = −f = Q̃′p(f) for

all primes p dividing M and Ṽ4f = −f = Ṽ ′4f .

Proof. The proof follows similarly to the proof of Proposition 5.11 and proofs
of [3, Propositions 6.12, 6.13, 6.14]. �

Theorem 8. Let f ∈ Sk+1/2(8M). Then f ∈ S−k+1/2(8M) if and only if

Q̃p(f) = −f = Q̃′p(f) for every prime p dividing M and Ṽ4(f) = −f =

Ṽ ′4(f).

Proof. One side of the implication follows from Proposition 5.11. For the
converse, we use Corollary 4.4, that Sk+1/2(Γ0(8M/p)) is contained in the
p eigenspace of Q̃p for all p dividing M and that the operators are self-
adjoint. �

Corollary 5.12. If f =
∑∞

n=1 anq
n ∈ S−k+1/2(8M) then

an = 0 for (−1)kn ≡ 0, 1 (mod 4).
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In particular, the projection map ℘k is identically zero on the minus space
S−k+1/2(8M).

Proof. The proof follows from the above theorem and Corollaries 4.8 and
4.9. �

Remark 2. The above corollary contradicts some of the results of [9]. In
particular, in Section 3 of their paper the authors assert that the projection
map ℘k on the newforms at level 8M is itself, i.e. their newspace at level
8M (which corresponds to Snew

2k (Γ0(4M))) satisfies the plus space condition.
However, our results above and the example below present a contrary picture
: if f =

∑∞
n=1 anq

n is in the newspace at level 8M then an = 0 for (−1)kn ≡
0, 1 (mod 4), i.e., ℘k(f) = 0.

Remark 3. We note that Theorems 6 and 8 are analogous to [2, Theorem
9] in the integral weight scenario. Indeed Theorem 8 can be restated as f ∈
S−k+1/2(8M) if and only if Q̃p(f) = −f = Q̃′p(f) for every prime p dividing

M and q(U1)f = 0 = W̃8q(U1)W̃8(f).

Remark 4. We note that the decomposition of the space Sk+1/2(Γ0(8M)) is
completely analogous to that of S2k(Γ0(4M)) when we look at it through the
local Hecke algebra. We illustrate this in the case M = 1.

S2k(Γ0(4)) =(S2k(Γ0(1))⊕ q(U1)S2k(Γ0(1))⊕ q(U2)S2k(Γ0(1)))

⊕ (Snew
2k (Γ0(2))⊕ q(U2)Snew

2k (Γ0(2)))⊕ Snew
2k (Γ0(4)).

In the above U1, U2 are elements in the Hecke algebra H(GL2(Q2)//K0(4))
coming from the double cosets of

(
0 −1
2 0

)
,
(
0 −1
4 0

)
respectively. Also, it follows

from [2] that q(U2)q(U1)S2k(Γ0(1)) = q(U1)S2k(Γ0(1)).
Now let us look at the space Sk+1/2(Γ0(8M)). We have

Sk+1/2(Γ0(8)) =(A+(4)⊕ q(U1)A+(4)⊕ q(U2)A+(4))

⊕ (S−(4)⊕ q(U2)S−(4))⊕ S−(8).

Here U1, U2 are elements in the Hecke algebra H(K2
0 (8), χ1) coming from

w(2−1), w(2−2) respectively. Recall from [3] that

A+(4) = W̃4S
+(4) = q(U1)S+(4).

Further, by Proposition 5.1,

q(U2)q(U1)A+(4) = q(U2)S+(4) = S+(4) = q(U1)A+(4).

Example 1. The space S3/2(Γ0(152)) is 8-dimensional and there are four
primitive Hecke eigenforms of weight 2 and level dividing 76, namely F19 of
level 19, G38, H38 of level 38 and K76 of level 76. We have

S3/2(Γ0(152)) = S3/2(152, F19)⊕ S3/2(152, G38)⊕ S3/2(152, H38)⊕ S3/2(152,K76).
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We compute the Shimura decomposition [10]. As we would expect from the
above remark, S3/2(152, F19) is 3-dimensional space and is spanned by

f1 = q + q5 − 2q6 − q9 − q17 + 2q25 + 2q30 + 2q42 − 3q45 +O(q50),

f2 = q4 − 2q11 − 2q16 + 2q19 + q20 − 2q24 + 3q28 + 2q35 − q36 +O(q40),

f3 = q7 − q11 − 2q16 + q19 + 2q28 + q35 − 2q39 − q43 + 2q44 − q47 +O(q50),

S3/2(152, G38) is 2-dimensional space and is spanned by

g1 = q − 2q5 + q6 + 2q9 − q17 − q25 − 3q26 − 4q30 + 3q38 + 5q42 +O(q50),

g2 = q4 + q7 − q16 − 2q20 − 3q23 + q24 − q28 + 2q36 + q39 + 2q47 +O(q50),

S3/2(152, H38) is 2-dimensional space and is spanned by

h1 = q2 + 2q10 − 3q13 − q14 − 2q18 − q21 + 2q22 + q29 +O(q30)

h2 = q3 − q8 + q12 − q19 − q27 − q32 − 2q40 + q48 +O(q50)

and S3/2(152,K76) is 1-dimensional space and is spanned by

k1 = q2−q10−q14+q18+2q21−q22−2q29−2q33−q34+2q37+q38−2q41+O(q50).

The Kohnen plus space S+
3/2(152) is 4-dimensional and it is spanned by

{f2, f3, g2, h2}. We further note that S3/2(76, F19) is 2-dimensional and
spanned by {f1 + f3, f2− f3} and S−3/2(76) is 2-dimensional and spanned by
{g1− g2, h1−h2}. The minus space at level 152, S−3/2(152), is 1-dimensional
and spanned by k1, and is Shimura equivalent to K76. Note that k1 satisfies
the Fourier coefficient condition as noted in Corollary 5.12.

We finally look at the minus space of level 8M with character
(
2
·
)
. Fol-

lowing Ueda [13], we define

τ̃8 : Sk+1/2(Γ0(8M)) −→ Sk+1/2(Γ0(8M),

(
2

·

)
)

given by the action

|
[(

8a b
8Mc 8d

)
,

(
Mc

d

)
81/4(i(Mcz + d))1/2

]
k+1/2

where a, b, c, d are such that 8ad − Mbc = 1 and b ≡ d ≡ 1 (mod 8).
The above action is independent of the choice of a, b, c, d satisfying the
conditions. It is routine to check that

τ̃8∆0(8M)τ̃−18 = ∆0(8M,

(
2

·

)
)

and that τ̃28 = 1 on Sk+1/2(Γ0(8M)). Further, we check that τ̃8 commutes
with Hecke operators Tp2 for all p odd, giving a Hecke isomorphism from
Sk+1/2(Γ0(8M)) to Sk+1/2(Γ0(8M),

(
2
·
)
).
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Define the minus space

S−k+1/2(8M,

(
2

·

)
) := τ̃8S

−
k+1/2(8M).

It follows that S−k+1/2(8M,
(
2
·
)
) maps Hecke isomorphically onto Snew

2k (Γ0(4M)).
Further, S−k+1/2(8M,

(
2
·
)
) has a similar characterization: g ∈ S−k+1/2(8M,

(
2
·
)
)

if and only if τ̃8Q̃pτ̃−18 (g) = −g = τ̃8Q̃
′
pτ̃
−1
8 (g) for every prime p dividing M

and τ̃8Ṽ4τ̃−18 (g) = −g = τ̃8Ṽ
′
4 τ̃
−1
8 .

Let Z ′1 ∈ H(K2
0 (8), χ2).

Proposition 5.13. The action of τ̃8Ṽ4τ̃−18 equates the action of q(Z ′1) on
Sk+1/2(Γ0(8M),

(
2
·
)
). In particular, S−k+1/2(8M,

(
2
·
)
) is contained in the −1

eigenspace of q(Z ′1).

Proof. By Propositions 4.1 and 4.2, Ṽ4 acts by |[
(

1 0
4M 1

)
, 1]k+1/2 and q(Z ′1)

acts by |[
(

1 −1/2
0 1

)
, 1]k+1/2. We check that

τ̃−18

((
1 0

4M 1

)
, 1

)
τ̃8

((
1 1/2
0 1

)
, 1

)
=

((
∗ ∗
C1 D1

)
, (C1z +D1)

1/2

)
where

C1 = 32Ma2 and D1 = 1 + 4Mab+ 16Ma2.

As D1 ≡ 1 (mod 4), εD1 = 1. Note that
(
M
D1

)
= 1 and hence

(
C1
D1

)
=(

2M
D1

)
=
(

2
D1

)
. Thus the right hand side belongs to ∆0(8M,

(
2
·
)
) and we

are done. �

Remark 5. We note that when M = 1, the action of τ̃8 is same as that of
|[
(
0 −1
8 0

)
, 81/4(−iz)1/2]k+1/2 and we can check that

τ̃8W̃8τ̃
−1
8 = q

(
U1√

2

)
(Proposition 4.2) on Sk+1/2(Γ0(8),

(
2
·
)
); recall that U1√

2
∈ H(K2

0 (8), χ2) is an
involution. Thus g ∈ S−k+1/2(8,

(
2
·
)
) if and only if

q(Z ′1)(g) = −g = q

(
U1Z ′1U1

2

)
(g).
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