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Abstract. We study genuine local Hecke algebras of the Iwahori type
of the double cover of SL2(Qp) and translate the generators and rela-
tions to classical operators on the space Sk+1/2(Γ0(4M)), M odd and
square-free. In [9] Manickam, Ramakrishnan and Vasudevan defined the
new space of Sk+1/2(Γ0(4M)) that maps Hecke isomorphically onto the
space of newforms of S2k(Γ0(2M)). We characterize this newspace as a
common −1-eigenspace of certain pair of conjugate operators that are
coming from local Hecke algebras. We use the classical Hecke operators
and relations that we obtain to give a new proof of the results in [9] and
to prove our characterization result.

1. Introduction

Let M be odd and square-free and k be a positive integer. In a remark-
able work, Niwa [10] comparing the traces of Hecke operators proved ex-
istence of Hecke isomorphism between Sk+1/2(Γ0(4M)), the space of holo-
morphic cusp forms of weight k + 1/2 on the congruence subgroup Γ0(4M)
and S2k(Γ0(2M)), the space of weight 2k cusp forms on Γ0(2M). In [5, 6]
Kohnen considers a certain Hecke operator on Sk+1/2(Γ0(4M)) which is an
analogue of Niwa’s operator at level 4. This operator has two eigenvalues,
one positive and one negative and the Kohnen plus space is the eigenspace
of the positive eigenvalue. Kohnen considers a new space S+,new

k+1/2(Γ0(4M))

inside his plus space and proves that this new subspace is Hecke isomor-
phic to Snew

2k (Γ0(M)), the space of newforms of weight 2k and level M .
From Kohnen’s results, it is clear that the Niwa map sends the Kohnen
plus space to a subspace of old forms inside S2k(Γ0(2M)). In a subsequent
work, Manickam, Ramakrishnan and Vasudevan [9] define the newspace of
Sk+1/2(Γ0(4M)) that maps Hecke isomorphically onto Snew

2k (Γ0(2M)), the
space of newforms of weight 2k and level 2M . Our main objective in this
paper is to give a common eigenspace characterization for this newspace of
Sk+1/2(Γ0(4M)) in terms of certain finitely many pairs of cojugate operators.

This is a continuation of our earlier work in [2] where we use local Hecke
algebras to give an eigenspace characterization of the space of integral weight
newforms. The local Hecke algebra method allows us to obtain the newspace
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of Manickam et al in a different way and we show that it is the common −1-
eigenspace of Kohnen’s operator, a conjugate of Kohnen’s operator and pairs
of p-adic analogues of Kohnen’s operator and their conjugates for each prime
dividing M . We call this newspace the minus space at level 4M .

Our results are motivated by the results of Loke and Savin [8] who in-
terpreted the Kohnen plus space in representation theory language. For the
case M = 1, Loke and Savin defined another space of half-integer weight
forms which they showed is “conjugate” to the Kohnen plus space. This
means that it is an image of the Kohnen plus space by an invertible Hecke
operator and is isomorphic to the Kohnen plus space as a Hecke module.
We show that the Kohnen plus space and the space considered by Loke and
Savin do not intersect and that their sum maps isomorphically to the space
of old forms Sold

2k (Γ0(2)) under the Niwa map. We define the minus space
at level 4 to be the orthogonal complement of the direct sum under the Pe-
tersson inner product and show that it is mapped isomorphically under the
Niwa map to Snew

2k (Γ0(2)), the space of newforms on Γ0(2). We character-
ize this space as a common eigenspace of two Hecke operators: the Niwa
operator used by Kohnen to define the Kohnen plus space and a conjugate
of the Niwa operator which was considered by Loke and Savin. The minus
space is the intersection of the negative eigenspace of both operators. We
normalize the negative eigenvalue to be −1 as in [2]. Our description of the
minus space at level 4 is completely analogous to our description of the new
space Snew

2k (Γ0(2)) in [2] where we showed that Snew
2k (Γ0(2)) is the common

−1-eigenspace of two Hecke operators. To summarize the case of M = 1:
We show that the space Sk+1/2(Γ0(4)) decomposes into a direct sum of three
spaces: the Kohnen plus space, a “conjugate” of the Kohnen plus space given
by Loke and Savin and the minus space. The Kohnen plus space and its
conjugate are indistinguishable as Hecke modules which is the same as say-
ing that they are mapped under the Niwa map to “conjugate” spaces of old
forms. The minus space is different as a Hecke module from both spaces.

In order to generalize this result for M odd and square-free we consider
certain p-adic Hecke algebras for every prime p dividing M . Our work fol-
lows that of Loke and Savin who studies a certain 2-adic Hecke algebra which
allowed them to give a representation theoretic interpretation of the Kohnen
plus space and to introduce the operator which is conjugate of Niwa’s oper-
ator and the space which is a “conjugate” to Kohnen’s plus space.

We compute genuine local Hecke algebras, of the Iwahori type with genuine
quadratic central character, for S̃L2(Qp), the double cover of SL2(Qp) and
prove that this is isomorphic to the Iwahori Hecke algebra of PGL2(Qp). In
[13], Savin obtained description of Iwahori-type Hecke algebras for coverings
of simply connected Chevally group G 6= SL2. We are not aware of any
such results for SL2 apart from the work of Loke-Savin [8] for the 2-adic case
which, we generalize for any odd prime p.

In our p-adic Hecke algebra, we consider two p-adic operators that give
rise to conjugate classical Hecke operators which when we use along with
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Niwa’s operator and its conjugate allow us to define our minus space at level
4M . We note that these two p-adic operators are p-adic analogues of Niwa’s
operator and its conjugate. We give two descriptions of the minus space: one
description as an orthogonal complement of a certain sum of subspaces and
another description as a common −1-eigenspace of the Niwa operator, its
conjugate and a pair of conjugate operators for each prime dividingM . This
again is completely analogous to our description of the space of newforms
of weight 2k for Γ0(2M) given in [2, Theorem 1]. We show that the minus
space of weight k + 1/2 at level 4M is isomorphic as a Hecke module to the
space of newforms of weight 2k at level 2M .

Due to the Hecke isomorphism and multiplicity one it is clear that the
minus space we define is identical to the newspace of [9]. In particular we
obtain a new proof of the Hecke isomorphism in [9]. We note that our
description of the minus space as an orthogonal complement differs from the
description of the newspace in [9]. We elaborate this point in Remark 6.

Our paper is divided as follows. We set up notation following Shimura’s
work on half-integral weight forms and recall Gelbart’s theory of the dou-
ble cover of SL2(Qp). In Section 3 we define a genuine Hecke algebra of
the double cover of SL2(Qp) modulo certain subgroups and a genuine cen-
tral character and give its presentation using generators and relations. In
particular we recall the work of Loke and Savin when p = 2. In Section 4
we translate certain elements in our p-adic Hecke algebra to classical Hecke
operators on Sk+1/2(Γ0(4M)). We obtain two classical operators: Q̃p with
eigenvalues p and −1 and an involution W̃p2 . We further consider Q̃′p which
is conjugate of Q̃p by W̃p2 . We check that these operators are self-adjoint
with respect to the Petersson inner product. We recall Kohnen’s classical
operator Q on Sk+1/2(Γ0(4M)) which he uses to describe his plus space. We
show that his operator Q comes from the 2-adic Hecke algebra considered
by Loke and Savin. Let Q̃′2 :=

(
2

2k+1

)
Q/
√

2 and Q̃2 be conjugate of Q̃′2
by an involution W̃4. The operators Q̃′p and Q̃p are p-adic analogues of
Kohnen’s operator Q and its conjugate. In Section 5 we define our minus
space S−k+1/2(Γ0(4M)) and prove our main result:

Theorem. Let S−k+1/2(Γ0(4M)) ⊆ Sk+1/2(Γ0(4M)) be the common −1-

eigenspace of operators Q̃p and Q̃′p for all primes p dividing 2M . Then
S−k+1/2(Γ0(4M)) has a basis of eigenforms for all the operators Tq2 where
q is a prime coprime to 2M and all the operators Up2 where p is a prime
dividing 2M , and maps isomorphically under the Niwa map onto the space
Snew

2k (Γ0(2M)).

We are certain that the Hecke algebra approach can be employed to give
a newform theory for the space of half-integral weight forms of a general
level. Indeed in [3] we use the methods developed in this paper to define the
minus space at level 8M , M odd and square-free and show that the minus
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space at level 8M is Hecke isomorphic to Snew
2k (Γ0(4M)). This generalizes

Ueda-Yamana’s work in [17]. Please refer to Remark 7 for more details. We
plan to use the results in this paper to study Whittaker functions associated
with automorphic forms coming from Hecke eigenforms in the minus space.
As an application we plan to generalize the Kohnen-Zagier formula for the
twisted central L-values of an integer weight modular form of level 2M .

2. Preliminaries and Notation

Let k, N denote positive integers. Let Γ0(N) be the subgroup of SL2(Z)
consisting of matrices of the form ( ∗ ∗0 ∗ ) (mod N). We denote by Sk(Γ0(N))
the space of holomorphic cusp forms of weight k on the group Γ0(N). For
each prime p not dividing N we have the Hecke operator Tp on Sk(Γ0(N))
whose action on q-expansion can be given as follows: if f =

∑∞
n=1 anq

n ∈
Sk(Γ0(N)) then Tp(f) =

∑∞
n=1(apn + pk−1an/p)q

n.
For m ∈ N, let Um, V (m) be given by the following action on any formal

q-series:

Um(
∞∑
n=1

anq
n) =

∞∑
n=1

amnq
n, V (m)(

∞∑
n=1

anq
n) =

∞∑
n=1

anq
mn.

It is well known that V (m) maps Sk(Γ0(N)) to Sk(Γ0(mN)) and if m | N
then Um is an operator on Sk(Γ0(N)).

We briefly recall the theory of half-integral weight modular forms [14].

Let G be the set of all ordered pairs (α, φ(z)) where α =

(
a b
c d

)
∈ GL+

2 (R)

and φ(z) is a holomorphic function on the upper half plane H such that
φ(z)2 = t det(α)−1/2(cz+d) with t in the unit circle S1 := {z ∈ C : |z| = 1}.
Then G is a group under the following operation:

(α, φ(z))(β, ψ(z)) = (αβ, φ(βz)ψ(z)).

Let P : G → GL+
2 (R) be the homomorphism given by the projection map

onto the first coordinate.
Let ζ = (α, φ(z)) ∈ G. Define the slash operator |[ζ]k+1/2 on functions f

on H by f |[ζ]k+1/2(z) = f(αz)(φ(z))−2k−1.

Let N be divisible by 4 and α =

(
a b
c d

)
∈ Γ0(N). Define the automorphy

factor
j(α, z) = ε−1

d

( c
d

)
(cz + d)1/2,

where εd = 1 or i according as d ≡ 1 or 3 (mod 4) and
(
c
d

)
is as in Shimura’s

notation. Let

∆0(N) := {α∗ = (α, j(α, z)) ∈ G | α ∈ Γ0(N)} ≤ G.
The map L : Γ0(N) → G given by α 7→ α∗ defines an isomorphism onto
∆0(N). Thus P |∆0(N) and L are inverse of each other. Denote by ∆1(N)
the image of Γ1(N).
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Let χ be an even Dirichlet character modulo N . Let Sk+1/2(Γ0(N), χ) be
the space of cusp forms of weight k+1/2, level N and character χ consisting
of f ∈ Sk+1/2(∆1(N)) such that f |[α∗]k+1/2(z) = χ(d)f(z) for all α ∈ Γ0(N).
In particular when χ is trivial Sk+1/2(Γ0(N), χ) = Sk+1/2(∆0(N)), in this
case we will simply denote the space by Sk+1/2(Γ0(N)).

Let ξ be an element of G such that ∆0(N) and ξ−1∆0(N)ξ are commen-
surable. Then we have an operator |[∆0(N)ξ∆0(N)]k+1/2 on Sk+1/2(Γ0(N))
defined by

f |[∆0(N)ξ∆0(N)]k+1/2 = det(ξ)(2k−3)/4
∑
v

f |[ξv]k+1/2

where ∆0(N)ξ∆0(N) =
⋃
v ∆0(N)ξv.

Let ξ = (

(
1 0
0 p2

)
, p1/2). If p is a prime dividing N , then by [14, Propo-

sition 1.5],

f |[∆0(N)ξ∆0(N)]k+1/2 = p(2k−3)/2
p2−1∑
s=0

f |[(
(

1 s
0 p2

)
, p1/2)]k+1/2(z),

thus if f =
∑∞

n=1 anq
n then f |[∆0(N)ξ∆0(N)]k+1/2 =

∑∞
n=1 ap2nq

n =
Up2(f). If p is a prime such that (p,N) = 1 then the Hecke operator Tp2 is
defined by

Tp2(f) = f |[∆0(N)ξ∆0(N)]k+1/2.

We shall be studying local Hecke algebra of the double cover of SL2. We
next recall Gelbart’s [4] description of the double cover. Let p be any prime
(including the infinite prime). The group SL2(Qp) has a non-trivial central
extension by µ2 = {±1}:

1 −→ µ2 −→ S̃L2(Qp) −→ SL2(Qp) −→ 1

{(I,± 1)} (g,±1) 7−→ g

We use the 2-cocycle defined below to determine the double cover S̃L2(Qp).

Let (·, ·)p be the Hilbert symbol over Qp. For g =

(
a b
c d

)
∈ SL2(Qp), define

τ(g) =

{
c if c 6= 0

d if c = 0
;

if p =∞, set sp(g) = 1 while for a finite prime p

sp(g) =

{
(c, d)p if cd 6= 0 and ordp(c) is odd
1 else.

Define the 2-cocycle σp on SL2(Qp) as follows:

σp(g, h) = (τ(gh)τ(g), τ(gh)τ(h))p sp(g)sp(h)sp(gh).
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Then the double cover S̃L2(Qp) is the set SL2(Qp)× µ2 with the group law:

(g, ε1)(h, ε2) = (gh, ε1ε2σp(g, h)).

For any subgroup H of SL2(Qp), we shall denote by H the complete inverse
image of H in S̃L2(Qp).

We consider the following subgroups of SL2(Zp):

Kp
0 (pn) =

{(
a b
c d

)
∈ SL2(Zp) : c ∈ pnZp

}
,

Kp
1 (pn) =

{(
a b
c d

)
∈ SL2(Zp) : c ∈ pnZp, a ≡ 1 (mod pnZp)

}
.

By [4, Proposition 2.8] for odd primes p, S̃L2(Qp) splits over SL2(Zp).
Thus SL2(Zp) is isomorphic to the direct product SL2(Zp)×µ2 and Kp

0 (p) is
isomorphic to Kp

0 (p)×µ2. It follows from [4, Corollary 2.13] that the center
Mp of S̃L2(Qp) is simply the direct product {±I} × µ2. Thus any genuine
central character is given by a non-trivial character of µ2 × µ2.

However S̃L2(Q2) does not split over SL2(Z2) but instead splits over the
subgroup K2

1 (4). In this case the center M2 of S̃L2(Q2) is a cyclic group of
order 4 generated by (−I, 1) and so a genuine central character is given by
sending (−I, 1) to a primitive fourth root of unity.

We set up a few more notations. For s ∈ Qp, t ∈ Q×p let us define the
following elements of SL2(Qp):

x(s) =

(
1 s
0 1

)
, y(s) =

(
1 0
s 1

)
, w(t) =

(
0 t
−t−1 0

)
, h(t) =

(
t 0
0 t−1

)
.

Let N = {(x(s), ε) : s ∈ Qp, ε = ±1}, N̄ = {(y(s), ε) : s ∈ Qp, ε = ±1}
and T = {(h(t), ε) : t ∈ Q×p , ε = ±1} be the subgroups of S̃L2(Qp). Then
the normalizer N

S̃L2(Qp)
(T ) of T in S̃L2(Qp) consists of elements (h(t), ε),

(w(t), ε) for t ∈ Q×p . We note the following useful relations: for s, t ∈ Q×p
and u, v ∈ Qp, we have

(h(s), 1)(h(t), 1) = (h(st), (s, t)p),

(w(s), 1)(w(t), 1) = (h(−st−1), (s, t)p),

(h(s), 1)(w(t), 1) = (w(st), (s,−t)p),

(w(s), 1)(h(t), 1) = (w(st−1), (−s, t)p),

(1)
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(h(s), 1)(x(u), 1) =

((
s su
0 s−1

)
, 1

)
,

(x(u), 1)(h(s), 1) =

((
s s−1u
0 s−1

)
, 1

)
,

(h(s), 1)(y(u), 1) =

((
s 0

s−1u s−1

)
, σp(h(s), y(u))

)
,

(y(u), 1)(h(s), 1) =

((
s 0
su s−1

)
, σp(y(u), h(s))

)
,

(2)

where

σp(h(s), y(u)) = σp(y(u), h(s)) =


1 if u = 0

(s, u)p if u 6= 0, ordp(su) even
(s, s)p if u 6= 0, ordp(su) odd,

(w(t), 1)(x(u), 1) =

((
0 t
−t−1 −t−1u

)
, σp(w(t), x(u))

)
,

(x(u), 1)(w(t), 1) =

((
−ut−1 t
−t−1 0

)
, 1

)
,

(w(t), 1)(y(v), 1) =

((
tv t
−t−1 0

)
, 1

)
,

(y(v), 1)(w(t), 1) =

((
0 t
−t−1 tv

)
, σp(y(v), w(t))

)
,

(3)

where

σp(w(t), x(u)) =

{
(−t,−u)p if u 6= 0, ordp(t) odd
1 else,

and

σp(y(v), w(t)) =

{
(−t, v)p if u 6= 0, ordp(t) odd
1 else,

and

(x(u), 1)(y(v), 1) =

((
1 + uv u
v 1

)
, 1

)
,

(y(v), 1)(x(u), 1) =

((
1 u
v uv + 1

)
, σp(y(v), x(u))

)
,

(x(u), 1)(x(v), 1) =

((
1 u+ v
0 1

)
, 1

)
,

(y(v), 1)(y(u), 1) =

((
1 0

u+ v 1

)
, 1

)
,

(4)
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where

σp(y(v), x(u)) =

{
(v, uv + 1)p if v(uv + 1) 6= 0, ordp(v) odd
1 else.

For any subgroup S of S̃L2(Qp), we further let NS = N ∩ S, TS = T ∩ S
and N̄S = N̄ ∩ S.

3. A Local Hecke Algebra of S̃L2(Qp)

Loke and Savin [8] studied a genuine local Hecke algebra of S̃L2(Q2) cor-
responding to K2

0 (4) and a genuine central character, and gave an interpre-
tation of Kohnen’s plus space at level 4 in terms of certain elements in this
2-adic Hecke algebra. In this section we shall recall their work on the 2-
adic Hecke algebra. We shall then study genuine Iwahori Hecke algebra for
S̃L2(Qp) corresponding to Kp

0 (p) and a genuine character ofMp for a general
odd prime p.

Let p be any finite prime and C∞c (S̃L2(Qp)) be the space of locally con-
stant, compactly supported complex-valued functions on S̃L2(Qp). For an
open compact subgroup S of S̃L2(Qp) and a genuine character γ of S (that is,
a character of S that acts nontrivially on µ2), let H(S, γ) be the subalgebra
of C∞c (S̃L2(Qp)) defined as follows:

{f ∈ C∞c (S̃L2(Qp)) : f(k̃g̃k̃′) = γ(k̃)γ(k̃′)f(g̃) for g̃ ∈ S̃L2(Qp), k̃, k̃′ ∈ S}.

Then H(S, γ) is a C-algebra under the convolution which, for any f1, f2 ∈
H(S, γ), is defined by

f1 ∗ f2(h̃) =

∫
S̃L2(Qp)

f1(g̃)f2(g̃−1h̃)dg̃ =

∫
S̃L2(Qp)

f1(h̃g̃)f2(g̃−1)dg̃,

where dg̃ is the Haar measure on S̃L2(Qp) such that the measure of S is one.
We call H(S, γ) the genuine Hecke algebra of S̃L2(Qp) with respect to S and
γ. We may sometime denote f1 ∗ f2 simply by f1f2.

For certain S and γ, we would like to describe the algebra H(S, γ) using
generators and relations. In order to do so we need to first compute the
support of H(S, γ). We say that H(S, γ) is supported on g̃ ∈ S̃L2(Qp) if
there exists f ∈ H(S, γ) such that f(g̃) 6= 0. We shall use the following
lemmas to compute the support.

Lemma 3.1. Let Sg̃ = S ∩ g̃Sg̃−1. Then H(S, γ) is supported on g̃ if and
only if for every k̃ ∈ Sg̃ we have γ([k̃−1, g̃−1]) = 1, where [·, ·] is the usual
commutator bracket.

Lemma 3.2. The function αg̃ : Sg̃ −→ C defined by αg̃(k̃) = γ([k̃−1, g̃−1])
is a character of Sg̃.
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In order to compute the support using above lemmas we shall need certain
results on cocycle multiplication. We note them in the appendix.

We also note the following well-known lemmas that will be useful in com-
puting convolutions.

Lemma 3.3. Let f1, f2 ∈ H(S, γ) such that f1 is supported on Sx̃S =⋃m
i=1 α̃iS and f2 is supported on SỹS =

⋃n
j=1 β̃jS. Then

f1 ∗ f2(h̃) =

m∑
i=1

f1(α̃i)f2(α̃−1
i h̃)

where the nonzero summands are precisely for those i for which there exist a
j such that h̃ ∈ α̃iβ̃jS.

For g̃ ∈ S̃L2(Qp) let µ(g̃) denote the number of disjoint left (right) S cosets
in the decomposition of the double coset Sg̃S.

Lemma 3.4. Let g̃, h̃ ∈ S̃L2(Qp) be such that µ(g̃)µ(h̃) = µ(g̃h̃). Let f1,
f2 ∈ H(S, γ) be respectively supported on Sg̃S and Sh̃S. Then f1 ∗ f2 is
precisely supported on Sg̃h̃S and f1 ∗ f2(g̃h̃) = f1(g̃)f2(h̃).

3.1. Local Hecke algebra of S̃L2(Q2) modulo K2
0 (4). Let S = K2

0 (4)
and let γ be a genuine character of M2 determined by its value on (−I, 1).
Since K2

0 (4) is the direct product K2
1 (4)×M , we can extend γ to a genuine

character of K2
0 (4) by setting it trivial on K2

1 (4). Loke and Savin described
H(S, γ) for the above choice of S and γ as follows.

Using relations in (1), extend γ to the normalizer N
S̃L(Q2)

(T ) by defining
γ((h(2n), 1)) = 1 for all integers n and γ((w(1), 1)) = (1 + γ((−I, 1)))/

√
2,

a primitive 8th root of unity. For n ∈ Z, define the elements Tn and Un of
H(K2

0 (4), γ) supported respectively on the K2
0 (4) double cosets of (h(2n), 1)

and (w(2−n), 1) such that

Tn(k̃(h(2n), 1)k̃′) = γ(k̃)γ((h(2n), 1))γ(k̃′),

Un(k̃(w(2−n), 1)k̃′) = γ(k̃)γ((w(2−n), 1))γ(k̃′) for k̃, k̃′ ∈ K2
0 (4).

Theorem 1. (Loke-Savin [8]) For m,n ∈ Z,
(1) If mn ≥ 0 then Tm ∗ Tn = Tm+n.
(2) U1 ∗ Tn = Un+1 and Tn ∗ U1 = U1−n.
(3) U1 ∗ Un = Tn−1 and Un ∗ U1 = T1−n.

The Hecke algebra H(K2
0 (4), γ) is generated by U0 and U1 modulo relations

(U0 − 2
√

2)(U0 +
√

2) = 0 and U2
1 = 1.

3.2. Iwahori Hecke Algebra of S̃L2(Qp) modulo Kp
0 (p), p odd. Fix an

odd prime p. Let S = Kp
0 (p). Let γ be a character of Kp

0 (p) such that it is
trivial on Kp

1 (p). Since Kp
0 (p)

Kp
1 (p)
∼= (Zp/pZp)×, we can define γ by a character of

(Z/pZ)×. We shall use the same symbol γ to denote a genuine character of S
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by defining γ(A, ε) = εγ(A) for A ∈ Kp
0 (p). We call H(S, γ) with the above

choice of S and γ to be the genuine Iwahori Hecke algebra of S̃L2(Qp) with
central character γ. Our main result in this subsection is to describe this
Iwahori Hecke algebra using generators and relations when γ is quadratic.

In the rest of this subsection we shall denote Kp
0 (p) simply by K0. We

first note the following lemma.

Lemma 3.5. A complete set of representatives for the double cosets of
S̃L2(Qp) mod K0 is given by (h(pn), 1), (w(p−n), 1) where n varies over
integers.

We need to compute the support of H(K0, γ). Fix an integer n. Let
A = h(pn) and Ã = (A, ε1). We shall show that H(K0, γ) is supported on
Ã. We have

SÃ =
{((

a b
c d

)
,±1

)
∈ SL2(Zp) : ordp(c) ≥ max{−2n+ 1, 1},

ordp(b) ≥ max{2n, 0}
}
.

We check that SÃ has a triangular decomposition SÃ = NSÃTSÃN̄SÃ where
TSÃ = TK0 , NSÃ = {(x(s),±1) : ordp(s) ≥ max{2n, 0}} and N̄SÃ =
{(y(t),±1) : ordp(t) ≥ max{−2n+ 1, 1}}.

By Lemma 3.1 and 3.2, it is enough to check that the value of γ on the
commutator [(B, ε2)−1, (A, ε1)−1] is 1 for any (B, ε2) in NSÃ , TSÃ and
N̄SÃ respectively.

By Lemma A.3, for B = (x(s), ε2) ∈ NSÃ , we get [(B, ε2)−1, (A, ε1)−1] =

(

(
1 sp−2n − s
0 1

)
, 1); for B = (h(u), ε2) ∈ TSÃ , [(B, ε2)−1, (A, ε1)−1] =

(I, 1); and for B = (y(t), ε2) ∈ NSÃ , we get that [(B, ε2)−1, (A, ε1)−1] =

(

(
1 0

(p2n − 1)t 1

)
, 1). Since each of them belongs to Kp

1 (p) × {1}, we are

done.

Next let A = w(p−n). We show that H(K0, γ) is supported on Ã = (A, ε1)
provided γ(u2) = 1 for all units u in Zp. In this case we have

SÃ =
{((

a b
c d

)
,±1

)
∈ SL2(Zp) : ordp(c) ≥ max{2n, 1},

ordp(b) ≥ max{−2n+ 1, 0}
}

and SÃ has a triangular decomposition SÃ = NSÃTSÃN̄SÃ where TSÃ =

TK0 , NSÃ = {(x(s),±1) : ordp(s) ≥ max{−2n+ 1, 0}}, N̄SÃ = {(y(t),±1) :
ordp(t) ≥ max{2n, 1}}.

By Lemma A.3, for B = (x(s), ε2) ∈ NSÃ , we get [(B, ε2)−1, (A, ε1)−1] =

(

(
1 + s2p2n −s
−sp2n 1

)
, 1), so γ takes value 1 on this commutator. In the case
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B = (y(t), ε2) ∈ NSÃ , we have

B−1A−1BA =

(
1 −p−2nt
−t 1 + p−2nt2

)
, where ordp(t) ≥ max{2n, 1},

so sp(B
−1A−1BA) = 1 if either −t(1 + p−2nt2) = 0 or ordp(t) is even.

Assume that −t(1+p−2nt2) 6= 0 and ordp(t) is odd. Then sp(B−1A−1BA) =(
−t, 1 + p−2nt2

)
p

=
(
−p, 1 + p−2nt2

)
p
. Let u = 1 + p−2nt2. Since ordp(t) ≥

max{2n, 1}, we have u ≡ 1 (mod pZp). Hence sp(B−1A−1BA) = (−p, u)p =(
u
p

)
= 1. So in this case also γ takes value 1.

For B = (h(u), ε2) ∈ TSÃ , [(B, ε2)−1, (A, ε1)−1] = (

(
1/u2 0

0 u2

)
, 1), so

γ([(B, ε2)−1, (A, ε1)−1]) = γ(u2).
Thus if γ(u2) = 1 for all units u in Zp then H(K0, γ) is supported on

(w(p−n), ε). In particular this holds if our choice of γ is quadratic. Thus we
have

Proposition 3.6. If γ is a quadratic character then H(K0, γ) is supported
on the double cosets of K0 represented by (h(pn), 1) and (w(p−n), 1) as n
varies over integers.

We now obtain the generators and relations in H(K0, γ) when γ is qua-
dratic.

We consider the character γ ofK0 to be the genuine character of the center
Mp and extend it to the normalizer group N

S̃L2(Qp)
(T ) as follows.

Let εp = 1 or i depending on whether p ≡ 1 or 3 (mod 4), thus ε2
p =

(
−1
p

)
.

Let t = pnu ∈ Q×p where n ∈ Z and u is a unit in Zp. Define

γ((h(t), 1)) =

{
γ((h(u), 1)) if n is even

εp

(
u
p

)
γ((h(u), 1)) if n is odd.

It is easy to see that γ thus defined is a character of T .
We now extend γ to the normalizerN

S̃L2(Qp)
(T ) by defining γ((w(1), 1)) :=

1 and using the relation

(w(t), 1) = (h(t), 1)(w(1), 1)(I,
(
−1, t−1

)
p
).

Thus for t = pnu as above,

γ((w(t), 1)) =

{
γ((h(u), 1)) if n is even
εp

(
−u
p

)
γ((h(u), 1)) if n is odd.

We define the elements Tn and Un of H(K0, γ) supported respectively on
the double cosets of (h(pn), 1) and (w(p−n), 1) such that

Tn(k̃(h(pn), 1)k̃′) = γ(k̃)γ((h(pn), 1))γ(k̃′),

Un(k̃(w(p−n), 1)k̃′) = γ(k̃)γ((w(p−n), 1))γ(k̃′) for k̃, k̃′ ∈ K0.
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Thus Proposition 3.6 implies that Tn, Un as n varies over integers form a
C-basis for H(K0, γ) when γ is quadratic.

In order to obtain relations amongst Tn and Un, we note the following
lemma which can be obtained by using the triangular decomposition of K0.

Lemma 3.7. 1. For n ≥ 0,

K0h(pn)K0 =
⋃

s∈Zp/p2nZp

x(s)h(pn)K0 =
⋃

s∈Zp/p2nZp

K0h(pn)y(ps).

2. For n ≥ 1,

K0h(p−n)K0 =
⋃

s∈Zp/p2nZp

y(ps)h(p−n)K0 =
⋃

s∈Zp/p2nZp

K0h(p−n)x(s).

3. For n ≥ 1,

K0w(p−n)K0 =
⋃

s∈Zp/p2n−1Zp

y(ps)w(p−n)K0 =
⋃

s∈Zp/p2n−1Zp

K0w(p−n)y(ps).

4. For n ≥ 0,

K0w(pn)K0 =
⋃

s∈Zp/p2n+1Zp

x(s)w(pn)K0 =
⋃

s∈Zp/p2n+1Zp

K0w(pn)x(s).

Proposition 3.8. We have the following relations:
(1) If mn ≥ 0 then Tm ∗ Tn = Tm+n.
(2) For n ≥ 0, U1 ∗ Tn = Un+1 and T−n ∗ U1 = Un+1.
(3) For n ≥ 0, U0 ∗ T−n = U−n and Tn ∗ U0 = U−n.
(4) For n ≥ 1, U0 ∗ Un = γ((−I, 1))Tn and Un ∗ U0 = γ((−I, 1))T−n.

Proof. We prove (1) and the second part of (4). The rest are similar.
For (1) let mn ≥ 0. We may assume both m, n ≥ 0. It follows from

Lemma 3.7 and 3.4 that Tm ∗ Tn is precisely supported on the double coset
K0(h(pn+m), 1)K0 and that

Tm ∗ Tn((h(pm), 1)(h(pn), 1)) = Tm((h(pm), 1))Tn((h(pn), 1)).

Let m and n both be even. Then (h(pm), 1)(h(pn), 1) = (h(pn+m), 1) and so

Tm ∗ Tn((h(pn+m), 1)) = Tm((h(pm), 1))Tn((h(pn), 1))

= γ((h(pm), 1))γ((h(pn), 1)) = 1 = Tm+n((h(pn+m), 1)),

hence Tm ∗ Tn = Tm+n. Next suppose both m and n are odd, so m + n is
even. Then (h(pm), 1)(h(pn), 1) = (h(pn+m), 1)(I, (p, p)p) and so

Tm ∗ Tn((h(pn+m), 1)) = γ((I, (p, p)p))Tm((h(pm), 1))Tn((h(pn), 1))

=

(
−1

p

)
γ((h(pm), 1))γ((h(pn), 1)) =

(
−1

p

)
ε2
p = 1 = Tm+n((h(pn+m), 1)).

Now suppose m is odd and n is even (or vice versa), so m+n is odd. In this
case (h(pm), 1)(h(pn), 1) = (h(pn+m), 1) and so

Tm ∗ Tn((h(pn+m), 1)) = εp = Tm+n((h(pn+m), 1))
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and we are done.
For (4), let n ≥ 1. As before using Lemma 3.7 and 3.4 we know that

Un ∗ U0 is supported on the double coset K0(h(p−n), 1)K0 and that

Un ∗ U0((w(p−n), 1)(w(1), 1)) = Un((w(p−n), 1))U0((w(1), 1)).

We have (w(p−n), 1)(w(1), 1) = (h(p−n), 1)(−I, (p−n,−1)p) and so

γ((−I, 1)) Un ∗ U0((h(p−n), 1)) =
(
p−n,−1

)
p
Un((w(p−n), 1))U0((w(1), 1))

=

{(
−1
p

)
εp

(
−1
p

)
= εp if n is odd

1 if n is even
= T−n((h(p−n), 1)),

and thus Un ∗ U0 = γ((−I, 1))T−n. �

We shall consider two choices for γ as a character of (Z/pZ)∗, either γ is
trivial or γ is given by the Kronecker symbol γ =

(
·
p

)
. Then we have the

following proposition.

Proposition 3.9. (1) U2
0 =

{
(p− 1)U0 + p if γ is trivial(
−1
p

)
p if γ =

(
·
p

)
.

(2) U2
1 =

{
p if γ is trivial

εp(p− 1)U1 +
(
−1
p

)
p if γ =

(
·
p

)
.

(3) If γ is trivial, then T1 ∗ U1 = p U0 and T−1 = (1/p) U1 ∗ T1 ∗ U1.

Proof. For (1) we use Lemma 3.3 to check that U2
0 is at most supported on

the double cosets K0 and K0(w(1), 1)K0. Thus we need to only compute the
values of U2

0 at (I, 1) and (w(1), 1). Using Lemma 3.7 and 3.3 we have

U2
0 ((I, 1)) =

p−1∑
s=0

U0((x(s), 1)(w(1), 1))U0((w(1), 1)−1(x(s), 1)−1)

=

p−1∑
s=0

U0((w(1), 1))U0((w(−1), 1)(x(−s), 1))

=

p−1∑
s=0

U0((h(−1), 1)(w(1), 1)(x(−s), 1))

=

p−1∑
s=0

γ(−1) =

{
p if γ is trivial(
−1
p

)
p if γ =

(
·
p

)
,

where the third equality follows from the relation (h(−1), 1)(w(1), 1) =
(w(−1), (−1, 1)p) by Equation (1).
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Similarly, we get that

U2
0 ((w(1), 1)) =

p−1∑
s=0

U0((x(s), 1)(w(1), 1))U0((w(1), 1)−1(x(s), 1)−1(w(1), 1))

=

p−1∑
s=0

U0((

(
0 −1
1 −s

)
, 1)(w(1), 1))

=

p−1∑
s=0

U0((y(s), 1)) =

p−1∑
s=1

U0((y(s), 1)),

since U0((I, 1)) = 0 (as (I, 1) is not in the support of U0). It is easy to check
that for 1 ≤ s ≤ p− 1,

(y(s), 1) = (

(
1 1/s
0 1

)
, 1)(w(1), 1)(

(
−s −1
0 −1/s

)
, 1) ∈ K0(w(1), 1)K0

and hence

U2
0 ((w(1), 1)) =

p−1∑
s=1

γ(−1/s) =

p−1∑
s=1

γ(s) =

{
p− 1 if γ is trivial∑p−1

s=1

(
s
p

)
= 0 if γ =

(
·
p

)
.

Thus if we write U2
0 = c1U0 + c2, we get that

c1 =

{
p− 1 if γ trivial
0 if γ =

(
·
p

) , c2 =

{
p if γ trivial(
−1
p

)
p if γ =

(
·
p

)
.

Now we prove (2). Again using Lemma 3.3 we see that U2
1 is at most

supported on the double cosets K0 and K0(w(p−1), 1)K0. So we need to
find the values of U2

1 at (I, 1) and (w(p−1), 1). Using Lemma 3.7 and 3.3,

U2
1 ((I, 1)) =

p−1∑
s=0

U1((y(ps), 1)(w(p−1), 1))U1((w(p−1), 1)−1(y(ps), 1)−1)

=

p−1∑
s=0

U1((w(p−1), 1))U1((w(−p−1), 1)(y(−ps), 1))

=

p−1∑
s=0

εp

(
−1

p

)
U1((h(−1), (−p,−1)p)(w(p−1), 1))

=

p−1∑
s=0

εp

(
−1

p

)
γ(−1)

(
−1

p

)
εp

(
−1

p

)

= γ(−1)p =

{
p if γ trivial(
−1
p

)
p if γ =

(
·
p

)
.
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Finally, we have

U2
1 ((w(p−1), 1))

=

p−1∑
s=0

U1((y(ps), 1)(w(p−1), 1))U1((w(−p−1), 1)(y(−ps), 1)(w(p−1), 1))

=

p−1∑
s=0

εp

(
−1

p

)
U1((

(
s −p−1

p 0

)
,
(
p2,−p2s

)
p
)(w(p−1), 1))

=

p−1∑
s=0

εp

(
−1

p

)
U1((x(s/p), (p,−p)p)) =

p−1∑
s=1

εp

(
−1

p

)
U1((x(s/p), 1)).

Now we check that for 1 ≤ s ≤ p− 1

(x(s/p), 1)(I,

(
s

p

)
) = (

(
s 0
p 1/s

)
, 1)(w(p−1), 1)(

(
1 0
p/s 1

)
, 1)

and so

U2
1 ((w(p−1), 1)) =

p−1∑
s=1

εp

(
−1

p

)(
s

p

)
γ(1/s)εp

(
−1

p

)

=

p−1∑
s=1

(
−s
p

)
γ(1/s)

=


∑p−1

s=1

(
−s
p

)
= 0 if γ trivial∑p−1

s=1

(
−s
p

)(
s−1

p

)
=
(
−1
p

)
(p− 1) if γ =

(
·
p

)
.

Thus if we write U2
1 = c1U1 + c2, we get that

c1 =

{
0 if γ trivial
εp(p− 1) if γ =

(
·
p

) , c2 =

{
p if γ trivial(
−1
p

)
p if γ =

(
·
p

)
.

For (3) let γ be a trivial character. From Proposition 3.8(4), we have
U0 ∗ U1 = T1. Right multiplication by U1 on both sides and using (2) above
give T1 ∗ U1 = p U0. Further, using the same proposition we get that T−1 =
U1 ∗ U0 = (1/p) U1 ∗ T1 ∗ U1. �

Remark 1. We compare the p-adic operator U1 with Ueda’s classical opera-
tor Yp [16, Proposition 1.27] which satisfies a similar relation. In particular
if we consider operator U ′1 = εpU1, then in the case γ is trivial we have

(U ′1)2 = (εpU1)2 = ε2
pp =

(
−1

p

)
p,

while in the case γ =
(
·
p

)
we have

(U ′1)2 = (εpU1)2 = εp
2

(
εp(p− 1)U1 + p

(
−1

p

))
= (p− 1)U ′1 + p.
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Thus U ′1 satisfies exactly the same relations as the operator Yp.

Theorem 2. The “genuine” Iwahori Hecke algebra H(Kp
0 (p), γ) for γ trivial

or
(
·
p

)
is generated as a C-algebra by U0 and U1 with the defining relations

given by the above proposition.

Proof. We let A be an abstract algebra generated by Ũ0 and Ũ1 with defining
relations as (1) and (2) of Proposition 3.9. We have a homomorphism from Ã

to H(γ) mapping Ũ0 to U0 and Ũ1 to U1. It follows from Proposition 3.8 that
this homomorphism is onto. We let M be the kernel of this homomorphism.
Using relations (1) and (2) it follows that M is a linear combination of
words of the form Ũ0Ũ1Ũ0.... and Ũ1Ũ0Ũ1..... There are four possibilities for
the beginning and ending of such a word and each one is mapped by the
homomorphism to a different basis element (again using Proposition 3.8). It
follows that M = 0. �

Remark 2. We note that the Hecke algebras H(Kp
0 (p), γ) for γ trivial or

(
·
p

)
are isomorphic (with roles of Ũ0, Ũ1 switched after suitable normalization).
Further, these are isomorphic to the Iwahori Hecke algebra of PGL2(Qp),
giving, what Loke-Savin called, local Shimura correspondence at odd primes.

The Hecke algebra generators and relations described above allow a study
of the representation theory of the maximal compact with (Kp

0 (p), γ) equi-
variant vectors and also the infinite dimensional genuine representations of
S̃L(2) with such vectors. We will pursue this study in a subsequent work.

4. Translation of adelic to classical.

In this section, following Gelbart [4] and Waldspurger [18], we review
the connection between automorphic forms on S̃L2(A) and classical modular
forms of half-integral weight. We use this connection to translate certain
elements in the p-adic Hecke algebra described in the previous section into
classical operators and thus obtain relations satisfied by these classical op-
erators.

Let A = AQ be the adele ring of Q and S̃L2(A) = SL2(A)×{±1} with the
group law: for g = (gν), h = (hν) ∈ SL2(A) and ε1, ε2 ∈ {±1}

(g, ε1)(h, ε2) = (gh, ε1ε2σ(g, h)), where σ(g, h) =
∏
ν

σν(gν , hν).

The group S̃L2(A) splits over SL2(Q) and the splitting is given by

sQ : SL2(Q) −→ S̃L2(A), g 7→ (g, sA(g)) where sA(g) =
∏
ν

sν(g).

By [4, Proposition 2.16], for α =

(
a b
c d

)
∈ Γ1(N), sA(α) =

(
c
d

)
s
unless

c = 0 in which case sA(α) = 1. Here
(
c
d

)
s

=
(
c
d

)
(c, d)∞.
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Lemma 4.1. Let 4 | N . For α =

(
a b
c d

)
∈ Γ0(N), we have

sA(α) =


(
c
d

)
s

(c, d)2 if c 6= 0 and ord2(c) is even(
c
d

)
s

if c 6= 0 and ord2(c) is odd
1 if c = 0.

Proof. If c = 0 then sν(α) = 1 for all places ν and so sA(α) = 1.
Suppose c 6= 0. Since α ∈ Γ0(N) and 4 | N , d is odd and coprime to c.

By definition, for any finite prime q, we have sq(α) = (c, d)q if ordq(c) is odd
and is 1 else. Hence

sA(α) =
∏

q finite

sq(α) =
∏

ordq(c) odd

(c, d)q .

It follows from the proof of [4, Proposition 2.16] (the proof only uses that d
is odd and coprime to c), that

(
c
d

)
s

=
∏
q|c (c, d)q. Now∏

ordq(c) odd

(c, d)q =
∏
q|c

(c, d)q
∏

ordq(c) even>0

(c, d)q =
( c
d

)
s

∏
ordq(c) even>0

(c, d)q .

So we just need to show that
∏

ordq(c) even>0 (c, d)q is (c, d)2 if ord2(c) is even
and is 1 if ord2(c) is odd (note that ord2(c) ≥ 2). Let p be any odd prime
such that ordp(c) is even and > 0. Let c = p2nu where u is unit in Zp. Then
(c, d)p = (u, d)p = 1 as both d, u are units in Zp. Hence we are done. �

For g̃ = (

(
a b
c d

)
, ε) ∈ S̃L2(R) and z ∈ H, define

g̃(z) =
az + b

cz + d
and J(g̃, z) = ε(cz + d)1/2.

By [4, Lemma 3.3], J(g̃, z) satisfies the automorphy condition i.e.,

J(g̃h̃, z) = J(g̃, h̃z)J(h̃, z).

Let f ∈ Sk+1/2(Γ0(N)) where 4 | N and α ∈ Γ0(N). Then considering
α = (α, sA(α)) ∈ S̃L2(R), using above lemma we have,

f(αz) =
( c
d

)
(ε−1
d )2k+1(cz + d)k+1/2f(z)

=
( c
d

)
(ε−1
d )2k+1sA(α)J(α, z)2k+1f(z)

=


(ε−1
d J(α, z))2k+1f(z) if c = 0

(c, d)∞(ε−1
d J(α, z))2k+1f(z) if c 6= 0 and ord2(c) is odd

(c, d)∞ (c, d)2 (ε−1
d J(α, z))2k+1f(z) if c 6= 0 and ord2(c) is even.
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For θ ∈ R, let k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. Define K̃∞ := {k̃(θ) : θ ∈ (−2π, 2π]}

where

k̃(θ) =

{
(k(θ), 1) if −π < θ ≤ π,
(k(θ),−1) if −2π < θ ≤ −π or π < θ ≤ 2π.

Then K̃∞ is a maximal compact subgroup of S̃L2(R) and k̃(θ) 7→ ei
2k+1

2
θ is

a genuine character of K̃∞. Let

K1(N) :=
∏
q<∞
{
(
a b
c d

)
∈ SL2(Zq) : c ≡ 0, and a, d ≡ 1 (mod NZq)}.

Recall the strong approximation theorem for S̃L2(A): every element g̃ ∈
S̃L2(A) can be written as

g̃ = (α, sA(α))g̃∞(k1, 1),

where (α, sA(α)) ∈ sQ(SL2(Q)), k1 ∈ K1(N) and g̃∞ ∈ S̃L2(R) determined
up to left multiplication by elements in sQ(Γ1(N)).

We follow the notation of Waldspurger [18]. Let χ be an even Dirichlet
character modulo N . Write χ0 = χ

(−1
.

)k. Define γ̃2 on Z×2 as

γ̃2(t) =

{
1 if t ≡ 1 (mod 4Z2)

−i if t ≡ 3 (mod 4Z2),

and for k0 =

(
a b
c d

)
∈ K2

0 (4), define

ε̃2(k0) =

{
γ̃2(d)−1 (c, d)2 s2(k0) if c 6= 0

γ̃2(d) if c = 0.

Let χ0 also denote the idelic character (of Q×\A×Q) corresponding to the
Dirichlet character χ0 (it will be clear from the context when we consider
χ0 to be idelic or Dirichlet character) and χ0,p be the p-component of χ0.
Let Ak+1/2(N,χ0) denote the set of functions Φ : S̃L2(A)→ C satisfying the
following properties:

(1) Φ(sQ(α)g̃(k1, 1)) = Φ(g̃) for all k1 ∈
∏
q-N SL2(Zq), α ∈ SL2(Q),

g̃ ∈ S̃L2(A).
(2) Φ is genuine, that is, Φ((I, ζ)g̃) = ζΦ(g̃) for ζ ∈ µ2.
(3) For odd primes p such that pn‖N , Φ(g̃(k0, 1)) = χ0,p(d)Φ(g̃) for all

k0 =

(
a b
c d

)
∈ Kp

0 (pn).

(4) If 2n‖N (n ≥ 2), Φ(g̃(k0, 1)) = ε̃2(k0)χ0,2(d)Φ(g̃) for all k0 ∈ K2
0 (2n).

(5) Φ(g̃k̃(θ)) = ei
2k+1

2
θΦ(g̃) for all k̃(θ) ∈ K̃∞.



MINUS SPACE OF HALF-INTEGRAL WEIGHT 19

(6) Φ is smooth as a function of S̃L2(R) and satisfies the differential
equation ∆Φ = −[(2k + 1)(2k − 3)/16]Φ where ∆ is the Casimir
operator.

(7) Φ is square integrable, that is,
∫
sQ(SL2(Q))\ S̃L2(A)/µ2

|Φ(g̃)|2dg̃ <∞.

(8) Φ is cuspidal, that is,
∫
NQ\NA

Φ

((
1 a
0 1

)
g̃

)
da = 0 for all g̃ ∈

S̃L2(A).
By [18, Proposition 3] there exists an isomorphism between

Ak+1/2(N,χ0)→ Sk+1/2(Γ0(N), χ)

given by Φ 7→ fΦ where for z ∈ H,

fΦ(z) = Φ(g̃∞)J(g̃∞, i)
2k+1

where g̃∞ ∈ S̃L2(R) is such that g̃∞(i) = z. The inverse map is given by
f 7→ Φf where for g ∈ S̃L2(A) if g̃ = (α, sA(α))g̃∞(k1, 1),

Φf (g̃) = f(g̃∞(i))J(g̃∞, i)
−2k−1.

This isomorphism induces a ring isomorphism of spaces of linear operators,

q : EndC(Ak+1/2(N,χ0))→ EndC(Sk+1/2(Γ0(N), χ))

given by
q(T )(f) = fT (Φf ).

4.1. N = 4M , M odd and p‖M . Let p be an odd prime and let N =
4M with M odd such that p strictly divides M . In this subsection we
translate the elements T1, U1, U0 and T−1 in the p-adic Hecke algebra to
certain classical operators on Sk+1/2(Γ0(4M), χ). We restrict ourselves to
χ being the trivial character modulo 4M . In this case χ0 =

(−1
·
)k has

conductor either 1 or 4 and so χ0,p is trivial on Z×p while χ0,2 acts by χ−1
0 = χ0

on Z×2 .
Let γ be the character on (Zp/pZp)× induced by χ0,p|Z×p (so in the current

case γ is trivial). Then Iwahori Hecke algebra H(Kp
0 (p), γ) is a subalgebra

of EndC(Ak+1/2(N,χ0)) via the following action: for T ∈ H(Kp
0 (p), γ) and

Φ ∈ Ak+1/2(N,χ0),

T (Φ)(g̃) =

∫
S̃L2(Qp)

T (x̃)Φ(g̃x̃)dx̃.

Proposition 4.2. Let M be positive integer such that p strictly divides M .
Let χ be the trivial character modulo 4M and let γ be induced by χ0,p. Let
T1, U1, U0, T−1 ∈ H(Kp

0 (p), γ) and f ∈ Sk+1/2(Γ0(4M), χ). Then,

(1)
(
−1

p

)k
q(T1)(f)(z) = p−k−1/2

p2−1∑
s=0

f

(
z + s

p2

)
= p(3−2k)/2Up2(f).



20 EHUD MOSHE BARUCH AND SOMA PURKAIT

(2) q(U1)(f)(z) = εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

f |[(αs, φαs)]k+1/2(z), where

αs =

(
p2n− 4Mms m
4pM(1− s) p

)
∈ M2(Z) is of determinant p2 and m, n ∈

Z are such that pn−(4M/p)m = 1, and φαs(z) = (4M(1−s)z+1)1/2.

(3) q(U0)(f)(z) =

p−1∑
s=0

f |[(βs, φβs)]k+1/2(z), where

βs =

(
1 m− s

4M1 np− 4M1s

)
∈ Γ0(4M1) withM1 = M/p and m, n ∈ Z

are such that pn− 4M1m = 1 and φβs = (4M1z + (np− 4M1s))
1/2.

(4) q(T−1)(f)(z) =

(
−1

p

)k p2−1∑
s=0

f |[(γs, φγs(z))]k+1/2(z), where

γs =

(
p2 0
−4Ms 1

)
and φγs(z) = (−4(M/p)sz + p−1)1/2.

Proof. For (1), let g̃∞ = (g∞, 1) ∈ S̃L2(R) such that g̃∞i = z. Then using
decomposition in Lemma 3.7 we have

T1(Φf )(g̃∞) =

p2−1∑
s=0

γ(h(p), 1)Φf (g̃∞(x(s), 1)(h(p), 1))

= εp

p2−1∑
s=0

Φf (g̃∞(x(s), 1)(h(p), 1))

= εp

p2−1∑
s=0

Φf (sQ(As)g̃∞(x(s), 1)(h(p), 1))

where for each 0 ≤ s ≤ p2−1, we takeAs = h(p−1)x(−s) =

(
p−1 −p−1s
0 p

)
∈

SL2(Q) (note that Φf (sQ(α)g̃) = Φf (g̃) for any α ∈ SL2(Q), g̃ ∈ S̃L2(A)).
Clearly sν(As) = 1 for all primes ν, so sQ(As) = (As, 1). The ∞-component
of

(As, 1)︸ ︷︷ ︸
diagonal

g̃∞︸︷︷︸
∞ place

(x(s), 1)(h(p), 1)︸ ︷︷ ︸
p place

is (As, 1)g̃∞, for a prime q such that (q, 2M) = 1 the q-component is (As, 1) ∈
SL2(Zq)×{1}, for a prime r such that (r, 2p) = 1 and rb‖M , the r-component
is (As, 1) ∈ Kr

0(rb)×{1}, the 2-component is (As, 1) ∈ K2
0 (4)×{1} and the

p-component is (As, 1)(x(s), 1)(h(p), 1) = (I, (p, p)p) = (I,
(
−1
p

)
).
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Since χ is trivial, χ0,2 =
(−1
·
)k while χ0,p and χ0,r are trivial. So the

2-component acts by ε̃2(As)χ0,2(p) = γ̃2(p)χ0,2(p) = εp

(
−1
p

)k
and the p-

component acts by
(
−1
p

)
. Thus,

T1(Φf )(g̃∞) = εp

p2−1∑
s=0

Φf (sQ(As)g̃∞(x(s), 1)(h(p), 1))

= (εp)
2

(
−1

p

)k (−1

p

) p2−1∑
s=0

Φf (Asg∞, 1)

=

(
−1

p

)k p2−1∑
s=0

f(Asg∞(i))J((Asg∞, 1), i)−2k−1.

Consequently,

q(T1)(f)(z) = T1(Φf )(g̃∞)J((g∞, 1), i)2k+1 =

(
−1

p

)k
p−k−1/2

p2−1∑
s=0

f

(
z + s

p2

)
.

For (2) we need the following decomposition (we use (4,M) = 1)

K0w(p−1)K0 =
⋃

s∈Zp/pZp

y(4Ms)w(p−1)K0.

Taking g̃∞ such that g̃∞i = z we have

U1(Φf )(g̃∞) = εp

(
−1

p

) p−1∑
s=0

Φf (g̃∞(y(4Ms), 1)(w(p−1), 1)).

Since p is coprime to 4M/p, we fix m, n ∈ Z such that pn− (4M/p)m = 1.
For 0 ≤ s ≤ p− 1, take

As =

(
pn m

p

4M 1

)(
1 0

−4Ms 1

)
=

(
pn− 4msMp

m
p

4M(1− s) 1

)
∈ SL2(Q).

Since sν(As) = 1 for all primes ν we have sQ(As) = (As, 1). As before the
∞-component of

sQ(As) g̃∞ (y(4Ms), 1)(w(p−1), 1)

is (As, 1)g̃∞, for a prime q such that (q, 2M) = 1 the q-component is (As, 1) ∈
SL2(Zq)×{1}, for a prime r such that (r, 2p) = 1 and rb‖M , the r-component
is (As, 1) ∈ Kr

0(rb)× {1} and the 2-component is (As, 1) ∈ K2
1 (4)× {1} (as

(2, 2)-th entry of As is 1). For the p-component we check that (As, 1) =

(

(
pn m/p
4M 1

)
, 1)(y(−4Ms), 1) and

(As, 1)(y(4Ms), 1)(w(p−1), 1) = (

(
−m n
−p 4M/p

)
,

(
M/p

p

)
).
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Since χ is trivial, as before the r-component act trivially, the p-component
acts by

(
M/p
p

)
(as χ0,p(4M/p) = 1) and the 2-component by ε̃2(As)χ0,2(1) =

1.
Thus we have

U1(Φf )(g̃∞) = εp

(
−1

p

) p−1∑
s=0

Φf (sQ(As)g̃∞(y(4Ms), 1)(w(p−1), 1))

= εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

Φf ((As, 1)(g∞, 1))

= εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

f((As, 1)z)J((As, 1), z)−2k−1J((g∞, 1), i)−2k−1.

So we have

q(U1)(f)(z) = εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

f((As, 1)z)J((As, 1), z)−2k−1.

Let αs = As

(
p 0
0 p

)
and φαs(z) = (4M(1− s)z + 1)1/2. Then

q(U1)(f)(z)

= εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

f

(
(p2n− 4mMs)z +m

4pM(1− s)z + p

)
(4M(1− s)z + 1)−k−1/2

= εp

(
−1

p

)(
M/p

p

) p−1∑
s=0

f |[(αs, φαs)]k+1/2(z).

For (3), using Lemma 3.7 we have

U0(Φf )(g̃∞) =

p−1∑
s=0

Φf (g̃∞(x(s), 1)(w(1), 1)).

Let m, n ∈ Z such that pn − (4M/p)m = 1 and let M1 = M/p. For
0 ≤ s ≤ p− 1, take

As =

(
1 −s+m

4M1 −4M1s+ np

)
∈ Γ1(4M1).

By Lemma 4.1 we have sA(As) =
(

4M1
−4M1s+np

)
= 1. Thus the ∞-component

of sQ(As) g̃∞ (x(s), 1)(w(1), 1) is (As, 1)(g∞, 1), for a prime q such that
(q, 2M) = 1 the q-component is (As, 1) ∈ SL2(Zq)×{1}, if r is an odd prime
such that rb‖M then the r-component is (As, 1) ∈ Kr

0(rb)× {1} and the 2-
component is (As, 1) ∈ K2

1 (4)×{1}. For p-component, since ordp(4M1) = 0,

we have (

(
1 m

4M1 np

)
, 1)(x(−s), 1) = (As, 1) and (

(
1 m

4M1 np

)
, 1)(w(1), 1) =
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(

(
−m 1
−np 4M1

)
, β) where β is either (4M1,−1)p or (4M1, np)p depending on

whether ordp(np) is odd or even. In either case it is clear that β is 1. Thus

the p-component is (

(
−m 1
−np 4M1

)
, 1) ∈ K0 × {1}.

Since χ is trivial, the p-component and r-component act trivially, and the
2-component acts by ε̃2(As)χ0,2(−4M1s+np) = (4M1,−4M1s+np)2s2(As)
which clearly equals 1. Thus

U0(Φf )(g̃∞) =

p−1∑
s=0

Φf ((As, 1)g̃∞)

=

p−1∑
s=0

f(Asz)J((As, 1), z)−2k−1J((g∞, 1), i)−2k−1

and consequently

q(U0)(f)(z) =

p−1∑
s=0

f

(
z + (m− s)

4M1z + (np− 4M1s)

)
(4M1z + (np− 4M1s))

−k−1/2.

For (4), using K0h(p−1)K0 =
⋃
s∈Zp/p2Zp

y(4Ms)h(p−1)K0 we have

T−1(Φf )(g̃∞) = εp

p2−1∑
s=0

Φf (g̃∞(y(4Ms), 1)(h(p−1), 1)).

For 0 ≤ s ≤ p2 − 1, take As = h(p)y(−4Ms) =

(
p 0

−4(M/p)s p−1

)
, then

sQ(As) = (As, ξs) where

ξs :=



1 if s = 0

1 if ordp(s) = 1 and ord2(s) odd(
−1
p

)
(Ms
p , p)2 if ordp(s) = 1 and ord2(s) even(

−1
p

)
(Ms
p , p)p if (s, p) = 1 and ord2(s) odd

(Ms
p , p)2 (Ms

p , p)p if (s, p) = 1 and ord2(s) even.

We verify the above formula for ξs in the case ordp(s) = 1 and ord2(s) is
even, the other cases follow similarly. Clearly ordp(s) = 1 and ord2(s) even
imply that ordp(−4(M/p)s) = 1 and ord2(−4(M/p)s) is even. So we have
s2(As) = 1, sp(As) = (−4Ms

p , p−1)p and by definition, s∞(As) = 1. For any
prime q, note that (−4Ms

p , p−1)q = (−Msp, p)q = (Ms, p)q. So

ξs =
∏
ν

sν(As) = (Ms, p)p
∏

q : (q, 2p)=1,
ordq(4Ms) odd

(Ms, p)q
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If ordq(4Ms) is even, then (Ms, p)q = (u, p)q for some unit u in Zq, so
(Ms, p)q = 1. Thus using the product formula

∏
ν

(Ms, p)ν = 1 we have

ξs =
∏
ν

sν(As) = (Ms, p)p
∏

q : (q, 2p)=1

(Ms, p)q = (Ms, p)2.

Since (p, p)2 =
(
−1
p

)
we get that

(
−1
p

)
(Ms
p , p)2 = (Ms, p)2 and we are done.

Thus we have

T−1(Φf )(g̃∞) = εp

p2−1∑
s=0

ξsΦf ((As, 1)g̃∞(y(4Ms), 1)(h(p−1), 1)).

Now the∞-component of (As, 1) g̃∞ (y(4Ms), 1)(h(p−1), 1) is (As, 1)g̃∞, for
a prime q such that (q, 2M) = 1 the q-component is (As, 1) ∈ SL2(Zq)×{1}, if
r is an odd prime coprime to p such that rb‖M then the r-component belongs

to Kr
0(rb)×{1}, the 2-component is (

(
p 0

−4(M/p)s p−1

)
, 1) ∈ K2

0 (4)×{1}

and the p-component is (As, 1)(y(4Ms), 1)(h(p−1), 1) which is precisely equal

to (I, ηs) where ηs :=


(
−1
p

)
if s = 0

1 if ordp(s) = 1(
−1
p

)
(Ms
p , p)p if (s, p) = 1.

Since χ is trivial, χ0,p is trivial and so the p-component acts on Φf simply
by multiplication by ηs. Next we look at how the 2-component acts on Φf .
Since χ0,2 =

(−1
·
)k we get that

ε̃2(As)χ0,2(p−1) =

{
γ̃2(p−1)χ0,2(p−1) if s = 0

γ̃2(p−1)−1(−4Mp s, p
−1)2s2(As)χ0,2(p−1) if s 6= 0

= ϑs :=


εp

(
−1
p

)k
if s = 0

εp

(
−1
p

)k
if s 6= 0 and ord2(s) odd

εp

(
−1
p

)k+1
(Ms
p , p)2 if s 6= 0 and ord2(s) even.

One can check that

ϑsηs = εp

(
−1

p

)k
ξs,

and so

T−1(Φf )(g̃∞) = εp

p2−1∑
s=0

ξsϑsηsΦf ((As, 1)g̃∞) =

(
−1

p

)k p2−1∑
s=0

Φf ((As, 1)g̃∞).
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Thus

q(T−1)(f)(z) =

(
−1

p

)k p2−1∑
s=0

f

(
p2z

−4Msz + 1

)(
−4Msz + 1

p

)−k−1/2

=

(
−1

p

)k p2−1∑
s=0

f |[(γs, φγs(z))]k+1/2(z)

where γs =

(
p2 0
−4Ms 1

)
and φγs(z) = (−4(M/p)sz + p−1)1/2. �

Let Q̃p := q(U0) and W̃p2 := q(p−1/2U1). Then we have the following

Corollary 4.3. On Sk+1/2(Γ0(4M)),

(1) W̃p2 is an involution,
(2) (Q̃p − p)(Q̃p + 1) = 0,

(3) Q̃p =
(
−1
p

)k
p1−kUp2W̃p2,

(4) If f ∈ Sk+1/2(Γ0(4M/p)) then Q̃p(f) = pf .

Proof. The proof of (1) to (3) follows by using Proposition 3.9 and 4.2. For
(4) we use Proposition 4.2(3). �

We further define an operator Q̃′p on Sk+1/2(Γ0(4M)) to be the conjugate
of Q̃p by W̃p2 , i.e., Q̃′p = W̃p2Q̃pW̃p2 . Thus Q̃′p satisfies the same quadratic

relation as Q̃p and we have Q̃′p =
(
−1
p

)k
p1−kW̃p2Up2 .

Remark 3. We note that for a prime q such that (q, 2M) = 1, one can sim-
ilarly obtain the usual Hecke operator Tq2 on Sk+1/2(Γ0(4M)). In particular,

if we take T1 := X(h(q),1) ∈ H(SL2(Zq), γq) then q(T1) =
(
−1
p

)k
p(3−2k)/2Tq2.

Moreover if p and q are distinct primes such that pn, qm strictly di-
vide N then the operators S ∈ H(Kp

0 (pn), γp) and T ∈ H(Kq
0(qm), γq) in

EndC(Sk+1/2(Γ0(N))) commute.
In particular the operators Q̃p, W̃p2 on Sk+1/2(Γ0(4M)) that we defined

above commute with Tq2 for primes q coprime to 2M .

Remark 4. Let f ∈ Sk+1/2(Γ0(2νM)) where ν ≥ 2. Then we have exactly
the same statement as Proposition 4.2 for the action on f with M replaced
by 2νM . In particular, if f ∈ Sk+1/2(Γ0(2νM/p)) then Q̃p(f) = pf . The
results of the next section on self-djointness also hold similarly.

4.2. Self-adjointness. Let M be odd such that p‖M . In this subsection
we check that the operators W̃p2 , Q̃p and Q̃′p are self-adjoint operators on
Sk+1/2(Γ0(4M)). The property of self-adjointness will be used to give a
description of our minus space in terms of common eigenspaces.
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Proposition 4.4. The operator W̃p2 is self-adjoint with respect to the Pe-
tersson inner product.

Proof. We write

W̃p2(f) =
εp√
p

(
−1

p

)(
M/p

p

)
Sp(f), Sp(f) :=

∑
s∈Z/pZ

f |[(αs, φαs(z))]k+1/2

where (αs, φαs(z)) =

((
p2n− 4mMs m
4pM(1− s) p

)
, (4M(1− s)z + 1)1/2

)
∈ G and

n, m are integers such that pn− (4M/p)m = 1.
We will show that 〈Sp(f), g〉 =

(
−1
p

)
〈f,Sp(g)〉. We write Sp = S1,p+S2,p

where S1,p consists of the s = 0 term and S2,p consists of rest of the terms.
Also, let M1 = M/p.

We first consider S2,p. For s 6= 0, as pn − 4M1ms = 1 + 4M1m(1 − s)
it is clear that pn − 4M1ms and 4M(1 − s) are relatively coprime, hence
there exists integers u, v such that u(pn − 4M1ms) + v4M(1 − s) = 1. In
particular, this implies that −4M1msu ≡ 1 (mod p). Since −4M1m ≡ 1
(mod p), we get that su ≡ 1 (mod p).

We take X =

(
u v

−4M(1− s) pn− 4M1ms

)
∈ Γ0(4M), then X∗ =

(X, j(X, z)) where j(X, z) =
(
−4M(1−s)
pn−4M1ms

)
(−4M(1−s)z+(pn−4M1ms))

1/2,
as pn− 4M1ms ≡ 1 (mod 4). Since f has level 4M we have

f |[(αs, φαs(z))]k+1/2 = f |[X∗]k+1/2|[(αs, φαs(z))]k+1/2.

We claim that in G,

X∗(αs, φαs(z)) =

((
p um+ vp
0 p

)
,

(
u

p

))
.

It is easy to see equality in the matrix component, also, j(X,αsz)φαs(z)

simplifies to just
(
−4M(1−s)
pn−4M1ms

)
. So we only need to check equality of the

Kronecker symbols
(
−4M(1−s)
pn−4M1ms

)
=
(
u
p

)
. While making a choice of m, n so

that pn− 4M1m = 1, we may choose m to be a negative integer so that for
1 ≤ s ≤ p− 1, pn− 4M1ms = 1 + 4M1m(1− s) > 0. So we have(

−4M(1−s)
pn−4M1ms

)
=
(
−4M1m(1−s)
1+4M1m(1−s)

)(
p

1+4M1m(1−s)

)(
m

1+4M1m(1−s)

)
=
(

p
1+4M1m(1−s)

)(
m

1+4M1m(1−s)

)
.

Note that
(

p
1+4M1m(1−s)

)
=
(

1+4M1m(1−s)
p

)
=
(
pn−4M1ms

p

)
=
(
u
p

)
. If m

is odd clearly
(

m
1+4M1m(1−s)

)
= 1. Also, if m = 2νm′ where ν ≥ 1 and m′

is odd, then
(

m
1+4M1m(1−s)

)
=
(

2
1+4M1m(1−s)

)ν (
m′

1+4M1m(1−s)

)
= 1 since in

this case we have 1 + 4M1m(1− s) ≡ 1 (mod 8). Thus our claim is proved.
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Consequently, we have S2,p(f) =
∑

u∈(Z/pZ)× f |[(
(
p um
0 p

)
,
(
u
p

)
)]k+1/2.

Since the adjoint of |[(
(
p um
0 p

)
,
(
u
p

)
)]k+1/2 is |[(

(
p −um
0 p

)
,
(
u
p

)
)]k+1/2,

the adjoint of S2,p is
(
−1
p

)
S2,p, i.e., 〈S2,p(f), g〉 =

(
−1
p

)
〈f, S2,p(g)〉.

Next we consider the term S1,p(f) = f |[(
(
p2n m
4pM p

)
, (4Mz+1)1/2)]k+1/2.

For this case we may choose m to be a positive integer. Let γp :=

(
a b
c d

)
∈

SL2(Z) such that γp ≡
(

0 −1
1 0

)
(mod p) and γp ≡

(
1 0
0 1

)
(mod 8M1m)

(this is possible since (p, 8M1m) = 1). We may also choose c, d above so
that c < 0 and d > 0. We claim that

S1,p(f) = f |[(
(
pa b
p2c pd

)
,

(
M1

p

)( c
d

)
(cpz + d)1/2)]k+1/2.

Let Y =

(
a− 4bM1

−ma+bpn
p

pc− 4Md −mc+ dpn

)
. Then Y ∈ SL2(Z) and pc− 4Md ≡ 0

(mod 4M), so Y ∈ Γ0(4M). We further note that −mc+ dpn ≡ 1 (mod 4),
dpn −mc = d(1 + 4M1m) −mc > 0. To prove the claim we need to check
that

Y ∗(

(
p2n m
4pM p

)
, (4Mz + 1)1/2) = (

(
pa b
p2c pd

)
,

(
M1

p

)( c
d

)
(cpz + d)1/2).

As before, matrix equality is easy to check and the automorphy factor of the
left hand side equals kronecker symbol

(
pc−4Md
−cm+dpn

)
times (pcz+d)1/2. So we

need to show that
(
pc−4Md
−cm+dpn

)
=
(
M1
p

) (
c
d

)
. Now(

pc−4Md
−cm+dpn

)
=
(

p
−cm+dpn

)(
c−4M1d
−cm+dpn

)
=
(
−cm+dpn

p

)(
c−4M1d
−cm+dpn

)
=
(
−m
p

)(
c−4M1d
−cm+dpn

)
=
(
M1
p

)(
c−4M1d
−cm+dpn

)
.

Since (m,−cm+dpn) = 1 we can write
(

c−4M1d
−cm+dpn

)
=
(
d+cm−dpn
−cm+dpn

)(
m

−cm+dpn

)
.

We have(
d+cm−dpn
−cm+dpn

)(
m

−cm+dpn

)
=
(

d
−cm+dpn

)(
m

−cm+dpn

)
=
(
c
d

) (
m
d

) (
m

−cm+dpn

)
.

We finally check that
(
m
d

) (
m

−cm+dpn

)
= 1. If m is odd,(

m
−cm+dpn

)
=
(
dpn
m

)
=
(
d
m

) (pn
m

)
= 1 =

(
m
d

)
.

If m = 2νm′, ν ≥ 1 then dpn− cm ≡ 1 (mod 8) and so(
m

−cm+dpn

)
=
(

2
−cm+dpn

)ν (
m′

−cm+dpn

)
=
(
dpn
m′

)
= 1 =

(
m
d

)
.

Thus our claim is proved.
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Next we note that

(

(
pa b
p2c pd

)
,
( c
d

)
(cpz + d)1/2) = (

(
1 0
0 p

)
, p1/4)γ∗p · (

(
p 0
0 1

)
, p−1/4) =: ςp,

and so S1,p(f) =
(
M1
p

)
f |[ςp]k+1/2.

We check similarly that

(

(
1 0
0 p

)
, p1/4)(γ∗p)2(

(
p 0
0 1

)
, p−1/4) = (

(
p 0
0 p

)
,

(
−1

p

)
)Z∗

where Z =

(
a2 + bc ab+bd

p

pc(a+ d) bc+ d2

)
∈ Γ0(4M) and so

f |[(
(

1 0
0 p

)
, p1/4)(γ∗p)2(

(
p 0
0 1

)
, p−1/4)]k+1/2 =

(
−1

p

)
f.

Note that

(ςp)
2 = (

(
1 0
0 p

)
, p1/4)γ∗p · (

(
p 0
0 1

)
, p−1/4)(

(
1 0
0 p

)
, p1/4)γ∗p · (

(
p 0
0 1

)
, p−1/4)

= (

(
1 0
0 p

)
, p1/4)γ∗p · (

(
p 0
0 p

)
, 1)γ∗p · (

(
p 0
0 1

)
, p−1/4)

= (

(
p 0
0 p

)
, 1)(

(
1 0
0 p

)
, p1/4)(γ∗p)2 · (

(
p 0
0 1

)
, p−1/4).

Thus

f |[(ςp)2]k+1/2 =

(
−1

p

)
f, i.e., f |[ς−1

p ]k+1/2 =

(
−1

p

)
f |[ςp]k+1/2.

Since the adjoint of ςp is ς−1
p we get 〈S1,p(f), g〉 =

(
−1
p

)
〈f, S1,p(g)〉.

Thus 〈Sp(f), g〉 =
(
−1
p

)
〈f,Sp(g)〉. So 〈W̃p2(f), g〉 =

εp√
p

(
−M1
p

)
〈Sp(f), g〉

=
εp√
p

(
M1
p

)
〈f,Sp(g)〉 = 〈f, εp√p

(
M1
p

)
Sp(g)〉 = 〈f, W̃p2(g)〉. Hence we are

done. �

Next we want to show that Q̃p = q(U0) is self-adjoint. We use the relations
U1T1U1 = pT−1 and T1U1 = p U0 (Proposition 3.9(3)). Thus we have

〈q(U0)f, g〉 =
1

p
〈q(T1)q(U1)f, g〉.

Since by the above theorem q(U1) is self-adjoint we get that

〈f, q(U0)g〉 =
1

p
〈f, p q(U0)g〉 =

1

p
〈f, q(T1)q(U1)g〉

=
1

p
〈f, 1

p
q(U1)2q(T1)q(U1)g〉 =

1

p
〈q(U1)f,

1

p
q(U1)q(T1)q(U1)g〉

=
1

p
〈q(U1)f, q(T−1)g〉.
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Since q(U1) is surjective it follows that q(U0) is self-adjoint if and only if the
adjoint of q(T−1) is q(T1). We now show that the adjoint of q(T−1) is q(T1).

Consider elements ξ = (

(
1 0
0 p2

)
, p1/2) and η = (

(
p2 0
0 1

)
, p−1/2) in G.

We can choose βs such that Γ0(4M)

(
1 0
0 p2

)
Γ0(4M) =

⋃
Γ0(4M)βs =⋃

βsΓ0(4M). So by [14, Propositions 1.1, 1.2] we have ∆0(4M)ξ∆0(4M) =⋃
∆0(4M)ξs =

⋃
ξs∆0(4M) where P (ξs) = βs.

Since ∆0(4M)η∆0(4M) = ∆0(4M)ξ−1∆0(4M)(

(
p2 0
0 p2

)
, 1), it follows

that ∆0(4M)η∆0(4M) =
⋃

∆0(4M)ξ−1
s (

(
p2 0
0 p2

)
, 1).

Thus for f , g ∈ Sk+1/2(Γ0(4M)), we have

〈f |[∆0(4M)ξ∆0(4M)]k+1/2, g〉 = 〈p(2k−3)/2
∑
s

f |[ξs]k+1/2, g〉

= 〈f, p(2k−3)/2
∑
s

g|[ξ−1
s ]k+1/2〉 = 〈f, g|[∆0(4M)η∆0(4M)]k+1/2〉

(5)

as elements of the type (aI, 1) belong to the center of G and act trivially via
the slash operator.

Using the triangular decomposition we check that

Γ0(4M)

(
p2 0
0 1

)
Γ0(4M) =

p2−1⋃
s=0

Γ0(4M)

(
p2 0
0 1

)(
1 0

−4Ms 1

)
and so

∆0(4M)η∆0(4M) =

p2−1⋃
s=0

∆0(4M) η (

(
1 0

−4Ms 1

)
, (−4Msz + 1)1/2)

=

p2−1⋃
s=0

∆0(4M)(

(
p2 0
−4Ms 1

)
, (−4(M/p)sz + p−1)1/2).

Thus it follows from parts (1) and (4) of Proposition 4.2 that

g|[∆0(4M)η∆0(4M)]k+1/2 =

(
−1

p

)k
p(2k−3)/2q(T−1)(g),

and f |[∆0(4M)ξ∆0(4M)]k+1/2 =
(
−1
p

)k
p(2k−3)/2q(T1)(f). Thus by equa-

tion (5) we obtain the following

Proposition 4.5. The operator q(T−1) is adjoint of q(T1) and consequently
Q̃p is self-adjoint with respect to the Petersson inner product.
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4.3. Translating elements of 2-adic Hecke algebra and Kohnen’s
plus space. Following Niwa and Kohnen’s work, Loke and Savin gave an
interpretation of Kohnen’s plus space at level 4 in terms of certain elements
in the 2-adic Hecke algebra described previously. In this subsection we shall
describe Kohnen’s plus space at level 4M for M odd in a similar way.

Let χ be the trivial character modulo 4, thus χ0 =
(−1
·
)k. Let γ be a

character of M2 such that γ((−I, 1)) = −i2k+1 and let ϕ8 := γ((w(1), 1)).

Then, for any k0 =

(
a b
c d

)
∈ K2

0 (4) we have ε̃2(k0)χ0,2(d) = γ((k0, 1)).

Proposition 4.6. (Loke-Savin [8]) For T1, U1 ∈ H(K2
0 (4), γ) and f ∈

Sk+1/2(Γ0(4), χ),

(1) q(T1)(f)(z) = 2(3−2k)/2U4(f)(z).
(2) q(U1)(f)(z) =

(
2

2k+1

)
W4(f)(z) where the operator W4 is given by

W4(f)(z) = (−2iz)−k−1/2f(−1/4z) and
(

2
2k+1

)
is the usual Kro-

necker symbol.

Niwa [10] considered operator R = W4U4 on Sk+1/2(Γ0(4), χ), proved that

it is self-adjoint and that (R−α1)(R−α2) = 0 where α1 =
(

2
2k+1

)
2k, α2 =

−α1
2 . Kohnen [5] defined his plus space S+

k+1/2(Γ0(4)) at level 4 to be the
α1-eigenspace of R in Sk+1/2(Γ0(4)). It follows from the above proposition
that S+

k+1/2(Γ0(4)) is the 2-eigenspace of q(U1)q(T1)/
√

2 and hence that of
q(U2)/

√
2.

In the case of level 4M with M odd and χ a trivial character modulo
4M , Kohnen [6] defines a classical operator Q on Sk+1/2(Γ0(4M)) in order
to obtain his plus space. The operator Q is defined by

Q := [∆0(4M,χ)ρ∆0(4M,χ)] where ρ = (

(
4 1
0 4

)
, eπi/4).

By [6, Proposition 1] Q is self-adjoint and satisfies (Q−α)(Q−β) = 0 where
α = (−1)[(k+1)/2]2

√
2, β = −α/2, and the plus space S+

k+1/2(Γ0(4M)) is
precisely the α-eigenspace of Q.

Proposition 4.7. Let f ∈ Sk+1/2(Γ0(4M)) with M odd. Then we have

Q(f) =

(
2

2k + 1

)
q(U2)(f) =

(
2

2k + 1

)
q(U1)q(T1)(f).

Consequently S+
k+1/2(Γ0(4M)) is the 2-eigenspace of q(U1)q(T1)/

√
2.
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Proof. Following [6, Proposition 1] we can write

Q(f) =
4∑
s=0

f |[ρ]k+1/2|[
(

1 0
4Ms 1

)
, (4Msz + 1)1/2]k+1/2

= e−(2k+1)πi/4
4∑
s=0

f |[
(

4 + 4Ms 1
16Ms 4

)
, (4Msz + 1)1/2]k+1/2

and its adjoint

Q̃(f) =
4∑
s=0

f |[
(

4 −1
0 4

)
, e−πi/4]k+1/2|[

(
1 0

4Ms 1

)
, (4Msz + 1)1/2]k+1/2

= e(2k+1)πi/4
4∑
s=0

f |[
(

4− 4Ms −1
16Ms 4

)
, (4Msz + 1)1/2]k+1/2.

Since Q is self-adjoint, Q = Q̃.
We now compute q(U2)(f). Let g̃∞ ∈ S̃L2(R) be such that g̃∞i = z.

Using K2
0 (4)w(2−2)K2

0 (4) =
⋃
s∈Z/4Z y(4M(1 − s))w(2−2)K2

0 (4) (from [8,
Proposition 3]), we get

U2(Φf )(g̃∞) = ϕ8

3∑
s=0

Φf (g̃∞(y(4M(1− s)), 1)(w(2−2), 1)).

Take As =

(
1−

(−1
M

)
Ms −

(−1
M

)
/4

4Ms 1

)
∈ SL2(Q), so sQ(As) = (As, 1). The

∞-component of

sQ(As) g̃∞ (y(4M(1− s)), 1)(w(2−2), 1)

is (As, 1)g̃∞, for a prime q such that (q, 2M) = 1 the q-component is (As, 1) ∈
SL2(Zq) × {1}, for an odd prime p such that pb‖M , the p-component is
(As, 1) ∈ Kp

0 (pb)× {1} while the 2-component is

(As, 1)(y(4M(1− s)), 1)(w(2−2), 1)) = (

((−1
M

) 1−M(−1
M )

4
−4 M

)
, 1).

Since M is odd, it is clear that 1−M(−1
M )

4 ∈ Z2 and so the 2-component is in
K2

0 (4)×{1}. The p-component acts trivially while the 2-component acts by
(γ̃2(M))−1(−1,M)2χ0,2(M) =: ωM . Hence

q(U2)(f)(z) = ϕ8 ωM

3∑
s=0

f(Asz)J(As, z)
−2k−1

= ϕ8 ωM

3∑
s=0

f

(
(4− 4M

(−1
M

)
sz)−

(−1
M

)
16Msz + 4

)
(4Msz + 1)−k−1/2.
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We note that e(2k+1)πi/4 =
(

2
2k+1

)
1+i2k+1
√

2
=
(

2
2k+1

)
ϕ8. Thus when M ≡ 1

(mod 4) since ωM = 1, comparing the expression of Q̃ and q(U2) we see
that Q̃(f) =

(
2

2k+1

)
q(U2)(f). In the case M ≡ 3 (mod 4) we get that

ωM = −i(−1)k, so
(

2
2k+1

)
ϕ8ωM = e−(2k+1)πi/4 and consequently Q(f) =(

2
2k+1

)
q(U2)(f). Since by Theorem 1, U2 = U1 ∗ T1 we get that Q(f) =(

2
2k+1

)
q(U1)q(T1)(f). Hence we are done.

The last statement follows since (−1)[(k+1)/2] =
(

2
2k+1

)
. �

As before we can translate T1, U1, U0 ∈ H(K2
0 (4), γ) to classical operators

on Sk+1/2(Γ0(4M)) .

Proposition 4.8. For f ∈ Sk+1/2(Γ0(4M)),

(1) q(T1)(f)(z) = 2(3−2k)/2U4(f)(z) =
3∑
s=0

f |[
(

1 −s
0 4

)
, 21/2]k+1/2(z).

(2) q(U1)(f)(z) = ϕ8

(
−1

M

)k+3/2

f |[W,φW (z)]k+1/2(z) where

W =

(
4n m
4M 4

)
with m, n ∈ Z such that 4n − mM = 1 and

φW (z) = (2Mz + 2)1/2.

(3) q(U0)(f)(z) = ϕ8

(
−1

M

)k+3/2 3∑
s=0

f |[As, φAs(z)]k+1/2(z) where

As =

(
n −ns+m
M −Ms+ 4

)
with m, n ∈ Z such that 4n−mM = 1 and

φAs(z) = (Mz + 4−Ms)1/2.

Define Q̃2 := q(U0)/
√

2. It follows from the relation U0 = T1U1 that Q̃2 =
q(T1)q(U1)/

√
2. One can also observe it directly from the above proposition.

Let W̃4 := q(U1). Thus W̃4 is an involution. Let Q̃′2 be the conjugate of
Q̃2 by W̃4. Thus Q̃2 = 21−kU4W̃4 and Q̃′2 = 21−kW̃4U4. The Kohnen’s
plus space at level 4M is the 2-eigenspace of Q̃′2. Note that Q̃2 and Q̃′2 are
self-adjoint with respect to the Petersson inner product. The operators Q̃′p
and Q̃p are p-adic analogues of Kohnen’s operator Q̃′2 and its conjugate Q̃2.

Remark 5. We note that q(U1) in the above proposition can also be given
by the following expression:

q(U1)(f)(z) = ϕ8

(
2

M

)(
−1

M

)k+3/2

f |[W,φW (z)]k+1/2(z)
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where W =

(
4n m
4M 8

)
with m, n ∈ Z such that 8n−mM = 1 and φW (z) =

(2Mz + 4)1/2. We shall use this expression of q(U1) in [3].

5. Eigenvalues of Up

For every positive integer n and a modular form F , let Fn(z) := V (n)F (z) =
F (nz). Let M be a positive integer such that p - M . If F ∈ S2k(Γ0(M)),
then by the well-known action of Tp and Up we have

Up(F )(z) = Tp(F )(z)− p2k−1Fp(z). (6)

Assume that F ∈ S2k(Γ0(M)) is a primitive Hecke eigenform and ap is the
p-th Fourier coefficient of F . Then Tp(F ) = apF . It is known that ap
is real and by the Ramanujan conjecture proved by Deligne we have that
|ap| ≤ 2p(2k−1)/2.

Lemma 5.1. (a) If (p, n) = 1 then Up(Fn) = apFn − p2k+1Fnp.
(b) If p | n then Up(Fn) = Fn/p.

Proof. It is well known that if (p, n) = 1 then V (n)Tp(F ) = TpV (n)F . Hence
using (6) and that F is a primitive Hecke eigenform we get that

Up(Fn) = Tp(Fn)− p2k−1Fnp = V (n)Tp(F )− p2k−1Fnp

= V (n)apF − p2k−1Fnp = apFn − p2k−1Fnp.

For (b) write n = mp. Then

Up(Fn)(z) =
1

p

p−1∑
k=0

Fmp

(
z + k

p

)
=

1

p

p−1∑
k=0

Fm(z + k) = Fn/p(z).

�

Thus Up stabilizes the two dimensional subspace spanned by Fn and Fnp
for (p, n) = 1. We will compute the eigenvalues of Up on this space. If
G = λFn + βFnp is an eigenfunction of Up then it follows from part (b) of
the above lemma that λ 6= 0. Hence we can assume that λ = 1. We have

Up(Fn + βFnp) = (ap + β)Fn − p2k−1Fnp.

It is clear from above that β cannot be zero and that G is an eigenfunction
if and only if ap + β = −p2k−1/β with eigenvalue ap + β. Hence β2 + apβ +

p2k−1 = 0 and we have

β =
−ap ±

√
a2
p − 4p2k−1

2
.

The eigenvalues of Up on the subspace 〈Fn, Fnp〉 are

ap + β =
ap ±

√
a2
p − 4p2k−1

2
.
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Proposition 5.2. If an eigenvalue λ of (Up)
2 on the two dimensional sub-

space spanned by Fn and Fnp is real then λ = ±p2k−1.

Proof. Using the Ramanujan conjecture we can see that the eigenvalues of
Up are real or purely imaginary if and only if ap = ±2pk−1/2 or ap = 0. In
those cases the eigenvalue of (Up)

2 are precisely ±p2k−1. �

6. The minus space of half-integral weight forms

LetM be odd and square-free. In this section we use the operators and re-
lations that we obtain in Section 4 to define the minus space S−k+1/2(Γ0(4M))

of weight k + 1/2 and level 4M . We show that there is an Hecke alge-
bra isomorphism between S−k+1/2(Γ0(4M)) and Snew

2k (Γ0(2M)) and we give a
common eigenspace characterization of S−k+1/2(Γ0(4M)). It follows that this
minus space is identical to the newspace in [9].

For the sake of clarity we start by defining the minus space at level 4 and
at level 4p for p an odd prime. After that we treat the general case of level
4M .

6.1. Minus space for Γ0(4). We recall the following theorem of Niwa which
was obtained by proving equality of traces of Hecke operators.

Theorem 3. (Niwa [10]) Let M be odd and square-free. There exists an
isomorphism of vector spaces ψ : Sk+1/2(Γ0(4M))→ S2k(Γ0(2M)) satisfying

Tp(ψ(f)) = ψ(Tp2(f)) for all primes p coprime to 2M.

Moreover if f ∈ Sk+1/2(Γ0(4)) then we further have U2(ψ(f)) = ψ(U4(f)).

We also recall the Shimura lift [14]: For t a positive square-free integer,
there is a linear map Sht : Sk+1/2(Γ0(4M))→ S2k(Γ0(2M)) given by

Sht

( ∞∑
n=1

anq
n

)
=
∞∑
n=1

 ∑
d|n

(d,2M)=1

(
−1

d

)k ( t
d

)
dk−1a

(
t
n2

d2

) qn.

We note the following observations [11]:
(a) Sht need not be injective but if Sht(f) = 0 for all square-free t, then

f = 0.
(b) Sht commutes with all Hecke operators, i.e., Tp(Sht(f)) = Sht(Tp2(f))

for all primes p coprime to 2M and Up(Sht(f)) = Sht(Up2(f)) for all
primes p dividing 2M .

We denote S+
k+1/2(Γ0(4)) simply by S+(4). We note the following theorem

of Kohnen.

Theorem 4. (Kohnen [5])
(1) dim(S+(4)) = dim(S2k(Γ0(1))).
(2) S+(4) has a basis of eigenforms for all the operators Tp2, p odd.
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(3) If f is such an eigenform then ψ(f) is an old form and ψ(f) =
λF +βF2 where F ∈ S2k(Γ0(1)) is a primitive eigenform determined
by the eigenvalues of f .

Define A+
k+1/2(Γ0(4)) := W̃4S

+
k+1/2(Γ0(4)), which we shall simply denote

by A+(4). We know that S+(4) is the 2-eigenspace of Q̃′2, hence A+(4) is
the 2-eigenspace of Q̃2. Since W̃4 is invertible we can use the above theorem
of Kohnen to get that dim(A+(4)) = dim(S2k(Γ0(1))) and

Corollary 6.1.
(1) A+(4) has a basis of eigenforms under Tp2 for all p odd.
(2) ψ maps A+(4) into the space of old forms in S2k(Γ0(2)).

Proof. Let f ∈ S+(4) be an eigenform under Tp2 for all p odd satisfying
Tp2(f) = λpf . Since W̃4 commutes with all such Tp2 , we get that g =

W̃4f ∈ A+(4) is also an eigenform under all Tp2 with eigenvalues λp. By
Theorem 3, ψ(f) and ψ(g) are eigenforms in S2k(Γ0(2)) under all Tp with
the same set of eigenvalues λp. Since ψ(f) is an old form it follows from
Atkin-Lehner [1] that ψ(g) is also an old form (belonging to the same two
dimensional subspace spanned by F and F2). �

We note the following key proposition which shows that the sum S+(4) +
A+(4) is a direct sum. We shall see analogues of this result in Subsection 6.2
and 6.3.

Proposition 6.2. S+(4)
⋂
A+(4) = {0}.

Proof. Suppose there is a nonzero f ∈ S+(4)
⋂
A+(4). We can assume that

f is an eigenform under Tp2 for all p odd (since Tp2 stabilizes the intersection
S+(4)

⋂
A+(4)). Since A+(4) and S+(4) are respectively the 2-eigenspaces

of Q̃2 and Q̃′2, we have Q̃2(f) = 2f = Q̃′2(f). Using the relations Q̃2 =

21−kU4W̃4, Q̃′2 = 21−kW̃4U4 and W̃ 2
4 = 1, we get that U2

4 = 22k−2Q̃2Q̃
′
2 and

thus
(U4)2(f) = 22kf.

Applying ψ to the above equation we get that (U2)2(ψ(f)) = 22kψ(f). Now
ψ(f) belongs to the subspace spanned by F and F2 for some primitive form
F ∈ S2k(Γ0(1)) and by Proposition 5.2, the eigenvalues of (U2)2 on this
subspace are either non-real or ±22k−1. This is a contradiction. �

Define S−k+1/2(Γ0(4)) to be the orthogonal complement of S+(4)⊕A+(4).

Since Q̃2 and Q̃′2 are Hermitian it follows that S−k+1/2(Γ0(4)) is the common

eigenspace with the eigenvalue −1 of the operators Q̃2 and Q̃′2. We shall
write S−k+1/2(Γ0(4)) simply by S−(4). So we have

Sk+1/2(Γ0(4)) = S+(4)⊕A+(4)⊕ S−(4). (7)
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Theorem 5. S−(4) has a basis of eigenforms for all the operators Tp2, p
odd; these eigenforms are also eigenfunctions under U4. If two eigenforms in
S−(4) share the same eigenvalues for all Tp2 then they are scalar multiples
of each other. ψ induces a Hecke algebra isomorphism:

S−(4) ∼= Snew
2k (Γ0(2)).

Proof. Since ψ maps S+(4)⊕A+(4) into Sold
2k (Γ0(2)) and dim(S+(4)⊕A+(4))

= 2dim(S2k(Γ0(1))) = dim(Sold
2k (Γ0(2))), we get that ψ maps this direct sum

onto Sold
2k (Γ0(2)).

Now Tp2 commutes with Q̃2 and Q̃′2 for every odd prime p so we get that
Tp2 stabilizes S−(4), hence it has a basis of eigenforms for all Tp2 with p odd.

If f is such an eigenform then F := ψ(f) is an eigenform in S2k(Γ0(2))
under all Tp, p odd. By Atkin-Lehner [1], F is either an old form or a
newform. Since ψ is injective, it follows that F must be a newform. So ψ
maps the space S−(4) into the space Snew

2k (Γ0(2)). By equality of dimensions,
we get that ψ is an isomorphism of S−(4) onto Snew

2k (Γ0(2)). Consequently
by [1] an eigenform in S−(4) under all Tp2 for p odd is uniquely determined
up to scalar multiplication.

Further, for such an eigenform f , by [1, Theorem 3], U2(F ) = −2k−1λ(2)F
where λ(2) = ±1. Thus ψ(U4(f)) = U2(F ) ∈ Snew

2k (Γ0(2)), so U4(f) belongs
to S−(4). Since U4 commutes with Tp2 for all p odd, we get that U4(f) is an
eigenform under all Tp2 with the same eigenvalues as f and hence is a scalar
multiple of f . �

6.2. Minus space for Γ0(4p) for p an odd prime. In this subsection we
need the involution W̃p2 and the operators Up2 , Q̃p and Q̃′p = W̃p2Q̃pW̃p2 on
Sk+1/2(Γ0(4p)) that we defined in Section 4.

Consider the subspace V(1) of S2k(Γ0(2p)) coming from the old forms at
level 1, that is,

V(1) = S2k(Γ0(1))⊕ V (2)S2k(Γ0(1))⊕ V (p)S2k(Γ0(1))⊕ V (2p)S2k(Γ0(1)).

We consider the eigenvalues of (Up)
2 on V(1).

Lemma 6.3. The operator Up stabilizes V(1). If an eigenvalue λ of (Up)
2

on this space is real then λ = ±p2k−1.

Proof. For a primitive Hecke eigenform F in S2k(Γ0(1)) consider the four
dimensional subspace spanned by F, F2, Fp, F2p. Then V(1) is a direct sum
of such four dimensional subspaces. By Lemma 5.1, Up preserves the two di-
mensional subspace spanned by F and Fp and the two dimensional subspace
spanned by F2 and F2p. It follows by Proposition 5.2, that the eigenvalues of
(Up)

2 on these two dimensional subspaces are either non-real or ±p2k−1. �

Let R := S+
k+1/2(Γ0(4))⊕A+

k+1/2(Γ0(4)). Then we have

Proposition 6.4. R
⋂
W̃p2R = {0}.
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Proof. Let f 6= 0 belong to the intersection. We can again assume that f is an
eigenform under Tq2 for all primes q coprime to 2p. Since by Corollary 4.3(4),
Sk+1/2(Γ0(4)) is contained in the p-eigenspace of Q̃p and so W̃p2Sk+1/2(Γ0(4))

is contained in the p-eigenspace of Q̃′p we have Q̃p(f) = pf = Q̃′p(f). Using

Q̃p =
(
−1
p

)k
p1−kUp2W̃p2 , we get that (Up2)2 = p2k−2Q̃pQ̃

′
p and thus

(Up2)2(f) = p2kf.

Since f 6= 0, there exists a square-free integer t such that the Shimura
lift Sht(f) 6= 0. Applying this Sht to the above equation we get that
(Up)

2(Sht(f)) = p2kSht(f). Since Sht commutes with all the Hecke oper-
ators we get that Sht(f) ∈ V(1). But by Lemma 6.3, the eigenvalues of
(Up)

2 on V(1) are either non-real or ±p2k−1 leading to a contradiction. �

Corollary 6.5. Niwa’s map ψ maps R⊕ W̃p2R isomorphically onto V(1).

Proof. As before (see Corollary 6.1(2)) ψ maps R ⊕ W̃p2R into V(1). It
follows from the equality of dimensions that the map is onto. �

Next we consider the following subspace of S2k(Γ0(2p)) coming from the
old forms at level 2,

V(2) = Snew
2k (Γ0(2))⊕ V (p)Snew

2k (Γ0(2)).

This space is a direct sum of two dimensional subspaces spanned by F and Fp
where F is a primitive Hecke eigenform in Snew

2k (Γ0(2)). Using Proposition 5.2
we have the following lemma.

Lemma 6.6. If an eigenvalue λ of (Up)
2 on V(2) is real then λ = ±p2k−1.

Since (by Theorem 5) ψ maps S−k+1/2(Γ0(4)) isomorphically onto Snew
2k (Γ0(2)),

it follows that ψ maps W̃p2S
−
k+1/2(Γ0(4)) into the space V(2). The proof of

the following is identical to that of Proposition 6.4.

Proposition 6.7. S−k+1/2(Γ0(4))
⋂
W̃p2S

−
k+1/2(Γ0(4)) = {0}.

Corollary 6.8. ψ maps S−k+1/2(Γ0(4)) ⊕ W̃p2S
−
k+1/2(Γ0(4)) isomorphically

onto V(2).

Finally, we consider the following subspace of S2k(Γ0(2p)) coming from
the old forms at level p,

V(p) = Snew
2k (Γ0(p))⊕ V (2)Snew

2k (Γ0(p)).

This space is a direct sum of two dimensional subspaces spanned by F and
F2 where F is a primitive Hecke eigenform in Snew

2k (Γ0(p)). We have

Lemma 6.9. If an eigenvalue λ of (U2)2 on V(p) is real then λ = ±22k−1.
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Let S+,new
k+1/2(Γ0(4p)) be the new space inside the plus space in Sk+1/2(Γ0(4p)).

Kohnen [6, Theorem 2] proved that ψ maps S+,new
k+1/2(Γ0(4p)) into V(p) and

the dimension of S+,new
k+1/2(Γ0(4p)) equals the dimension of Snew

2k (Γ0(p)). Then

as before ψ maps W̃4S
+,new
k+1/2(Γ0(4)) into V(p) and we have the following

proposition and corollary.

Proposition 6.10. S+,new
k+1/2(Γ0(4p))

⋂
W̃4S

+,new
k+1/2(Γ0(4p)) = {0}.

Corollary 6.11. ψ maps S+,new
k+1/2(Γ0(4p))⊕W̃4S

+,new
k+1/2(Γ0(4p)) isomorphically

onto V(p).

We define the following subspace of Sk+1/2(Γ0(4p)),

E := R⊕ W̃p2R ⊕ S−k+1/2(Γ0(4))⊕ W̃p2S
−
k+1/2(Γ0(4))

⊕ S+,new
k+1/2(Γ0(4p))⊕ W̃4S

+,new
k+1/2(Γ0(4p)).

By Corollary 6.5, 6.8 and 6.11, we get that ψ maps the space E isomorphi-
cally onto the old space Sold

2k (Γ0(2p)). We define the minus space to be the
orthogonal complement of E under the Petersson inner product. That is,

S−k+1/2(Γ0(4p)) := E⊥.

Theorem 6. S−k+1/2(Γ0(4p)) has a basis of eigenforms for all the operators
Tq2 where q is a prime coprime to 2p, uniquely determined up to scalar
multiplication. ψ maps the space S−k+1/2(Γ0(4p)) isomorphically onto the
space Snew

2k (Γ0(2p)).

Proof. Since the operators Tq2 with (q, 2p) = 1 stabilize the space E and since
they are self-adjoint with respect to the Petersson inner product, it follows
that they stabilize the space S−k+1/2(Γ0(4p)), hence S−k+1/2(Γ0(4p)) has a
basis of eigenforms for all such operators Tq2 . If f is such an eigenform then
ψ(f) ∈ S2k(Γ0(2p)) is also an eigenform for all the operators Tq, (q, 2p) = 1
and thus (by [1]) ψ(f) is either an old form or a newform. Since ψ is injective
and maps E onto Sold

2k (Γ0(2p)), it follows that ψ(f) is a newform. Thus ψ
maps the space S−k+1/2(Γ0(4p)) into the space Snew

2k (Γ0(2p)). By equality
of dimensions, we get that ψ maps the space S−k+1/2(Γ0(4p)) isomorphically
onto Snew

2k (Γ0(2p)). Consequently an eigenform in S−k+1/2(Γ0(4p)) is uniquely
determined up to multiplication by a scalar. �

Corollary 6.12. Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the

operators Tq2, q prime and (q, 2p) = 1. Then W̃p2f = β(p)f, W̃4f = β(2)f
where β(p) = ±1, β(2) = ±1.

Proof. Let g = W̃p2f . Since W̃p2 commutes with all the operators Tq2 for
(q, 2p) = 1 we get that g is an eigenform for all the operators Tq2 with the
same eigenvalues as f . Since ψ(f) is a newform, it follows by [1] that ψ(g)
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is a scalar multiple of ψ(f). Since ψ is an isomorphism we get that g is a
scalar multiple of f . Since W̃p2 is an involution we get that the scalar is ±1.
The same proof applies to W̃4. �

Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators Tq2 as
above. It follows that F := ψ(f) is a Hecke eigenform in Snew

2k (Γ0(2p)) for
all the operators Tq, (q, 2p) = 1. Since the Shimura lift Sht(f) is also an
eigenform for all the operators Tq with the same eigenvalues as F , it follows
from [1] that Sht(f) is a scalar multiple of F (which could be zero). Also,
Up(F ) = −pk−1λ(p)F where λ(p) = ±1 and U2(F ) = −2k−1λ(2)F where
λ(2) = ±1.

Proposition 6.13. Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the
operators Tq2, q prime and (q, 2p) = 1. Then

Up2(f) = −pk−1λ(p)f, U4(f) = −2k−1λ(2)f

where λ(p) = ±1 and λ(2) = ±1 are defined as above.

Proof. Let g = Up2f . Then Sht(g) = UpSht(f) = −pk−1λ(p)Sht(f) for every
positive square-free integer t. It follows that Sht(g − pk−1λ(p)f) = 0 for all
such t implying g − pk−1λ(p)f = 0 which is what we need. For the prime 2,
the proof is the same. �

Proposition 6.14. Let f ∈ S−k+1/2(Γ0(4p)). Then Q̃p(f) = −f = Q̃′p(f)

and Q̃2(f) = −f = Q̃′2(f).

Proof. Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators Tq2 ,

(q, 2p) = 1. Since Q̃p =
(
−1
p

)k
p1−kUp2W̃p2 and Q̃2 = 21−kU4W̃4 it follows

from Corollary 6.12 and Proposition 6.13 that f is an eigenform for the
operators Q̃p, Q̃′p, Q̃2 and Q̃′2 with eigenvalues ±1. However, the eigenvalues
of Q̃p, Q̃′p are p and −1 and the eigenvalues of Q̃2 and Q̃′2 are 2 and −1

hence the eigenvalues have to be −1. Since S−k+1/2(Γ0(4p)) has a basis of
such eigenforms we get the result. �

Theorem 7. Let f ∈ Sk+1/2(Γ0(4p)). Then f ∈ S−k+1/2(Γ0(4p)) if and only

if Q̃p(f) = −f = Q̃′p(f) and Q̃2(f) = −f = Q̃′2(f).

Proof. If f ∈ S−k+1/2(Γ0(4p)) then by Proposition 6.14 the conditions hold.
Now assume that f ∈ Sk+1/2(Γ0(4p)) is in the intersection of −1-eigenspaces
of Q̃p, Q̃′p, Q̃2 and Q̃′2. For every g ∈ Sk+1/2(Γ0(4)) we have Q̃p(g) = pg.
Since Q̃p is self-adjoint,

−〈f, g〉 = 〈Q̃pf, g〉 = 〈f, Q̃pg〉 = p〈f, g〉
implying 〈f, g〉 = 0. Thus f is orthogonal to R ⊕ S−k+1/2(Γ0(4)). For every

g ∈ W̃p2Sk+1/2(Γ0(4)) we have Q̃′p(g) = pg and the same argument shows
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that 〈f, g〉 = 0 implying f is orthogonal to W̃p2(R ⊕ S−k+1/2(Γ0(4))). Since

Kohnen’s plus space is the 2-eigenspace of Q̃′2, for g ∈ S
+,new
k+1/2(Γ0(4p)) we have

Q̃′2(g) = 2g, consequently for g ∈ W̃4S
+,new
k+1/2(Γ0(4p)) we have Q̃2(g) = 2g.

Hence 〈f, g〉 = 0 for such g, that is, f is orthogonal to S+,new
k+1/2(Γ0(4p)) ⊕

W̃4S
+,new
k+1/2(Γ0(4p)). It follows that f ∈ S−k+1/2(Γ0(4p)). �

6.3. Minus space for Γ0(4M) for M odd and square-free. Let M 6= 1
be an odd and square-free natural number. Write M = p1p2 · · · pk. For each
i = 1, . . . k let Mi = M/pi. Since Sk+1/2(Γ0(4Mi)) is contained in the pi-
eigenspace of Q̃pi (Corollary 4.3(4)), following the proof of Proposition 6.4
we obtain that

Proposition 6.15. Sk+1/2(Γ0(4Mi))
⋂
W̃p2i

Sk+1/2(Γ0(4Mi)) = {0}.

Corollary 6.16. The Niwa map ψ : Sk+1/2(Γ0(4M))→ S2k(Γ0(2M)) maps
Sk+1/2(Γ0(4Mi))⊕W̃p2i

Sk+1/2(Γ0(4Mi)) isomorphically onto S2k(Γ0(2Mi))⊕
V (pi)S2k(Γ0(2Mi)).

Let S+,new
k+1/2(Γ0(4M)) be the new space inside the Kohnen plus subspace of

Sk+1/2(Γ0(4M)). Then similarly we have

Proposition 6.17. S+,new
k+1/2(Γ0(4M))

⋂
W̃4S

+,new
k+1/2(Γ0(4M)) = {0}.

Corollary 6.18. ψ maps S+,new
k+1/2(Γ0(4M))⊕W̃4S

+,new
k+1/2(Γ0(4M)) isomorphi-

cally onto Snew
2k (Γ0(M))⊕ V (2)Snew

2k (Γ0(M)).

We let Bi = Sk+1/2(Γ0(4Mi))⊕ W̃p2i
Sk+1/2(Γ0(4Mi)), i = 1, . . . k. Define

E :=
k∑
i=1

Bi ⊕ S+,new
k+1/2(Γ0(4M))⊕ W̃4S

+,new
k+1/2(Γ0(4M)).

Proposition 6.19. Under ψ the space E maps isomorphically onto the old
space Sold

2k (Γ0(2M)).

Proof. This follows from Corollary 6.16 and 6.18 and from the decomposition

Sold
2k (Γ0(2M)) =

(
k∑
i=1

S2k(Γ0(2Mi))⊕ V (pi)S2k(Γ0(2Mi))

)
⊕

(Snew
2k (Γ0(M))⊕ V (2)Snew

2k (Γ0(M))) .

�

We now define the minus space to be the orthogonal complement of E,
under the Petersson inner product, that is,

S−k+1/2(Γ0(4M)) := E⊥.
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Let f ∈ S−k+1/2(Γ0(4M)) be a Hecke eigenform for all the operators Tq2 where
q is an odd prime satisfying (q,M) = 1. Let ψ(f) = F . The proofs of the
following results are identical to the proofs in the previous subsections.

Proposition 6.20. F is up to a scalar a primitive Hecke eigenform in
Snew2k (Γ0(2M)).

Theorem 8. The space S−k+1/2(Γ0(4M)) has a basis of eigenforms for all the
operators Tq2 where q is an odd prime satisfying (q,M) = 1. Under ψ, the
space S−k+1/2(Γ0(4M)) maps isomorphically onto the space Snew

2k (Γ0(2M)). If
two forms in S−k+1/2(Γ0(4M)) have the same eigenvalues for all the operators
Tq2, (q, 2M) = 1, then they are same up to a scalar factor.

In particular the minus space S−k+1/2(Γ0(4M)) has strong multiplicity one
property in the full space, that is, if f1 and f2 are Hecke eigenforms in
Sk+1/2(Γ0(4M)) with the same eigenvalues for all Tq2 , (q, 2M) = 1 and if f1

is a nonzero element of the minus space S−k+1/2(Γ0(4M)) then f2 is a scalar
multiple of f1.

Remark 6. Our results in Theorem 5, 7 and 8 give an another proof of
Theorem 5 of [9]. We note that in [9] the old space is defined using the op-
erators Up2 for p | 2M while our definition uses Atkin-Lehner type operators
W̃p2. The operators Up2, W̃p2 and Q̃p come from the local Hecke algebra ele-
ment corresponding to the double cosets of (h(p), 1), (w(p−1), 1) and (w(1), 1)
respectively and our proofs essentially depend on relations among these op-
erators that we derive from the local Hecke algebra. Since S+(4) is the 2-
eigenspace of Q̃′2 we indeed have S+(4) = Q̃′2S

+(4) = W̃4U4S
+(4) which im-

plies equality of spaces, U4S
+(4) = W̃4S

+(4) = A+(4). Thus U4W̃4A
+(4) =

A+(4). However U4A
+(4) need not equal S+(4) as noted in Example 2 in

the next subsection. In the case of odd primes pi dividing M the space
Sk+1/2(Γ0(4Mi)) is contained in the pi-eigenspace of Q̃pi , which in particu-
lar implies that Up2i W̃p2i

S−k+1/2(Γ0(4Mi)) = S−k+1/2(Γ0(4Mi)), but as before

we do not expect the spaces Up2iS
−
k+1/2(Γ0(4Mi)) and W̃p2i

S−k+1/2(Γ0(4Mi)) to
be equal inside Sk+1/2(Γ0(4M)). We illustrate this by the following reasoning
which needs to be proved. Consider the simple case M = 4p, p an odd prime.
In this case if Up2S−(4) = W̃p2S

−(4) then the corresponding picture in the
integral weight should be UpSnew

2k (Γ0(2)) = WpS
new
2k (Γ0(2)) = VpS

new
2k (Γ0(2))

(where the last equality was shown in [2]). If Snew
2k (Γ0(2)) is non-zero then the

action of Up (see Lemma 5.1) and the fact that Snew
2k (Γ0(2))∩VpSnew

2k (Γ0(2)) =
{0} leads to a contradiction. Since representation theoretically A+(4) corre-
sponds to S2k(Γ0(1)) using the same reasoning we do not expect the spaces
U4A

+(4) and S+(4) to be equal.

Let f ∈ S−k+1/2(Γ0(4M)) be a Hecke eigenform for all the operators Tq2 ,
(q, 2M) = 1. Then ψ(f) = F is a Hecke eigenform in Snew

2k (Γ0(2M)) for
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all operators Tq, (q, 2M) = 1. By [1], for all primes p such that p|M ,
Up(F ) = −pk−1λ(p)F where λ(p) = ±1 and U2(F ) = −2k−1λ(2)F where
λ(2) = ±1.

Proposition 6.21. Let f ∈ S−k+1/2(Γ0(4M)) be a Hecke eigenform for all
the operators Tq2, q prime, (q, 2M) = 1. Then for all primes p such that
p|M

Up2(f) = −pk−1λ(p)f and U4(f) = −2k−1λ(2)f

where λ(p) = ±1 and λ(2) = ±1 are defined as above.

Following [14, Theorem 1.9] we have

Corollary 6.22. Let f =
∑∞

n=0 anq
n ∈ S−k+1/2(Γ0(4M)) be a Hecke eigen-

form for all Hecke operators, i.e, Tq2(f) = ωqf for all primes (q, 2M) =
1 and Up2(f) = ωpf for all primes p | 2M . Let F =

∑∞
n=0Anq

n ∈
Snew

2k (Γ0(2M)) be the unique normalized primitive form determined by f ,
i.e. Ap = ωp for all primes p. Then for a fundamental discriminant D such
that (−1)kD > 0,

L

(
s− k + 1,

(
D

·

)) ∞∑
n=1

a|D|n2 n−s = a(|D|)
∞∑
n=1

Ann
−s.

We finally give the characterization of our minus space. The proofs of the
following proposition and theorem are as before.

Proposition 6.23. Let f ∈ S−k+1/2(Γ0(4M)). Then for every prime p di-

viding M we have Q̃p(f) = −f = Q̃′p(f) and Q̃2(f) = −f = Q̃′2(f).

Theorem 9. Let f ∈ Sk+1/2(Γ0(4M)). Then f ∈ S−k+1/2(Γ0(4M)) if and

only if Q̃p(f) = −f = Q̃′p(f) for every prime p dividing M and Q̃2(f) =

−f = Q̃′2(f).

6.4. Some examples. We complete this section by giving two examples.
For simplicity we shall denote plus and minus spaces S+

k+1/2(Γ0(4M)) and
S−k+1/2(Γ0(4M)) by S+

k+1/2(4M) and S−k+1/2(4M).
We shall use Shimura decomposition [15] and we recall the following nota-

tion: for a primitive Hecke eigenform F of weight 2k and level dividing 2M ,
Sk+1/2(4M,F ) denotes the subspace of Sk+1/2(Γ0(4M)) consisting of forms
that are Shimura-equivalent to F (i.e., forms f that are eigenforms under
Tp2 with the same eigenvalues as F under Tp for almost all odd primes p
coprime to M).

Example 1. The space S3/2(Γ0(28)) is one dimensional and is spanned by

f = q − q2 − q4 + q7 + q8 − q9 + q14 − 2q15 + q16 + 3q18 − 2q21 + . . .
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Then by Shimura decomposition,

S3/2(Γ0(28)) =
⊕

F∈Snew
2 (Γ0(M))

prim., M |14

S3/2(28, F ) = S3/2(28, F14)

as there are no primitive Hecke eigenforms of weight 2 at level 1, 2, 7 and
F14 ∈ Snew

2 (Γ0(14)) is the only primitive Hecke eigenform at level 14. In
particular, we have S+

3/2(28) = {0} and S−3/2(28) = S3/2(Γ0(28)) = 〈f〉.

Example 2. The space S17/2(Γ0(12)) is 13-dimensional. We first give the
Shimura decomposition of S17/2(Γ0(12)). We note that there are seven prim-
itive Hecke eigenforms of weight 16 and level dividing 6, namely, F1 of level
1, G2 of level 2, H3, K3 of level 3 each and L6, M6, N6 each of level 6. Using
Shimura decomposition algorithm in [12] we have

S17/2(Γ0(12)) = S17/2(12, F1)⊕ S17/2(12, G2)⊕ S17/2(12, H3)⊕ S17/2(12,K3)

⊕ S17/2(12, L6)⊕ S17/2(12,M6)⊕ S17/2(12, N6),
(8)

where S17/2(12, F1) is the 4-dimensional space spanned by

f1 = q + 88q4 + 513q9 + 3024q12 − 4368q13 − 13760q16 + 33264q21 + · · ·
f2 = 11q2 + 64q4 + 232q7 − 1408q8 + 4608q9 + 190q10 − 6578q11 + · · ·
f3 = 9q3 − 64q4 + 189q6 − 232q7 − 190q10 + 1152q12 − 3328q13 + · · ·
f4 = q5 − 11q8 + 18q9 − 9q12 − 116q17 + 344q20 − 99q621 − 189q24 + · · · ;

the space S17/2(12, G2) is 2-dimensional and is spanned by

g1 = q + 21q3 − 128q4 − 609q6 + 3192q7 + 5313q9 − 12810q10 + · · ·
g2 = 3q2 + 7q3 − 203q6 − 384q8 − 416q9 + 2706q11 − 896q12 + · · · ;

the space S17/2(12, H3) is 2-dimensional and is spanned by

h1 = q5 + 7q8 − 27q12 − 80q17 + 56q20 + 189q21 + 81q24 + 231q29 + · · ·
h2 = 7q2 − 27q3 + 81q6 − 896q8 + 854q11 + 3456q12 − 1876q14 + · · · ;

the space S17/2(12,K3) is 2-dimensional and is spanned by

k1 = q − 362q4 − 2187q9 − 11826q12 + 19032q13 + 51940q16 + · · ·
k2 = 1971q3 + 13184q4 + 31266q6 − 20158q7 + 271340q10 + · · · ;

the last three summands in (8) are 1-dimensional each with S17/2(12, L6)
spanned by

l1 = 13q2 + 129q3 + 736q5 + 1323q6 + 1664q8 + 5918q11 + 16512q12 + · · · ;

the space S17/2(12,M6) spanned by

m1 = q3−18q6−42q7−12q10+128q12+384q13−126q15−1074q19+896q21+· · · ;



44 EHUD MOSHE BARUCH AND SOMA PURKAIT

and the space S17/2(12, N6) spanned by

n1 = 16q − 1539q3 − 2048q4 − 5994q6 − 50178q7 − 34992q9 − 2460q10 + · · · .
We can also check (using bound in [7]) that the Kohnen’s plus space S+

17/2(12)

is 4-dimensional. Indeed

S+
17/2(12) = 〈f1, f4, h1, k1〉 = S+

17/2(4)⊕ W̃9S
+
17/2(4)⊕ S+,new

17/2 (12)

with S+
17/2(4) = 〈f1 − 336f4〉 and S+,new

17/2 (12) = 〈h1, k1〉. Note that from
Remark 6, A+

17/2(4) = U4(S+
17/2(4)), so A+

17/2(4) = 〈U4(f1−336f4)〉 = 〈88f1+

336f2 + 672f3 − 115584f4〉 and S−17/2(4) = 〈g1 + 3g2〉 (again we use Shimura
decomposition algorithm to get the explicit forms in S+

17/2(4) and S−17/2(4)).
One can further check that U4(A+

17/2(4)) does not equal S+
17/2(4), indeed

A+
17/2(4) is spanned by a form with q-expansion given by

88q+3696q2+6048q3−13760q4−115584q5+127008q6−77952q7+798336q8+· · ·
and so

U4(A+
17/2(4)) = 〈−13760q + 798336q2 + 1306368q3 − 5855744q4 + · · · 〉

which is clearly not equal to S+
17/2(4).

Thus we have

S17/2(12, F1) = R⊕ W̃9R where R = S+
17/2(4)⊕A+

17/2(4),

S17/2(12, G2) = S−17/2(4)⊕ W̃9S
−
17/2(4),

S17/2(12, H3)⊕ S17/2(12,K3) = S+,new
17/2 (12)⊕ W̃4S

+,new
17/2 (12)

and

S17/2(12, L6)⊕ S17/2(12,M6)⊕ S17/2(12, N6) = 〈l1, m1, n1〉 = S−17/2(12).

Remark 7. (i) In general, S−k+1/2(Γ0(4M)) =
⊕

F Sk+1/2(4M,F ) where F
runs through all primitive Hecke eigenforms of weight 2k and level 2M .
(ii) The Kohnen plus space is given by a well-known Fourier coefficient con-
dition. But we do not expect any such Fourier coefficient condition for forms
in our minus space as is also evident from the above examples. We note
that in [17], Ueda and Yamana define generalized Kohnen plus space of level
8M and show that the newspace inside this plus space is Hecke isomorphic to
Snew

2k (Γ0(2M)). In [3], we obtain a self-adjoint involution on Sk+1/2(Γ0(8M))

coming from an element in a certain 2-adic Hecke algebra of S̃L2 of level 8

that is not inside the corresponding 2-adic Hecke algebra of S̃L2 of level 4.
We observe that the plus space defined by Ueda-Yamana is precisely the +1-
eigenspace of this involution and that their plus newspace is a “conjugate” of
S−k+1/2(Γ0(4M)). We define the minus space at level 8M and show that this
space is contained inside the −1-eigenspace of the involution and hence satisfy
a Fourier coefficient condition that is exactly opposite to the Kohnen’s plus
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space Fourier coefficient condition. Since this involution on Sk+1/2(Γ0(8M))
does not preserve the space Sk+1/2(Γ0(4M)), we do not expect Fourier coef-
ficient condition for S−k+1/2(Γ0(4M)). For more details, please refer to [3].

Appendix A. Some observations on cocycle multiplication

Let p denote any prime. In this appendix we note down some useful
observations on the multiplication in S̃L2(Qp) by cocycle σp.

Recall the Hilbert symbol (·, ·)p defined on Q×p ×Q×p . For an odd prime p
it can be given by the following formula: For a, b coprime to p,

(
psa, ptb

)
p

=

(
−1

p

)st(a
p

)t( b
p

)s
.

Thus (p, p)p =
(
−1
p

)
and (−p, u)p = (p, u)p =

(
u
p

)
where u is a unit in Zp.

For the prime 2, if a, b are odd, then

(
2sa, 2tb

)
2

= (−1)
(a−1)(b−1)

4

(
2

|a|

)t( 2

|b|

)s
.

Let A =

(
a b
c d

)
∈ SL2(Qp). For (A, ε1) ∈ S̃L2(Qp), (A, ε1)−1 =

(A−1, ε1σp(A,A
−1)) where

(i) If c = 0 then σp(A,A−1) = (a, a)p = (d, d)p.
(ii) If c 6= 0 and ordp(c) is even then σp(A,A−1) = 1.
(iii) If c 6= 0 and ordp(c) is odd then

σp(A,A
−1) =


(c, d)p (−c, a)p if d 6= 0, a 6= 0

(c, d)p if d 6= 0, a = 0

(−c, a)p if d = 0, a 6= 0

1 if d = 0, a = 0.

In particular if A ∈ {x(pn), y(pn), w(pn)}n∈Z, then σp(A,A
−1) = 1. For

A = h(pn) with n ∈ Z, if p = 2 then σp(A,A−1) = 1, however if p is an odd
prime then

σp(A,A
−1) =

{
1 if n even,(
−1
p

)
else.

Let (A, ε1), (B, ε2) ∈ S̃L2(Qp). The following lemmas can be easily
obtained using the cocycle formula.

Lemma A.1. We have [(B, ε2)−1, (A, ε1)−1] = (B−1A−1BA, ξ) where
ξ = σp(A,A

−1)σp(B,B
−1)σp(B,A)σp(A

−1, BA)σp(B
−1, A−1BA).
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Lemma A.2. The σp-factor (ξ factor above) of [(B, ε2)−1, (A, ε1)−1] equals
the product(
τ(B), τ(B−1)

)
p
·
(
τ(A), τ(A−1)

)
p
·
(
τ(BA)τ(B), τ(BA)τ(A)

)
p

·
(
τ(A−1BA)τ(A−1), τ(A−1BA)τ(BA)

)
p

·
(
τ(B−1A−1BA)τ(B−1), τ(B−1A−1BA)τ(A−1BA)

)
p
· sp(B−1A−1BA).

In the proofs for checking the support of our local Hecke algebra (section
3) we need the following lemma.

Lemma A.3. Let A =

(
a b
c d

)
∈ SL2(Qp). Then

(a) If B = x(s) where s 6= 0, then σp-factor is{(
−sc2, 1− cds

)
p

if sc2(1− cds) 6= 0 and ordp(s) is odd,
1 else.

(b) If B = h(u) where u 6= ±1, then σp-factor is
(
ac(1− u2), 1 + (1− u2)bc

)
p

if ac(1−u2)(1+(1−u2)bc) 6= 0
and ordp(ac(1− u2)) is odd,

1 else.

(c) If B = y(t) where t 6= 0, then σp-factor is
(
(a2 − 1)t+ abt2, 1 + abt+ b2t2

)
p

if ((a2−1)t+abt2)(1+abt+b2t2) 6= 0
and ordp((a

2 − 1)t+ abt2) is odd,
1 else.

In each of the above cases the σp-factor is simply sp(B−1A−1BA).

Proof. For (a) let B = x(s) where s 6= 0. Then we have

BA =

(
a+ sc b+ sd
c d

)
, A−1BA =

(
1 + cds sd2

−sc2 1− cds

)
,

B−1A−1BA =

(
1 + cds+ s2c2 sd2 − s+ cds2

−sc2 1− cds

)
.

It is easy to see that
(
τ(B), τ(B−1)

)
p

= 1 and that(
τ(A), τ(A−1)

)
p

=
(
τ(A−1BA)τ(A−1), τ(A−1BA)τ(BA)

)
p

=

{
1 if c 6= 0

(d, a)p else.
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Further, one can check that
(
τ(BA)τ(B), τ(BA)τ(A)

)
p

= 1 and also(
τ(B−1A−1BA)τ(B−1), τ(B−1A−1BA)τ(A−1BA)

)
p

= 1.

Finally we have sp(B−1A−1BA)

=

{(
−sc2, 1− cds

)
p

if sc2(1− cds) 6= 0 and ordp(s) is odd,
1 else.

By using Lemma A.2, multiplying all the above terms we get the required
σp-factor.

For (b) we proceed similarly. Let B = h(u) where u 6= ±1. Then

BA =

(
ua ub
u−1c u−1d

)
, A−1BA =

(
uad− u−1bc bd(u− u−1)
ac(u−1 − u) u−1ad− ubc

)
,

B−1A−1BA =

(
1 + (1− u−2)bc bd(1− u−2)
ac(1− u2) 1 + (1− u2)bc

)
.

We have
(
τ(B), τ(B−1)

)
p

=
(
u, u−1

)
p
. Also,

(
τ(A), τ(A−1)

)
p

= 1 if

c 6= 0 and (d, a)p else. We check that(
τ(BA)τ(B), τ(BA)τ(A)

)
p

=

{(
c, u−1

)
p

if c 6= 0(
d, u−1

)
p

else,(
τ(A−1BA)τ(A−1), τ(A−1BA)τ(BA)

)
p

=


(
−a(u−1 − u), u−1

)
p

if ac 6= 0

(bu,−b)p if a = 0 and c 6= 0(
du−1, a

)
p

if a 6= 0 and c = 0,(
τ(B−1A−1BA)τ(B−1), τ(B−1A−1BA)τ(A−1BA)

)
p

=


(
ac(u−1 − u), u−1

)
p

if ac 6= 0

(bc, u)p = (−1, u)p if a = 0 and c 6= 0

(−ad, u)p if a 6= 0 and c = 0,

and sp(B−1A−1BA) =
(
ac(1− u2), 1 + (1− u2)bc

)
p

if ac(1−u2)(1+(1−u2)bc) 6= 0
and ordp(ac(1− u2)) is odd,

1 else.

Again by multiplying all the above terms we get the required σp-factor.
For (c), let B = y(t) where t 6= 0. Then

BA =

(
a b

at+ c bt+ d

)
, A−1BA =

(
1− abt −b2t
a2t 1 + abt

)
,
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B−1A−1BA =

(
1− abt −b2t

(a2 − 1)t+ abt2 1 + abt+ b2t2

)
.

As before,
(
τ(B), τ(B−1)

)
p

= (t,−t)p = 1, and
(
τ(A), τ(A−1)

)
p

= 1 if

c 6= 0 and (d, a)p else. One can compute (using ad − bc = 1 in the Hilbert
symbol calculations) that

(
τ(BA)τ(B), τ(BA)τ(A)

)
p

=


(t(at+ c),−ct)p if a 6= −c/t and c 6= 0

(−c, a)p if a = −c/t and c 6= 0

(a,−dt)p if c = 0,

and(
τ(A−1BA)τ(A−1), τ(A−1BA)τ(BA)

)
p

=


(t(at+ c),−ct)p if a 6= −c/t and c 6= 0 and a 6= 0

1 if a 6= −c/t and c 6= 0 and a = 0

(−c, a)p if a = −c/t and c 6= 0

(a, at)p if c = 0.

All the above factors clearly multiply to 1. Also, it turns out that(
τ(B−1A−1BA)τ(B−1), τ(B−1A−1BA)τ(A−1BA)

)
p

= 1,

so we get the required σp-factor. �

We also note the triangular decomposition of Kp
0 (pn).

Lemma A.4. We have a triangular decomposition

Kp
0 (pn) = NKp

0 (pn)TK
p
0 (pn)N̄Kp

0 (pn).

More precisely for (A, ε) = (

(
a b
c d

)
, ε) ∈ Kp

0 (pn),

(A, ε) = (x(s), 1)(h(u), 1)(y(t), 1)(I, εδ)

where
u = d−1, s = d−1b, t = d−1c,

and

δ =


1 c = 0

(d,−1)p c 6= 0, ordp(c) is odd
(−c, d)p c 6= 0, ordp(c) is even.

Proof. Clearly (
a b
c d

)
=

(
1 bd−1

0 1

)(
d−1 0
0 d

)(
1 0

cd−1 1

)
.
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Let u = d−1, s = bd−1, t = cd−1. Since

x(s)h(u)y(t) =

(
u su−1

0 u−1

)(
1 0
t 1

)
=

(
u+ su−1t su−1

tu−1 u−1

)
,

we get that

(x(s), 1)(h(u), 1)(y(t), 1) = (x(s)h(u)y(t), δ) = (A, δ)

where

δ = σ(x(s), h(u))σ(x(s)h(u), y(t)) =


1 t = 0

(u,−1)p t 6= 0, ordp(t) is odd
(t, u)p t 6= 0, ordp(t) is even.

Substituting u, s, t in terms of b, c, d we get δ as in the statement. �

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970),
134–160.

[2] E. M. Baruch and S. Purkait, Hecke algebras, new vectors and newforms on Γ0(m),
Math. Zeit. 287 (2017), 705–733.

[3] E. M. Baruch and S. Purkait, Newforms of half-integral weight: the minus space of
Sk+1/2(Γ0(8M)), to appear in Israel J. Math.

[4] S. Gelbart, Weil’s representation and the spectrum of the metaplectic group, Lecture
Notes in Math. 530, Springer, Berlin, 1976.

[5] W. Kohnen, Modular forms of half-integral weight on Γ0(4), Math. Ann. 248 (1980),
249–266.

[6] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982),
32–72.

[7] N. Kumar, S. Purkait, A note on the Fourier coefficients of half-integral weight modular
forms, Arch. Math. (Basel) 102 (2014), no. 04, 369–378.

[8] H. Y. Loke and G. Savin, Representations of the two-fold central extension of SL2(Q2),
Pacific J. Math. 247 (2010), 435–454.

[9] M. Manickam, B. Ramakrishnan, T. Vasudevan, On the theory of newforms of half-
integral weight, J. Number Theory 34 (1990), 210–224.

[10] S. Niwa, On Shimura’s trace formula, Nagoya Math. J. 66 (1977), 183–202.
[11] S. Purkait, On Shimura’s decomposition, Int. J. Number Theory 9 (2013), 1431-1445.
[12] S. Purkait, Hecke operators in half-integral weight, J. Théor. Nombres Bordeaux 26
(2014), 233–251.

[13] G. Savin, On unramified representations of covering groups, J. Reine Angew. Math.
566 (2004), 111–134

[14] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973),
440–481.

[15] G. Shimura, The critical values of certain zeta functions associated with modular
forms of half-integral weight, J. Math. Soc. Japan 33 (1981), 649–672.

[16] M. Ueda, On twisting operators and newforms of half-integral weight, Nagoya Math
J. 131 (1993), 135–205.

[17] M. Ueda and S. Yamana, On newforms for Kohnen plus spaces, Math. Z. 264 (2010),
1–13.

[18] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids
demi-entier, J. Math. Pures Appl. (9) 60 (1981), 375–484.



50 EHUD MOSHE BARUCH AND SOMA PURKAIT

Department of Mathematics, Technion, Haifa , 32000, Israel
E-mail address: embaruch@math.technion.ac.il

Department of Mathematics, Tokyo Institute of Technology, Japan
E-mail address: somapurkait@gmail.com


