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Abstract We characterize the space of new forms for �0(m) as a common eigenspace of
certain Hecke operators which depend on primes p dividing the level m. To do that we find
generators and relations for a p-adic Hecke algebra of functions on K = GL2(Zp). We
explicitly find the n + 1 irreducible representations of K which contain a vector of level n
including the unique representation that contains the “new vector” of level n. After translating
the p-adic Hecke operators that we obtain into classical Hecke operators we obtain the results
about the new space mentioned above.
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1 Introduction

The theory of Hecke operators and new forms of integer weight for �0(m) was developed
by Atkin and Lehner for the case of trivial central character [1] and by Atkin–Lehner–Li–
Miyake for arbitrary central characters [1,9,11]. Atkin and Lehner define Hecke operators
Tq for primes q not dividing m and operators Up for primes p dividing m. They define the
new space of cusp forms on �0(m) as the space orthogonal under the Petersson inner product
to all the old forms on �0(m) which are forms that come from lower levels m′ dividing m.
They show that all the Hecke operators stabilize the new space, that they commute and are
diagonalizable. Further, there is a common basis of eigenforms where each eigenspace is one
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dimensional and spanned by a primitive eigenform, a form whose first Fourier coefficient
is one. A basic tool in the discussion is a certain involution on the whole space called the
Atkin–Lehner involution. Atkin and Lehner remark that the definition of the new space as
an orthogonal complement does not give enough information on this space. In this paper
we will show how to characterize the new space using eigenvalues of Hecke operators. In
particular when a prime p divides m or p2 divides m but p3 does not divide m we will use a
certain product of the Atkin–Lehner involution and the operatorUp . When p3 dividesm, the
information on the new space can not be obtained using the operators considered by Atkin
and Lehner and we will introduce a family of Hecke operators which ”capture” the various
spaces of old forms on �0(m).

In their remarkable work, Niwa [13] and Kohnen [7] considered an operator Q, a certain
product of classical Hecke operators, on the space of half-integral weight modular forms of
level 4. Kohnen defined the plus space to be a particular eigenspace of this operator. Loke
and Savin [10] interpreted Kohnen’s definition representation theoretically in the context of
a Hecke algeba for the double cover of SL2(Q2) and used this Hecke algebra to classify the
representations that contain maximal level vectors fixed by a certain congruence subgroup.
Using similar methods we will study a Hecke algebra of functions on GL2(Qp) which are
compactly supported and bi-invariant with respect to an open compact subgroup K0(pn)
which is defined below. In the case n = 1, this is the usual Iwahori Hecke algebra and has a
well-known presentation by generators and relations. For n ≥ 2, we will restrict our study
to a subalgebra of the above Hecke algebra consisting of functions that are supported on
K = GL2(Zp). We will find generators and relations for this subalgebra and show that it is
commutative. Casselman [3,4] showed that there is a unique irreducible representation of K
which contains a K0(pn) fixed vector but does not contain a K0(pk) fixed vector for k < n.
Such a vector is called a new vector. Casselman [3] showed that every irreducible admissible
representation of GL(2, F) where F is a p-adic field contains a unique new vector of min-
imal level. Schmidt [14] used the classification of irreducible admissible representations of
GL(2, F) to describe the new vectors in these representations.Wewill use the relations in the
subalgebra mentioned above to study the finite dimensional representations of K containing
a K0(pn) fixed vector and thereby explicitly describe Casselman’s new vectors in terms of
Hecke algebra elements. Using our Hecke algebras we will construct classical Hecke oper-
ators that are needed to classify the new space. We view our paper as a connection between
the theory of new vectors described by Casselman and the theory of newforms by Atkin and
Lehner.

Our work is motivated by the results of Niwa, Kohnen and Loke and Savin mentioned
above on the Shimura correspondence. In particular, the work of Kohnen on the Kohnen
plus space showed that the definition of a subspace of half-integral weight modular forms
as an eigenspace of a Hecke operator was essential in studying the Shimura correspondence
and has many applications. The work of Loke and Savin gave a representation theoretical
interpretation of this definition and opened the way to the study of such subspaces in a
more general context. In our recent work [2] on half-integral weight modular forms we
apply this approach to extend the work of Kohnen [8] on the plus space to another space
of half-integral weight forms which we call the minus space. This space is a subspace of
cuspidal modular forms of weight k + 1/2 and level 4M where M is odd and square-free
and it is defined as a common eigenspace of 2l Hecke operators where l is the number of
primes in the decomposition of 2M . The motivation for defining this subspace comes from
Theorem 1 below where we characterize the new space of level N = 2M (or general N
square-free) as the common eigenspace of 2l Hecke operators. Moreover, we show in [2] that
our minus space is isomorphic to the space of newforms of weight 2k and level 2M under
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the Shimura-Niwa correspondence. Thus the minus space complements Kohnen’s plus new
space at level 4M , giving a counterpart of Kohnen’s newform theory of half-integral weight.
We are certain that our more general description of the space of new forms of any level N
in this paper will allow to define similar subspaces of half-integral weight forms and also
play a role in the representation theory of integral and half-integral weight forms via the
Waldspurger correspondence.

2 The main results

Let S2k(�0(m)) be the space of cusp forms of weight 2k on �0(m). The space of old forms
Sold2k (�0(m)) is defined to be the space spanned by all the forms f (lz)where f ∈ S2k(�0(m1))

and l, m1 ∈ N, with lm1|m and m1 �= m. The space of new forms Snew2k (�0(m)) is the space
orthogonal to the space of old forms under the Petersson inner product. Let GL2(R)+ be the
group of 2 × 2 real matrices with positive determinant and H be the upper half plane. For

g =
(
a b
c d

)
∈ GL2(R)+ and z ∈ H define

j (g, z) = det (g)−1/2(cz + d),

and for functions f on H define the slash operator |2kg by

f |2kg = j (g, z)−2k f

(
az + b

cz + d

)
.

Let p be a prime dividing m. Assume that pn |m and pn+1
� m, we denote this by pn‖m. We

define the following operators:

Ũp( f )(z) = p−k
p−1∑
s=0

f ((z + s)/p),

Wpn ( f )(z) = f |2k
(
pnβ 1
mγ pn

)
(z) where p2nβ − mγ = pn .

Let m = pnm′ with p � m′ and n ≥ 2. We fix j such that 1 ≤ j ≤ n − 1. Let

L j ( f ) =
∑

s∈(Z/pn− jZ)∗
f |2k As

where As ∈ SL2(Z) is any matrix of the form

(
as bs

p jm′ pn− j − sm′
)
. In this case we define

for 1 ≤ r ≤ n − 1 the operators

Spn ,r = I +
n−1∑
j=r

L j .

We also define

S′
pn ,r = Wpn Spn ,rW

−1
pn .

Remark 1 (i) The operator Ũp is denoted byU∗
p = p1−kUp in Atkin and Lehner [1, Lemma

14] where Up is the usual Hecke operator, sometimes also denoted as Tp [12]. The
operator Wpn is the usual Atkin–Lehner involution [1].
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(ii) The operators Spn ,r that are defined in the case n ≥ 2 did not appear in [1]. Despite
their complicated form, these operators come naturally from the local Hecke algebra. We
will see later that the operator L j above comes from the characteristic function of the

double coset K0(pn)
(

1 0
p j 1

)
K0(pn) and that Spn ,r satisfies a simple quadratic relation:

Spn ,r (Spn ,r − pn−r ) = 0.

Our main theorems characterize the space of new forms as a common eigenspace of above
defined operators:

Theorem 1 Let N be a square-free positive number. For any prime p | N, let Q p = ŨpWp

and Q′
p = WpŨp. Then the space of new forms Snew2k (�0(N )) is the intersection of the −1

eigenspaces of Q p and Q′
p as p varies over the primedivisors of N . That is, f ∈ Snew2k (�0(N ))

if and only if Q p( f ) = − f = Q′
p( f ) for all primes p | N.

Theorem 2 Let N = M2
1M where M1 and M are square-free and coprime. For any prime

p dividing M1, let Q p2 = (Ũp)
2Wp2 and Q′

p2
= Wp2(Ũp)

2. Then f ∈ Snew2k (�0(N )) if and

only if Q p( f ) = − f = Q′
p( f ) for all primes p dividing M and Qp2( f ) = 0 = Q′

p2
( f )

for all primes p dividing M1.

Theorem 2′ Let N be as in Theorem 2. Then f ∈ Snew2k (�0(N )) if and only if Q p( f ) =
− f = Q′

p( f ) for all primes p dividing M and Sp2,1( f ) = 0 = S′
p2,1

( f ) for all primes p
dividing M1.

Theorem 3 Let N be a positive integer. Then the space of new forms Snew2k (�0(N )) is the
intersection of the −1 eigenspaces of Q p and Q′

p where p varies over the primes such that
p‖N and the 0 eigenspaces of Spγ ,γ−1 and S′

pγ ,γ−1 for primes p such that p
γ ‖N with γ ≥ 2.

That is, f ∈ Snew2k (�0(N )) if and only if Q p( f ) = − f = Q′
p( f ) for all primes p such that

p‖N and Spγ ,γ−1( f ) = 0 = S′
pγ ,γ−1( f ) for all primes p such that pγ ‖N for γ ≥ 2.

Let q = e2π i z and f (z) = ∑∞
n=1 anq

n ∈ S2k(�0(m)). Let p be an odd prime. Define

Rp( f )(z) =
∞∑
n=1

(
n

p

)
anq

n, Rχ ( f )(z) =
∞∑
n=1

(−1

n

)
anq

n .

By [1, Lemma 33], Rp and Rχ are operators on S2k(�0(m)) provided that p2 | m and 16 | m
respectively.

Theorem 4 Let N = 2βM1M2 where M1M2 is odd such that M1 is square-free and any
prime divisor of M2 divides it with a power at least 2. Let β ≥ 4. Then f ∈ Snew2k (�0(N ))

if and only if Q p( f ) = − f = Q′
p( f ) for all primes p dividing M1, (Rχ )2( f ) = f and

(Rp)
2( f ) = f for all primes p dividing M2, and Spγ ,γ−1( f ) = 0 for all primes p such that

pγ ‖2βM2.

3 p-adic Hecke algebras and the representations of K

In this section we will find generators and relations for a Hecke algebra of functions on
K = GL2(Zp) which are bi-invariant with respect to K0(pn). We will use these results to
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classify smooth irreducible finite dimensional representations of K which have K0(pn) fixed
vectors.

Denote by G the group GL2(Qp). Let K0 (pn) be the subgroup of K defined by

K0(p
n) =

{(
a b
c d

)
∈ K : c ∈ pnZp

}
.

The subgroup K0(p) denotes the usual Iwahori subgroup. In this section we shall consider
the Hecke algebra of G with respect to K0(pn).

It is well known that the spaceC∞
c (G), the space of locally constant, compactly supported

complex-valued functions onG, forms aC-algebra under convolutionwhich, for any f1, f2 ∈
C∞
c (G), is defined by

f1 ∗ f2(h) =
∫
G

f1(g) f2
(
g−1h

)
dg =

∫
G

f1(hg) f2
(
g−1) dg,

where dg is the Haar measure on G such that the measure of K0(pn) is one. The Hecke
algebra corresponding to K0(pn), denoted by H(G//K0(pn)), is the subalgebra of C∞

c (G)

consisting of K0(pn) bi-invariant functions:

H
(
G//K0

(
pn

)) = { f ∈ C∞
c (G) : f (kgk′) = f (g) for g ∈ G, k, k′ ∈ K0

(
pn

)}.
Let Xg denote the characteristic function of the double coset K0 (pn) gK0 (pn). Then
H(G//K0 (pn)) as a C-vector space is spanned by Xg as g varies over the double coset
representatives of G modulo K0(pn).

Let μ(K0 (pn) gK0 (pn)) denote the number of disjoint left (right) K0 (pn) cosets in the
double coset K0 (pn) gK0 (pn). Then the following lemmas are well-known [6, Corollary
1.1].

Lemma 3.1 Ifμ (K0 (pn) gK0 (pn)) μ (K0 (pn) hK0 (pn)) = μ (K0 (pn) ghK0 (pn)) then
Xg ∗ Xh = Xgh.

Lemma 3.2 Let f1, f2 ∈ H (G//K0 (pn)) such that f1 is supported on K0(pn)xK0(pn) =⋃m
i=1 αi K0(pn) and f2 is supported on K0(pn)yK0(pn) = ⋃n

j=1 β j K0(pn). Then

f1 ∗ f2(h) =
m∑
i=1

f1(αi ) f2
(
α−1
i h

)

where the nonzero summands are precisely for those i for which there exist a j such that
h ∈ αiβ j K0(pn).

For t ∈ Qp we shall consider the following elements:

x(t) =
(
1 t
0 1

)
, y(t) =

(
1 0
t 1

)
, w(t) =

(
0 −1
t 0

)
,

d(t) =
(
t 0
0 1

)
, z(t) =

(
t 0
0 t

)
.

Let N = {x(t) : t ∈ Qp}, N̄ = {y(t) : t ∈ Qp} and A be the group of diagonal matrices of
G. Let ZG = {z(t) : t ∈ Q

∗
p} denote the center of G.
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3.1 The Iwahori Hecke algebra

Lemma 3.3 A complete set of representatives for the double cosets of G mod K0(p) are
given by d(pn)z(m), w(pn)z(m) where n, m varies over integers.

Proof For proof refer to [6, Sect. 2.3]. 
�
Lemma 3.4 (1) For n ≥ 0 we have

K0(p)d(pn)K0(p) =
⊔

s∈Zp/pnZp

x(s)d(pn)K0(p) =
⊔

s∈Zp/pnZp

K0(p)d(pn)y(ps).

(2) For n ≥ 1 we have

K0(p)d(p−n)K0(p) =
⊔

s∈Zp/pnZp

y(ps)d(p−n)K0(p) =
⊔

s∈Zp/pnZp

K0(p)d(p−n)x(s).

(3) For n ≥ 1 we have

K0(p)w(pn)K0(p) =
⊔

s∈Zp/pn−1Zp

y(ps)w(pn)K0(p) =
⊔

s∈Zp/pn−1Zp

K0(p)w(pn)y(ps).

(4) For n ≥ 0 we have

K0(p)w(p−n)K0(p) =
⊔

s∈Zp/pn+1Zp

x(s)w(p−n)K0(p) =
⊔

s∈Zp/pn+1Zp

K0(p)w(p−n)x(s).

Proof The proof easily follows from the triangular decomposition

K0(p) = (N ∩ K0(p))(A ∩ K0(p))(N̄ ∩ K0(p)).


�
Let Tn = Xd(pn), Un = Xw(pn) and Z = Xz(p) be elements of the Hecke algebra

H(G//K0(p)). It is easy to see that Z commutes with every f ∈ H(G//K0(p)) and that
Zn = Xz(pn). We have the following well-known lemma.

Lemma 3.5 (1) If n,m ≥ 0 or n,m ≤ 0, then Tn ∗ Tm = Tn+m.
(2) If n ≥ 0 then U1 ∗ Tn = Un+1 and Tn ∗ U1 = Zn ∗ U1−n.
(3) If n ≥ 0 then U1 ∗ T−n = U1−n and T−n ∗ U1 = Z−n ∗ U1+n.
(4) If n ≥ 0 then U0 ∗ T−n = U−n and Tn ∗ U0 = Zn ∗ U−n.
(5) For n ∈ Z, U1 ∗ Un = Z ∗ Tn−1 and Un ∗ U1 = Zn ∗ T1−n.
(6) For n ≥ 1, U0 ∗ Un = Tn and Un ∗ U0 = Zn ∗ T−n.
(7) U0 ∗ U0 = (p − 1)U0 + p.

Proof The parts (1) to (6) follows from Lemmas 3.1 and 3.4.
Using Lemma 3.2 it is easy to see that U0 ∗ U0 is supported only on the double cosets

K0(p) and K0(p)w(1)K0(p), so to obtain (7) it is enough to find the values of U0 ∗ U0 on
the elements w(1) and 1. Using Lemmas 3.2 and 3.4,

U0 ∗ U0(w(1)) =
p−1∑
s=0

U0(x(s)w(1))U0(w(1)x(−s)w(1)) =
p−1∑
s=0

U0(y(−s)).
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For each 1 ≤ s ≤ p − 1 we have y(−s) ∈ K0w(1)K0 while y(0) /∈ K0w(1)K0, hence
U0 ∗ U0(w(1)) = p − 1. Further,

U0 ∗ U0(1) =
p−1∑
s=0

U0(x(s)w(1))U0(w(1)x(−s)) =
p−1∑
s=0

U0(w(1)) = p.


�
Thus we obtain the following well-known theorem.

Theorem 5 The Iwahori Hecke Algebra H(G//K0(p)) is generated by U0, U1 and Z with
the relations:

(1) U2
1 = Z,

(2) (U0 − p)(U0 + 1) = 0,
(3) Z commutes with U0 and U1.

Remark 2 The algebra H(G//K0(p))/〈Z〉 is generated by U0 and U1 with the relations
U2
1 = 1 and (U0 − p)(U0 + 1) = 0.

3.2 A subalgebra of H(G//K0( pn)), n ≥ 2

It is difficult to compute generators and relations for H(G//K0(pn)) for general n as the
double coset representatives of G modulo K0(pn) becomes more intricate as n increases.
So instead of the full algebra H(G//K0(pn)) we consider a subalgebra H(K//K0(pn))
consisting of functions that are supported on K . In this sectionwe compute a basis of this finite
dimensional subalgebra and the relations between the basis elements. In Sect. 3.3, wewill use
the relations in H(K//K0(pn)) to explicitly describe the finite dimensional representations
of K containing a K0(pn) fixed vector in terms of certain elements in H(K//K0(pn)) and
thereby obtain a description for Casselman’s new vectors in terms of Hecke algebra elements.
We first note the following lemma [4, Lemma 1].

Lemma 3.6 A complete set of representatives for the double cosets of K mod K0 (pn) are
given by 1, w(1), y(p), y(p2), . . . y

(
pn−1

)
.

For simplicity, we shall write K0 for K0(pn).
Let U0 = Xw(1) and Vr = Xy(pr ) for 1 ≤ r ≤ n − 1 be the elements of H(G//K0). Then

by the above lemma, H(K//K0) is spanned by 1, U0 and Vr where 1 ≤ r ≤ n − 1.
We shall need the following lemmas.

Lemma 3.7 Assume that r satisfies n > r ≥ n/2. Then

K0y(p
r )K0 =

⊔
s∈Z∗

p/1+pn−rZp

d(s)y
(
pr

)
K0 =

⊔
s∈Z∗

p/1+pn−rZp

K0y
(
pr

)
d(s).

Proof Since K0 = N ′A′ N̄ ′ where N ′ = N ∩ K0, A′ = A ∩ K0 and N̄ ′ = N̄ ∩ K0, and
A′ = DZ ′ where D consists of matrices d(a) ∈ K and Z ′ = ZG ∩ K , we have

K0y
(
pr

)
K0 = N ′A′ N̄ ′y

(
pr

)
K0 = N ′A′y

(
pr

)
K0 = N ′Dy

(
pr

)
K0.

Now any a ∈ Z
∗
p can be written as a = sa′ where a′ ∈ 1+ pn−r

Zp and s ∈ Z
∗
p/1+ pn−r

Zp .
Since

y
(−pr

)
d(a′)y

(
pr

) =
(

a′ 0
pr (1 − a′) 1

)
∈ K0
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we get that

K0y
(
pr

)
K0 =

⋃
s∈Z∗

p/1+pn−rZp

N ′d(s)y
(
pr

)
K0.

We obtain the decomposition since

N ′d(s) = d(s)N ′ and y
(−pr

)
x(u)y(pr ) =

(
1 + upr u
−up2r 1 − upr

)
∈ K0.

Now we show that the union is disjoint. Let g1 = d(s1)y(pr ) and g2 = d(s2)y(pr ). Assume
g−1
1 g2 ∈ K0 then

y(−pr )d
(
s−1
1 s2

)
y(pr ) =

(
s−1
1 s2 0(

1 − s−1
1 s2

)
pr 1

)
∈ K0,

hence s−1
1 s2 ∈ 1 + pn−r

Zp . 
�

Lemma 3.8 Assume that 0 < r < n/2. Let K y(pr )
0 = y(pr )K0y(pr )−1 ∩ K0. Then an

element of K y(pr )
0 can be written as y(v)z(t)d(s)x(u) where v ∈ pnZp, t, s ∈ Z

∗
p, u ∈ Zp

and s − 1 − pru ∈ pn−r
Zp.

Lemma 3.9 Assume that r satisfies 0 < r < n/2. Then

K0y(p
r )K0 =

⊔
s∈Z∗

p/1+pn−rZp

d(s)y(pr )K0 =
⊔

s∈Z∗
p/1+pn−rZp

K0y(p
r )d(s).

Proof As in Lemma 3.7, an element of K0y(pr )K0 can be written as g = d(s)x(u)y(pr )k0
where s ∈ Z

∗
p , u ∈ Zp and k0 ∈ K0. Now

g = d(s)d(1 + pru)−1d(1 + pru)x(u)y(pr )k0,

it follows from Lemma 3.8 that d(1 + pru)x(u) ∈ K y(pr )
0 . Let s1 = s(1 + pru)−1 ∈ Z

∗
p .

Then we get that g = d(s1)y(pr )k1 for some k1 ∈ K0 hence we get the decomposition as in
the statement. The disjointness follows as in Lemma 3.7. 
�
Proposition 3.10 We have the following relations in H(K//K0):

(1) V2
r = pn−r−1(p − 1)(I + ∑n−1

j=r+1 V j ) + pn−r−1(p − 2)Vr .
(2) Vr ∗ V j = (p − 1)pn− j−1Vr = V j ∗ Vr for r + 1 ≤ j ≤ n − 1.
(3) Let Yr+1 = I + ∑n−1

j=r+1 V j . Then

Vr ∗ Yr+1 = pn−r−1Vr = Yr+1 ∗ Vr ,

and so,

(Vr − pn−r−1(p − 1))(Vr + Yr+1) = 0.

Proof For (1), we first compute the support of Vr ∗ Vr . By Lemmas 3.7 and 3.9,

K0y(p
r )K0 =

⊔
s∈Z∗

p/1+pn−rZp

αs K0 where αs = d(s)y(pr ),
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so using Lemma 3.2 we get that Vr ∗ Vr is supported on those g ∈ G for which there exists
s, t ∈ Z

∗
p/1 + pn−r

Zp such that

(αsαt )
−1g =

( 1
st 0

−pr (t+1)
st 1

)
g ∈ K0.

It is enough to check the support on g = 1, w(1), y(p j ) for 1 ≤ j ≤ n − 1. Note that

(αsαt )
−1w(1) =

(
0 ∗
1 ∗

)
/∈ K0. For g = 1 taking s = 1 and t = pn−r −1 ∈ Z

∗
p/1+ pn−r

Zp

we get that Vr ∗ Vr is supported on K0. For g = y(p j ),

(αsαt )
−1g ∈ K0 ⇐⇒ p j st − pr (t + 1) ∈ pnZp.

If j < r , this is impossible. First assume that r < j < n, then the above equation holds if
and only if p j−r st − (t + 1) ∈ pn−r

Zp . Taking t = p j−r − 1 and s = (1 + pn− j )t−1 ∈
Z

∗
p/1 + pn−r

Zp , we are done. Now assume j = r . If p > 2 then taking t = pn−r − 2 and
s = −1/t we are done. If p = 2 then no choice of s, t works. Thus we get that Vr ∗ Vr is
supported on K0 and K0y(p j )K0 where if p > 2 then r ≤ j < n while for p = 2 we have
r < j < n. Since y(−pr ) ∈ K0y(pr )K0,

Vr ∗ Vr (1) =
∑

s∈Z∗
p/1+pn−rZp

Vr (y(−pr )) = pn−r−1(p − 1).

For r ≤ j < n,

Vr ∗ Vr (y(p j )) =
∑

s∈Z∗
p/1+pn−rZp

Vr (y(−pr )d(s)y(p j )).

We want to check for which s there exists a matrix A =
(
a b
c d

)
∈ K0 such that

y(−pr )d(s)y(p j )Ay(−pr ) ∈ K0, i.e., (p j−r − s−1)(a − bpr ) − d ∈ pn−r
Zp . If r < j

then for any s ∈ Z
∗
p take b = c = 0, a = pn−r−1

p j−r−s−1 , d = −1, thus Vr ∗ Vr (y(p j )) =
pn−r−1(p − 1). If p > 2 and j = r , it is easy to see that such an A exists if and only

if s /∈ 1 + pZp , in this case take b = c = 0 and a = pn−r−1
1−s−1 , d = −1. The num-

ber of s ∈ Z
∗
p/1 + pn−r

Zp such that s /∈ 1 + pZp is equal to pn−r−1(p − 2) and so
Vr ∗ Vr (y(pr )) = pn−r−1(p − 2).

For (2), for r + 1 ≤ j < n, we get that Vr ∗ V j is supported at g ∈ G if and only if there
exists s ∈ Z

∗
p/1 + pn−r

Zp and t ∈ Z
∗
p/1 + pn− j

Zp such that

(
1
st 0

−(pr t+p j )
st 1

)
g ∈ K0.

It is easy to check that the above does not hold for g = 1, w(1), y(pi ) for i �= r . If i = r ,
taking s = p j−r +1, t = 1 we are done. Similarly V j ∗Vr is supported only on K0y(pr )K0.
Now

Vr ∗ V j
(
y
(
pr

)) =
∑

s∈Z∗
p/1+pn−rZp

V j
(
y
(−pr

)
d(s−1)y(pr )

)
,
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so we want to count s for which there exists A =
(
a b
c d

)
∈ K0 such that y (−pr ) d

(
s−1

)
y

(pr ) Ay
(−p j

) ∈ K0, i.e.,
(
1 − s−1

) (
a − bp j

) − dp j−r ∈ pn−r
Zp , which holds if and

only if s − 1 ∈ p j−r
Z

∗
p , in which case if s − 1 = p j−r u then taking b = 0, a = s, d = u

we are done. Thus Vr ∗ V j = C jVr where for r + 1 ≤ j < n,

C j = #{s ∈ Z
∗
p/1 + pn−r

Zp : s − 1 ∈ p j−r
Z

∗
p} = (p − 1)pn− j−1.

For V j ∗ Vr (y(pr )) we use that K0y(−pr )K0 = ⊔
s∈Z∗

p/1+pn−rZp
d(s)y(−pr )K0 to get

V j ∗ Vr (y(pr )) =
∑

s∈Z∗
p/1+pn−rZp

V j
(
y
(
pr

)
d(s)y

(−pr
))

,

the calculations now follow as above.
For (3),

Vr ∗ Yr+1 = Vr + (p − 1)Vr + (p − 1)pVr + · · · + (p − 1)pn−r−2Vr
= Vr + (

pn−r−1 − 1
)
Vr = pn−r−1Vr ,

the rest follows from (1). 
�
For 1 ≤ r ≤ n − 1, let Yr be as before, i.e., Yr = I + ∑n−1

j=r V j . Let Yn = I . We have the
following corollary.

Corollary 3.11 (1) Y2
n−r = prYn−r for all 0 ≤ r ≤ n − 1.

(2) Yr ∗ Yl = pn−rYl = Yl ∗ Yr for r ≥ l.

Proof Note that Vn−r = Yn−r − Yn−r+1 for all 1 ≤ r ≤ n − 1. Clearly (1) holds for r = 0.
Assume that Y2

n−(a−1) = pa−1Yn−(a−1). Then using Lemma 3.10

Y2
n−a = (Yn−(a−1) + Vn−a)(Yn−(a−1) + Vn−a)

= Y2
n−(a−1) + 2Yn−(a−1)Vn−a + V2

n−a

= pa−1Yn−(a−1) + 2pa−1Vn−a + (p − 1)pa−1Yn−(a−1) + (p − 2)pa−1Vn−a

= paYn−(a−1) + paVn−(a−1)

= paYn−a .

Similarly for (2), let r = l + m for some m ≥ 0. Then

Yr ∗ Yl = Yr ∗ (Vl + Vl+1 + Vl+2 + · · ·Vl+m−1 + Yr ).

Now for 0 ≤ j ≤ m − 1,

Yr ∗ Vl+ j = Vl+ j +
n−1∑
i=r

Vi ∗ Vl+ j = Vl+ j +
n−1∑
i=r

(p − 1)pn−i−1Vl+ j

= Vl+ j + Vl+ j (p
n−r − 1) = pn−rVl+ j .

Hence

Yr ∗ Yl = pn−r (Vl + Vl+1 + · · · + Vl+m−1 + Yr ) = pn−rYl .


�
In the next proposition, we obtain relations for U0.
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Proposition 3.12 (1) U0 ∗ U0 = pn−1(p − 1)U0 + pnY1.
(2) U0 ∗ Yr = pn−rU0 = Yr ∗ U0 for all 1 ≤ r ≤ n.
(3) U0 ∗ (U0 − pn) ∗ (U0 + pn−1) = 0.

Proof Note that

K0w(1)K0 =
⊔

s∈Zp/pn Z p

αs K0 where αs = x(s)w(1).

To compute U0 ∗ U0 we need to check if it is supported on g = 1, w(1) and y(p j ) for
1 ≤ j ≤ n − 1, i.e., we need to check if there exists s, t such that

(αsαt )
−1g =

(−1 s
−t st − 1

)
g ∈ K0.

For g = 1 taking s = t = 0, for g = w(1) taking s = t = 1 and for g = y(p j ), taking
s = pn− j , t = −p j we get that U0 ∗U0 is supported on K0, K0w(1)K0 and K0y(p j )K0 for
all 1 ≤ j ≤ n − 1. Clearly U0 ∗ U0(1) = pn . Doing similar calculations as before we get
that

U0 ∗ U0(w(1)) = #{s ∈ Zp/p
n Z p : s /∈ pZp} = pn−1(p − 1),

and

U0 ∗ U0(y(p
j )) = pn for 1 ≤ j ≤ n − 1.

Thus

U0 ∗ U0 = pn−1(p − 1)U0 + pn(I + V1 + · · ·Vn−1) = pn−1(p − 1)U0 + pnY1.

Similarly we can check that for each 1 ≤ j ≤ n − 1, U0 ∗ V j and V j ∗ U0 are supported
only on K0w(1)K0 and that

U0 ∗ V j = V j ∗ U0 = (p − 1)pn− j−1U0

which implies (2).
The statement (3) now follows using (1) and (2). 
�
Thus we have the following theorem.

Theorem 6 The algebra H(K//K0(pn)) is an n + 1 dimensional commutative algebra
with generators {U0, Y1, Y2, . . . , Yn} and relations given by Corollary 3.11 and Proposi-
tion 3.12.

Asmentioned before we have not yet found an analogue of Theorem 5 for H(G//K0(pn))
for n ≥ 2. However we shall need the following relation. Let Tm = Xd(pm ), Um = Xw(pm ),
Z = Xz(p) be the elements in H(G//K0(pn)). Then

Lemma 3.13 (T1)m ∗ Um = Tm ∗ Um = Zm ∗ U0 for all m ≤ n.

Proof The proof follows as before by using Lemma 3.1 and since

K0(p
n)d(pm)K0(p

n) =
⊔

s∈Zp/pmZp

x(s)d(pm)K0(p
n) for m ≥ 0,
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and

K0(p
n)w(pr )K0(p

n) =
⊔

s∈Zp/pn−rZp

x(s)w(pr )K0(p
n) for r ≤ n.


�
3.3 Representations of K having a K0( pn) fixed vector

In this section we recall some results of Casselman [3,4]. We are interested in irreducible
representations of K having a K0(pn) fixed vector. Let

I (n) := I ndK
K0(pn)1 = {φ : K → C : φ(k0k) = φ(k) for k0 ∈ K0(p

n), k ∈ K }.
Then I (n) is a right representation of K , denoted by πR , where πR(k)(φ)(k′) = φ(k′k). The
dimension of this representation is [K : K0(pn)] = pn−1(p + 1). It follows from Frobenius
Reciprocity that every (smooth) irreducible representation of K which has a nonzero K0(pn)
fixed vector is isomorphic to a subrepresentation of I (n). We shall therefore decompose I (n)

into sum of irreducible representations.
The following lemma is clear.

Lemma 3.14 We have I (n)K0(pn) = H(K//K0(pn)) and consequently the dimension of
I (n)K0(pn) is n + 1.

Using induction argument and Frobenius reciprocity we obtain the following well-known
results.

Proposition 3.15 The representation I (n) is a sum of n + 1 distinct irreducible representa-
tions.

Corollary 3.16 Let n ≥ 0. There exists a unique irreducible representation σ(n) of K such
that σ(n) has a K0(pn) fixed vector and such that σ(n) does not have a K0(pk) fixed vector
for k < n. Further, σ(n) has a unique K0(pn) fixed vector up to scalar multiplication
and the dimension of σ(n) is given by: dim(σ (0)) = 1, dim(σ (1)) = p and dim(σ (n)) =
pn−2(p2 − 1) for n ≥ 2.

We note the following theorem of Casselman.

Theorem 7 (Casselman [3]) Let (π, V ) be an irreducible admissible representation of G =
GL2(Qp) with trivial central character. Let n be the minimal integer such that there exists a
nonzero K0(pn) fixed vector in V . Then this vector is unique up to a scalar.

Weshall nowexplicitly describe the irreducible subrepresentations of I (n). Let us consider
the action πL of H(K//K0(pn)) on I (n): for f ∈ H(K//K0(pn)) and φ ∈ I (n) set

πL( f )(φ)(g) =
∫
K

f (k)φ(k−1g)dk for all g ∈ K .

In particular, if φ ∈ I (n)K0(pn) which by Lemma 3.14 is same as the algebra H(K//K0(pn))
then we have πL( f )(φ) = f ∗ φ. It is easy to check that the action πL commutes with the
action πR . It now follows by Schur’s Lemma that for each f ∈ H(K//K0(pn)) the operator
πL( f ) acts as a scalar operator on an irreducible subrepresentation of I (n). We shall use this
to distinguish the irreducible components of I (n) as follows.

If σ is any irreducible subrepresentation of I (n) then σ contains a K0(pn) fixed vector,
that is, there exists a non-zero vector vσ ∈ σ ∩ I (n)K0(pn). Thus vσ is a linear combination
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Table 1 Action of U0, {Yr }1≤ r ≤ n on eigenvectors vi , wk

U0 Y1 Y2 Y3 . . . Yk . . . Yn−1 Yn

v1 pn pn−1 pn−2 pn−3 . . . pn−k . . . p 1

v2 −pn−1 pn−1 pn−2 pn−3 . . . pn−k . . . p 1

w1 0 0 pn−2 pn−3 . . . pn−k . . . p 1

w2 0 0 0 pn−3 . . . pn−k . . . p 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

wk 0 0 0 0 . . . pn−k . . . p 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

wn−2 0 0 0 0 . . . 0 . . . p 1

wn−1 0 0 0 0 . . . 0 . . . 0 1

of U0 and Yr for 1 ≤ r ≤ n. Since πL( f ) acts as a scalar for every f ∈ H(K//K0(pn)) the
vector vσ will be an eigenvector under the action ofπL(U0) andπL(Yr ) for all 1 ≤ r ≤ n. For
each σ we can compute these eigenvectors vσ and their corresponding eigenvalues using the
relations in Corollary 3.11 and Proposition 3.12. In fact we obtain the following proposition.

Proposition 3.17 A basis of eigenvectors for H(K//K0(pn)) under the above action is
given by:

v1 = U0 + Y1,

v2 = U0 − pY1,

wk = Yk − pYk+1 f or 1 ≤ k ≤ n − 1,

with eigenvalues given by Table 1 where each entry of the table at the intersection of row v

and column F stands for the eigenvalue of the action of F on v, for example, U0 ∗v1 = pnv1.

We have the following corollary to the above proposition.

Corollary 3.18 The representation I (n) is a sum of n + 1 irreducible subspaces given by:
S1 = Span(πR(K )v1), S2 = Span(πR(K )v2) and Tk = Span(πR(K )wk) where 1 ≤ k ≤
n − 1 such that dim(S1) = 1, dim(S2) = p, dim(Tk) = pk−1(p2 − 1). By Corollary 3.16,
Tn−1 = σ(n) and hence is the unique irreducible representation of K such that Tn−1 has a
K0(pn) fixed vector wn−1 but does not have K0(pk) fixed vector for k < n.

Proof It follows from Table 1 that the set of eigenvalues for vectors vi for i = 1, 2 and wk

for 1 ≤ k ≤ n − 1 are distinct and hence each of them lies in an irreducible component. To
finish the proof we need to compute the dimensions, for which we shall need the following
lemma. A statement similar to this lemma appears in [10].

Lemma 3.19 The operators πL(U0) and πL(Vr ) for 1 ≤ r ≤ n − 1 have trace zero.

Proof For g ∈ K , let φg be the characteristic function of K0(pn)g, then I (n) as a complex
vector space has a basis consisting of φg as g varies over the right coset representatives of
K modulo K0(pn). Thus to prove the lemma it is enough to show that πL(U0)(φg)(g) =
πL(Vr )(φg)(g) = 0. We will show it for Vr , for U0 the same argument works. It is easy to
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Table 2 Action of U0, {Yr }1≤ r ≤ n−1 on eigenvectors vi , wk

U0 V1 . . . Vk . . . Vn−2 Vn−1

v1 pn pn−2(p − 1) . . . pn−k−1(p − 1) . . . p(p − 1) p − 1

v2 −pn−1 pn−2(p − 1) . . . pn−k−1(p − 1) . . . p(p − 1) (p − 1)

w1 0 −pn−2 . . . pn−k−1(p − 1) . . . p(p − 1) (p − 1)

w2 0 0 . . . pn−k−1(p − 1) . . . p(p − 1) (p − 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

wk 0 0 . . . −pn−k−1 . . . p(p − 1) (p − 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

wn−2 0 0 . . . 0 . . . −p (p − 1)

wn−1 0 0 . . . 0 . . . 0 −1

see that πL(Vr )(φg) is supported on K0(pn)y(pr )K0(pn)g. So if πL(Vr )(φg)(g) �= 0 then
g ∈ K0(pn)y(pr )K0(pn)g which is impossible as K0(pn) �= K0(pn)y(pr )K0(pn). 
�

Using Table 1 in Proposition 3.17, it is easy to obtain Table 2 where we consider the action
of U0, V1, V2, . . . , Vn−1 instead.

Let d1, d2, . . . , dn+1 be the dimension of S1, S2, . . . , Tn−1 respectively. Then using
Lemma 3.19 and the above table we have the following system of linear equations:

pnd1 − pn−1d2 = 0

pn−2(p − 1)d1 + pn−2(p − 1)d2 − pn−2d3 = 0
...

pn−k−1(p − 1)(d1 + d2 + d3 + · · · + dk+1) − pn−k−1dk+2 = 0
...

(p − 1)(d1 + d2 + d3 + · · · + dn) − dn+1 = 0

d1 + d2 + · · · + dn−1 = pn−1(p + 1)

solving which we get the dimensions. 
�

4 Translation from the adelic setting to the classical setting

In this section following Gelbart [5] we shall review the connection between automorphic
forms and classical modular forms and use this connection to translate p-adic operators of
the previous section into their classical counterparts and thereby obtain relations satisfied by
them.

Let A = AQ be the adele ring of Q and ZA denote the center of GL2(A). Let G∞ =
GL2(R)+. Let N be a positive integer. We let Kl = GL2(Zl) for a prime l not dividing N
and let Kp = K0(pα) for a prime p such that pα‖N . Let K f be the subgroup of GL2(A)

defined by
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K f (N ) =
∏
q<∞

Kq .

By the strong approximation theorem we have

GL2(A) = GL2(Q)G∞K f (N ).

We denote by A2k(N ) the space of functions 
 : GL2(A) → C satisfying the following
properties:

(1) 
(γ zgk) = 
(g) for all γ ∈ GL2(Q), z ∈ ZA, g ∈ GL2(A), k ∈ K f (N ).

(2) 
(gr(θ)) = e−i2kθ
(g) where r(θ) =
(
cosθ −sinθ

sinθ cosθ

)
∈ SO(2).

(3) 
 is smooth as a function ofG∞ and satisfies the differential equation�
 = −k(k−1)

where � is the Casimir operator.

(4) 
 ∈ L2(ZA GL2(Q)\GL2(A)).

(5) 
 is cuspidal, that is,
∫
Q\A 


((
1 a
0 1

)
g

)
da = 0 for all g ∈ GL2(A).

By Gelbart [5, Proposition 3.1] there exists an isomorphism

A2k(N ) → S2k(�0(N ))

given by 
 �→ f
 where for z ∈ H,

f
(z) = 
(g∞) j (g∞, i)2k

where g∞ ∈ G∞ is such that g∞(i) = z. The inverse map is given by f �→ 
 f where for
g ∈ GL2(A) if g = γ g∞k (using strong approximation),


 f (g) = f (g∞(i)) j (g∞, i)−2k .

This isomorphism induces a ring isomorphism of spaces of linear operators,

q : EndC(A2k(N )) → EndC(S2k(�0(N )))

given by

q(T )( f ) = fT (
 f ).

Let N = pnM where p is a prime coprime to M and G = GL2(Qp). We note that the
H (G//K0 (pn)) is a subalgebra of EndC(A2k(N )) via the following action:

for T ∈ H(G//K0
(
pn

)
) and 
 ∈ A2k(N ), T (
)(g) =

∫
G
T (x)
(gx)dx .

Remark 3 We note that if p1 and p2 are distinct primes then the operators T1 ∈
H(G//K0(pn1 )) and T2 ∈ H(G//K0(pn2 )) in EndC(A2k(N )) commute, that is, T1 ◦ T2 =
T2 ◦ T1.

We have the following proposition.

Proposition 4.1 Let N = pnM where n ≥ 1 and p � M. Let f ∈ S2k(�0(N )). Con-
sider operators T1, Um ∈ H(G//K0(pn)) where m ≤ n. If n ≥ 2, further consider
Vr ∈ H(G//K0(pn)) where 1 ≤ r ≤ n − 1. Then,
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(1) q(T1)( f )(z) = p−k ∑p−1
s=0 f ((z + s)/p) = Ũp( f )(z).

(2) If f ∈ S2k(�0(pr M))where r ≤ n then q(Ur )( f )(z) = pn−r f |2kWpr (z)whereWpr =(
prβ 1

pr Mγ pr

)
is an integer matrix of determinant pr . In particular, q(Un)( f )(z) =

f |2kWpn (z).
(3) q(Vr )( f )(z) = ∑

s∈Z∗
p/1+pn−rZp

f |2k As where As ∈ SL2(Z) is any matrix of the form(
as bs
pr M pn−r − sM

)
.

(4) If f ∈ S2k(�0(pr M)) then q(Vr )( f ) = pn−r−1(p − 1) f , consequently, q(Yr )( f ) =
pn−r f .

Proof For 
 ∈ A2k(N ), using decomposition in Lemma 3.13 we have

T1(
)(g) =
∫
G
Xd(p)(x)
(gx)dx =

p−1∑
s=0


(gx(−s)d(p)).

Thus

q(T1)( f )(z) = fT1(
 f )(z) =
p−1∑
s=0


 f (g∞x(−s)d(p)) j (g∞, i)2k

where g∞ ∈ G∞ such that g∞i = z. Since 
 f is invariant under left multiplication by
rational matrices, multiplying by γ = d(p−1)x(s) ∈ GL2(Q) we obtain


 f (g∞x(−s)d(p)) = 
 f (d(p−1)x(s)g∞ · k f ) = 
 f (d(p−1)x(s)g∞)

where k f ∈ K f (N ). Thus we have

q(T1)( f )(z) =
p−1∑
s=0


 f (d
(
p−1) x(s)g∞) j (g∞, i)2k

=
p−1∑
s=0

f
(
d

(
p−1) x(s)z) j

(
d

(
p−1) x(s), z)−2k = p−k

p−1∑
s=0

f ((z + s)/p).

The proof of (2) is similar. Let f ∈ S2k(�0(pr M)) where 1 ≤ r ≤ n. Then using
Lemma 3.13,

q(Ur )( f )(z) =
pn−r−1∑
s=0


 f (g∞x(s)w(pr )) j (g∞, i)2k

where z = g∞i . Let Wpr =
(

prβ 1
pr Mγ pr

)
be an integer matrix of determinant pr . Since


 f ∈ A2k(pr M) multiplying g∞x(s)w(pr ) by the matrix Wpr z(p−r )x(−s) ∈ GL2(Q) we
get that,


 f (g∞x(s)w(pr )) = 
 f (h∞k f ) = 
 f (h∞)

where h∞ = z(p−r )Wpr x(−s)g∞ ∈ G∞ and k f ∈ K f (pr M). Since f |2kWpr ∈
S2k(�0(pr M)),

q(Ur )( f )(z) =
pn−r−1∑
s=0

f |2kWpr x(−s)(z) = pn−r f |2kWpr (z).
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For (3), let n ≥ 2. Using Lemmas 3.7 and 3.9 we have

Vr (
)(g) =
∫
G
Xy(pr )
(gh)dh =

∑
s∈Z∗

p/1+pn−rZp


(gd(s)y(pr )).

Let z ∈ H be such that z = g∞i for some g∞ ∈ G∞. Then,

q(Vr )( f )(z) =
∑

s∈Z∗
p/1+pn−rZp


 f (g∞d(s)y(pr )) j (g∞, i)2k .

By the strong approximation, g∞d(s)y(pr ) = A−1
s h∞k f for some As ∈ GL2(Q), h∞ ∈ G∞

and k f ∈ K f (N ). So we need As ∈ GL2(Q) such that Asd(s)y(pr ) belongs to K0(pn)
and As belongs to Kq for q �= p. So we must choose As with determinant 1. For any
s ∈ Z

∗
p , we have gcd(pr M, pn−r − sM) = 1, so there exists integers as , bs such that

as(pn−r − sM) − bs pr M = 1. Take

As =
(

as bs
pr M pn−r − sM

)
∈ SL2(Z),

then As belongs to Kq for q �= p and

Asd(s)y(pr ) =
(
as + bs pr bs

pn pn−r − sM

)
∈ K0.

Thus


 f (g∞d(s)y(pr )) = f (Asz) j (As , z)
−2k j (g∞, i)−2k,

and so

q(Vr )( f )(z) =
∑

s∈Z∗
p/1+pn−rZp

f (Asz) j (As, z)
−2k =

∑
s∈Z∗

p/1+pn−rZp

f |As (z).

Thus if f ∈ S2k(�0(pr M)) then q(Vr )( f )(z) = pn−r−1(p − 1) f . Further,

q(Yr )( f ) = f +
n−1∑
j=r

∑
s∈Z∗

p/1+pn− jZp

f |2k
(
as, j bs, j
p j M pn− j − sM

)

= f +
n−1∑
j=r

(p − 1)pn− j−1 f = pn−r f,

proving (4). 
�
Remark 4 The operator q(Un) is the usual Atkin–Lehner operator Wpn while the operator
q(T1) is the operator Ũp = p1−kUp whereUp is the usual Hecke operator. It is obvious that
q(Z) is the identity operator.

Let N = pM where p � M . Let Qp = q(U0) where U0 ∈ H(G//K0(p)). Then using
Lemma 3.5 we have

Corollary 4.2 Qp = p1−kUpWp and (Qp − p)(Qp + 1) = 0.

Now consider N = pnM where n ≥ 2. Let Qpm = (Ũp)
mWpm for m ≤ n where Wpm

is the Atkin–Lehner operator on S2k(�0(pmM)). Using Lemma 3.13, Propositions 4.1 and
3.12 we have
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Corollary 4.3 For U0 ∈ H(G//K0(pn)), we have Qpn = q(U0) and hence Qpn (Qpn −
pn)(Qpn + pn−1) = 0. Further for m ≤ n we have Qpn = (Ũp)

mq(Um), hence if f ∈
S2k(�0(pmM)) ⊆ S2k(�0(N )) then Qpn ( f ) = pn−mQpm ( f ).

Let Spn ,r = q(Yr ) where Yr ∈ H(G//K0(pn)), 1 ≤ r ≤ n. Using relations in Corol-
lary 3.11, we have

Corollary 4.4 Spn ,r (Spn ,r − pn−r ) = 0 for 1 ≤ r ≤ n.

5 Eigenspaces of classical operators and the characterization of the new
space

Let N be a positive integer. In this section we shall look at the classical operators on
S2k(�0(N )) that were introduced in Sect. 2 and Proposition 4.1 and study their eigenspaces.
We shall prove the theorems stated in Sect. 2 including our main result Theorem 3.

5.1 N square-free

Let N be a square-free positive integer and S be the set of prime divisors of N . Let p ∈ S.
Recall that translatingU0, U1, andT1 ∈ H(G//K0(p))we respectively obtained the classical
operators Qp, Wp and Ũp on S2k(�0(N )). For N , d any positive integers recall the shift

operator V (d) : S2k(�0(N )) → S2k(�0(dN )) given by V (d)( f ) = d−k f |2k
(
d 0
0 1

)
. It is

well known [1] that the old space

Sold2k (�0(N )) =
⊕

dM|N , M �=N

V (d)Snew2k (�0(M))

=
∑
pi∈S

S2k(�0(N/pi )) + V (pi )S2k(�0(N/pi )).
(1)

We will consider the action of Qp on each of the above summands.

Lemma 5.1 Let f ∈ Snew2k (�0(N )) be a new form. Then Qp( f ) = − f , that is, Snew2k (�0(N ))

is contained in the −1 eigenspace of Q p.

Proof By [1, lemma 18], Snew2k (�0(N )) has a basis of primitive forms, so we can assume that
f is primitive. By [1, Theorem 3], Wp( f ) = λ(p) f for some λ(p) = ±1 and Up( f ) =
−λ(p)pk−1 f . Since Qp = p1−kUpWp the result follows. 
�

Write N = pM where M is a square-free integer coprime to p.

Lemma 5.2 Let f be a form in S2k(�0(M)) ⊂ S2k(�0(N )). Then Qp( f ) = p f .

Proof Since

(
β 1
Mγ p

)
∈ �0(M) we have

Wp( f )((z + s)/p) = pk(Nγ (z + s)/p + p)−2k f

(
pβ(z + s)/p + 1

Nγ (z + s)/p + p

)

= pk(Mγ (z + s) + p)−2k f

(
β(z + s) + 1

Mγ (z + s) + p

)

= pk f |2k
(

β 1
Mγ p

)
(z + s) = pk f (z + s) = pk f (z).
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Hence

Qp( f ) = p−k
p−1∑
s=0

Wp( f )((z + s)/p) = p f (z).


�
Next we look at the action of Qp on the old subspace V (p)(S2k(�0(M))).

Lemma 5.3 Let f ∈ S2k(�0(M)) and g(z) = f (pz) ∈ V (p)(S2k(�0(M))). Then

Qp(g) = p1−2kTp( f ) − g,

where Tp is the usual Hecke operator on S2k(�0(M)).

Proof Note that from [1, Lemma 14],

p1−2kTp( f ) = f (pz) + p−2k
p−1∑
s=0

f ((z + s)/p).

As before, we have

Wp(g)((z + s)/p) = pk(Nγ (z + s)/p + p)−2kg

(
pβ(z + s)/p + 1

Nγ (z + s)/p + p

)

= pk(Mγ (z + s) + p)−2k f

(
pβ(z + s) + p

Mγ (z + s) + p

)

= p−k(Mγ (z + s)/p + 1)−2k f

(
pβ(z + s)/p + 1

Mγ (z + s)/p + 1

)

= p−k f |2k
(

pβ 1
Mγ 1

)
((z + s)/p) = p−k f ((z + s)/p)

since

(
pβ 1
Mγ 1

)
∈ �0(M). Thus

Qp(g)(z) = p−2k
p−1∑
s=0

f ((z + s)/p) = p1−2kTp( f ) − g.


�
We consider the subspace X p := S2k(�0(N/p)) ⊕ V (p)S2k(�0(N/p)) of S2k(�0(N )).

Corollary 5.4 Qp stabilizes X p and the −1 eigenspace of Q p inside X p consists of forms

h(z) = − p1−2k

p+1 Tp( f )(z) + f (pz) where f ∈ S2k(�0(M)).

Proof Let h ∈ X p be an old form. Then h can be uniquely written as h(z) = f1(z) + g(z)
where g(z) = f (pz) for some f, f1 ∈ S2k(�0(M)). By Lemmas 5.2 and 5.3 we have
Qp(h) = p f1 + p1−2kTp( f ) − g which is clearly in X p .

Further since the above decomposition for Qp(h) is unique, if f1(z)+g(z) is an eigenfunc-

tion of Qp with g �= 0 then Qp(h) = −h and f1 = − p1−2k

p+1 Tp( f ). Hence the −1 eigenspace

of Qp consists of forms h(z) = − p1−2k

p+1 Tp( f )(z) + f (pz) for some f ∈ S2k(�0(M)). 
�
From Lemma 5.2 and Corollary 5.4 we obtain the following proposition.
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Proposition 5.5 The p eigenspace of Q p in X p is S2k(�0(M)).

Next consider the operator Q′
p = WpQpW−1

p = WpQpWp . So, Q′
p = WpŨp and it

satisfies the equation (Q′
p − p)(Q′

p − 1) = 0. Note that f is an eigenfunction of Qp with
eigenvalue λ if and only if Wp( f ) is an eigenfunction of Q′

p with eigenvalue λ. Since the
action of Atkin–Lehner operator Wp on the space of new forms is surjective, Q′

p acts with
the eigenvalue −1 on the space of new forms. We have the following lemma.

Lemma 5.6 Let f ∈ S2k(�0(M)). Then Wp( f )(z) = pk f (pz). Further, if g = f (pz)
then Wp(g)(z) = p−k f (z). Consequently Wp maps S2k(�0(M)) onto V (p)S2k(�0(M)), so
V (p)S2k(�0(M)) is contained in the p eigenspace of Q′

p. The operator Q′
p preserves X p

and the p eigenspace of Q′
p in X p is the space V (p)(S2k(�0(M)).

Proof Since

(
β 1
Mγ p

)
∈ �0(M) we get

Wp( f )(z) = f |2k
(
pβ 1
Nγ p

)
(z) = pk(Mγ (pz) + p)−2k f

(
β(pz) + 1

Mγ (pz) + p

)

= pk f |2k
(

β 1
Mγ p

)
(pz) = pk f (pz).

Further, since

(
pβ 1
Mγ 1

)
∈ �0(M) we get

Wp(g)(z) = g|2k
(
pβ 1
Nγ p

)
(z) = pk(Nγ z + p)−2k f

(
p2βz + p

Nγ z + p

)

= p−k(Mγ z + 1)−2k f

(
pβz + 1

Mγ z + 1

)
= p−k f (z).

HenceWp(X p) = X p and so Q′
p preserves X p . It now follows from Proposition 5.5 that the

p eigenspace of Q′
p in X p is precisely V (p)(S2k(�0(M)). 
�

We shall need the following proposition.

Proposition 5.7 The operators Q p = ŨpWp and Q′
p = WpQpW−1

p are self-adjoint with
respect to the Petersson inner product.

Proof Recall that Ũp = p1−kUp = p1−kTp . Following Miyake [12, Page 135]

Tp = �0(N )

(
1 0
0 p

)
�0(N )

and for f ∈ S2k(�0(N )),

Tp( f ) = f |2k�0(N )

(
1 0
0 p

)
�0(N ) = pk−1

p−1∑
m=0

f |2k
(
1 m
0 p

)
.

Further,

T ∗
p = �0(N )

(
p 0
0 1

)
�0(N ).

For f, g ∈ S2k(�0(N )), by [12, Theorem 4.5.4], 〈Tp( f ), g〉 = 〈 f, T ∗
p (g)〉.
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The Atkin–Lehner operator Wp acts by a matrix

(
pβ 1
Nγ p

)
such that p2β − Nγ = p. We

want to show that the following diagram commutes:

S2k(�0(N )) S2k(�0(N ))

S2k(�0(N )) S2k(�0(N ))

Tp

Wp Wp

T ∗
p

We have

f |2kW−1
p TpWp = f |2kW−1

p �0(N )

(
1 0
0 p

)
�0(N )Wp

= f |2k�0(N )W−1
p

(
1 0
0 p

)
Wp�0(N )

(2)

since Wp�0(N )W−1
p = �0(N ).

We claim that �0(N )W−1
p

(
1 0
0 p

)
Wp�0(N ) = �0(N )

(
p 0
0 1

)
�0(N ). We note that

W−1
p

(
1 0
0 p

)
Wp =

(
pβ − Nγ 1 − p

−Nγβ + pNγβ − Nγ
p + βp2

)
.

Choose t ∈ Z such that t ≡ βM−1 (mod p) and consider the matrix

(
1 0
Nt 1

)
in �0(N ).

Then,

W−1
p

(
1 0
0 p

)
Wp ·

(
1 0
Nt 1

)
·
(
p 0
0 1

)−1

=
(

pβ − Nγ 1 − p
−Nγβ + pNγβ − Nγ

p + βp2

)
·
(

1
p 0
Nt
p 1

)

=
( ∗ ∗

−Nγ
(

β−Mt
p

)
+ Nγβ + βpNt ∗

)
∈ �0(N ).

Hence W−1
p

(
1 0
0 p

)
Wp ∈ �0(N )

(
p 0
0 1

)
�0(N ) and our claim is proved.

Thus from (2), we have f |2kW−1
p TpWp = f |2k�0(N )

(
p 0
0 1

)
�0(N ) = T ∗

p ( f ). Using

this, and that Wp is self-adjoint and it is an involution, we get that

〈Qp( f ), g〉 = p1−k〈TpWp( f ), g〉
= p1−k〈Wp( f ), T ∗

p (g)〉
= p1−k〈Wp( f ), WpTpW

−1
p (g)〉

= p1−k〈 f, TpW
−1
p (g)〉

= p1−k〈 f, TpWp(g)〉 = 〈 f, Qp(g)〉.
Hence Qp and consequently Q′

p are self-adjoint. 
�
We now restate Theorem 1 and prove it below.
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Theorem 8 Let N = p1 p2 · · · pr with pi distinct primes. Then the space of new forms
Snew2k (�0(N )) is the intersection of the −1 eigenspaces of Q pi and Q′

pi as 1 ≤ i ≤ r . That
is, f ∈ Snew2k (�0(N )) if and only if Q pi ( f ) = − f = Q′

pi ( f ) for all 1 ≤ i ≤ r .

Proof We have already seen that if f ∈ Snew2k (�0(N )) then Qpi ( f ) = − f = Q′
pi ( f ) for all

1 ≤ i ≤ r .
Further it follows from Proposition 5.5 and Lemma 5.6 that for each pi , the subspace

S2k(�0(N/pi )) is contained in the pi eigenspace of Qpi and V (pi )S2k(�0(N/pi )) is con-
tained in the pi eigenspace of Q′

pi .
Suppose f ∈ S2k(�0(N )) is such that Qpi ( f ) = − f = Q′

pi ( f ) for all 1 ≤ i ≤ r .
Since Qpi and Q′

pi are self-adjoint operators on S2k(�0(N )) we get that the pi eigenspaces
of Qpi and Q′

pi are respectively orthogonal to the −1 eigenspaces of Qpi and Q′
pi . Hence

f is orthogonal to S2k(�0(N/pi )) and V (pi )S2k(�0(N/pi )) for all 1 ≤ i ≤ r . Thus f is
orthogonal to the old space Sold2k (�0(N )), that is, f ∈ Snew2k (�0(N )). 
�
5.2 General case

Let N be a positive integer and p be a prime such that pn strictly divides N , that is, N = pnM
for some positive integer M coprime to p. Let n ≥ 2. Recall that translating U0, Un, T1 and
Yr ∈ H(G//K0(pn)) where 1 ≤ r ≤ n, we respectively obtained the classical operators
Qpn , Wpn , Ũp and Spn ,r on S2k(�0(N )).

We have the following lemma.

Lemma 5.8 For 1 ≤ r ≤ n, a set of right coset representatives for �0(N ) in �0(pr M)

consists of the identity element and elements of the form

As, j =
(
as, j bs, j
p j M pn− j − sM

)
where r ≤ j ≤ n − 1and s ∈ Z

∗
p/1 + pn− j

Zp.

Proof Firstwe check that the right cosets�0(N ) and�0(N )As, j where j , s varies as above are
mutually disjoint. For any such j and s clearly As, j ∈ �0(pr M) \ �0(N ), hence �0(N )As, j

and �0(N ) are disjoint.
Now for any r ≤ i, j ≤ n − 1 we have

�0(N )As, j = �0(N )At,i ⇐⇒ p j M(pn−i − tM) − pi M(pn− j − sM) ∈ pnMZp.

Now if i �= j , say i > j , then the equality of the above two cosets implies that −tM ∈ pZp ,
leading to a contradiction.

Similarly, for r ≤ j ≤ n − 1 we have

�0(N )As, j = �0(N )At, j ⇐⇒ p j M(pn− j − tM) − p j M(pn− j − sM) ∈ pnMZp

⇐⇒ t ≡ s (mod pn− j
Zp) ⇐⇒ t = s ∈ Z

∗
p/(1 + pn− j

Zp).

Hence all the right cosets listed are mutually disjoint.
It is well known that [�0(pr M) : �0(N )] = pn−r ( [12, Theorem 4.2.5]). Since we

have already checked that the right cosets �0(N ), �0(N )As, j where j, s varies as above are
mutually disjoint and since there are exactly pn−r of them the lemma follows. 
�
Lemma 5.9 For 1 ≤ r ≤ n, the operator Spn ,r takes the space S2k(�0(N )) to
S2k(�0(pr M)).

Proof The proof follows using Lemma 5.8 and [1, Lemma 3]. 
�
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Corollary 5.10 For 1 ≤ r ≤ n, the pn−r eigenspace of Spn ,r is precisely the subspace
S2k(�0(pr M)).

Proof It follows fromProposition 4.1 that S2k(�0(pr M)) is contained in the pn−r eigenspace
of Spn ,r . Let f ∈ S2k(�0(N )) be such that Spn ,r ( f ) = pn−r ( f ). By Lemma 5.9, Spn ,r ( f )
belongs to S2k(�0(pr M)). Thus f ∈ S2k(�0(pr M)). 
�
Proposition 5.11 Let 1 ≤ r ≤ n. Then for each r < α ≤ n, the space Snew2k (�0(pαM)) is
contained in the 0 eigenspace of Spn ,r .

Proof Let q be any prime that is coprime to N , then the Hecke operator Tq on S2k(�0(N ))

corresponds to T(q), the characteristic function of the double coset GL2(Zq)

(
q 0
0 1

)
GL2(Zq)

in the q-adic Hecke algebra H(GL2(Zq)). Since Yr = Yr (p) belongs to the p-adic Hecke
algebra H(K0(pn)), it follows from Remark 3 that the operators T(q) and Yr (p) commute
and hence the operators Spn ,r and Tq on S2k(�0(N )) commute.

Let r < α ≤ n and f ∈ Snew2k (�0(pαM)) be a primitive form. Thus f is an eigenform
with respect to Tq for any q coprime to N . Now since Spn ,r and Tq commute we get that
Spn ,r ( f ) is also an eigenfunction with respect to all such Tq having the same eigenvalue as
f .
By Corollary 5.9, Spn ,r ( f ) ∈ S2k(�0(pr M)) and as r < α, it is an old form in the space

S2k(�0(pαM)). It now follows from [1, Lemma 23] that Spn ,r ( f ) = 0.
The proposition follows since Snew2k (�0(pαM)) has a basis of primitive forms. 
�

Next consider the operator S′
pn ,r = Wpn Spn ,rW

−1
pn = Wpn Spn ,rWpn . Then S′

pn ,r clearly
satisfies the equation S′

pn ,r (S
′
pn ,r − pn−r ) = 0. Since the action of Atkin–Lehner operator

Wpn on the space of new forms is surjective, in particular we get that the space Snew2k (�0(N ))

is contained in the 0 eigenspace of S′
pn ,n−1. We have the following lemma.

Lemma 5.12 For 0 ≤ r ≤ n, the operator Wpn maps S2k(�0(pr M)) onto V (pn−r )

S2k(�0(pr M)) and takes the new space Snew2k (�0(pr M)) onto V (pn−r )Snew2k (�0(pr M)).
Further, Wpn maps the space V (pr )S2k(�0(M)) onto V (pn−r )S2k(�0(M)).
Consequently for 1 ≤ r ≤ n, the pn−r eigenspace of S′

pn ,r is precisely the space
V (pn−r )S2k(�0(pr M)).

Proof Let r ≥ 1 be as above. Let f ∈ S2k(�0(pr M)). Then,

Wpn ( f )(z) = f

(
pnβz + 1

Nγ z + pn

)
(Nγ z + pn)−2k pnk

= f

(
prβ(pn−r z) + 1

pr Mγ (pn−r z) + pn

)
(Nγ z + pn)−2k pnk

= p(n−r)k f |2k
(

prβ 1
pr Mγ pn

)
(pn−r z) = p(n−r)k f |2kWpr (p

n−r z)

which clearly belongs to V (pn−r )S2k(�0(pr M)).
Note that since Wpr is an involution on S2k(�0(pr M)), it is a surjection, i.e, any f ∈

S2k(�0(pr M)) is of the form f ′|2kWpr for some f ′ ∈ S2k(�0(pr M)). Let g(z) = f (pn−r z)
where f ∈ S2k(�0(pr M)). Then by above computation,

g(z) = f ′|2kWpr (p
n−r z) = p(r−n)kWpn ( f

′)(z).
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Thus Wpn (g)(z) = p(r−n)k( f ′)(z) = p(r−n)k f |2kWpr (z).
It is clear from the above that if f ∈ S2k(�0(M)) then Wpn ( f )(z) = pnk f (pnz) and

conversely if g = f (pnz) thenWpn (g) = p−nk f , proving the statement for r = 0.Moreover
Atkin–Lehner involutionsWpr are surjection on new spaces and hence takes Snew2k (�0(pr M))

onto V (pn−r )Snew2k (�0(pr M)).
The proof of the second statement follows similarly. For the final statement let 1 ≤

r ≤ n. Now h is in the pn−r eigenspace of S′
pn ,r if and only if Wpn (h) is in the pn−r

eigenspace of Spn ,r . By Corollary 5.10, this is same as Wpn (h) ∈ S2k(�0(pr M)), that is,
h ∈ V (pn−r )S2k(�0(pr M)). 
�

Applying the above results to the case r = n − 1 we have the following corollary.

Corollary 5.13 The space S2k(�0(pn−1M)) is the p eigenspace of Spn ,n−1 and V (p)S2k
(�0(pn−1M)) is the p eigenspace of S′

pn ,n−1. Moreover, the space Snew2k (�0(N )) is contained
in the intersection of the 0 eigenspaces of Spn ,n−1 and S′

pn ,n−1.

Next we have the following proposition.

Proposition 5.14 The operators Spn ,n−1 and S′
pn ,n−1 are self-adjoint with respect to the

Petersson inner product.

Proof Since Spn ,n−1 = I + q(Vn−1), it is enough to prove that q(Vn−1) on S2k(�0(N )) is
self-adjoint. Recall that

q(Vn−1)( f ) =
p−1∑
s=1

f |2k As where As =
(

as bs
pn−1M p − sM

)
∈ SL2(Z).

By [12, Theorem 2.8.2], 〈q(Vn−1)( f ), g〉 = 〈 f,∑p−1
s=1 g|2k A−1

s 〉. We claim that for any

f ∈ S2k(�0(N ))wehave
∑p−1

s=1 f |2k As = ∑p−1
t=1 f |2k A−1

t . Note that for each 1 ≤ t ≤ p−1,
the choice of at is unique mod p. Let 1 ≤ s ≤ p − 1 be such that s ≡ at M−1 (mod p). As
t varies from 1 to p − 1, so does s. Now it is easy to see that

s ≡ at M
−1 (mod p) ⇐⇒ As At ∈ �0(N ) ⇐⇒ f |2k As = f |2k A−1

t ,

proving our claim. Thus

〈q(Vn−1)( f ), g〉 = 〈 f, q(Vn−1)g〉,
and so Spn ,n−1 is self-adjoint. Since the Atkin–Lehner operatorWpn is self-adjoint, it follows
that S′

pn ,n−1 is also self-adjoint. 
�
Now we restate and give a proof of Theorem 3 of which Theorem 2’ is a particular case.

Theorem 9 Let N = p1 p2 · · · prqα1
1 qα2

2 · · · qαs
s with pi and q j distinct primes and α j ≥ 2

for all 1 ≤ j ≤ s. Then the space of new forms Snew2k (�0(N )) is the intersection of the −1
eigenspaces of Q pi and Q′

pi as 1 ≤ i ≤ r and the 0 eigenspaces of Sq j
α j ,α j−1 and S

′
q j

α j ,α j−1

for all 1 ≤ j ≤ s. That is, f ∈ Snew2k (�0(N )) if and only if Q pi ( f ) = − f = Q′
pi ( f ) for all

1 ≤ i ≤ r and Sq j
α j ,α j−1( f ) = 0 = S′

q j
α j ,α j−1

( f ) for all 1 ≤ j ≤ s.

Proof We have already seen one side implication. Conversely suppose f ∈ S2k(�0(N ))

is such that Qpi ( f ) = − f = Q′
pi ( f ) for all 1 ≤ i ≤ r and Sq j

α j ,α j−1( f ) = 0 =
S′
q j

α j ,α j−1
( f ) for all 1 ≤ j ≤ s. It follows from the previous subsection that for each
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1 ≤ i ≤ r , S2k(�0(N/pi )) is contained in the pi eigenspace of Qpi andV (pi )S2k(�0(N/pi ))
is contained in the pi eigenspace of Q′

pi . Also fromCorollary 5.13, for each 1 ≤ j ≤ s, we get
that S2k(�0(N/q j )) is contained in the q j eigenspace of Sq j

α j ,α j−1 and V (q j )S2k(�0(N/q j ))

is contained in the q j eigenspace of S′
q j

α j ,α j−1
.

Since Qpi , Q
′
pi and Sq j

α j ,α j−1, S
′
q j

α j ,α j−1
are self-adjoint operators we get that f is

orthogonal to S2k(�0(N/p)) and V (p)S2k(�0(N/p)) for each prime divisor p of N . Thus
f is orthogonal to the old space, that is, f ∈ Snew2k (�0(N )). 
�
Next we consider N such that any prime divisor divides it with a power at most 2. Let

p be a prime such that N = p2M , so (p, M) = 1. Recall that Qp2 = (Ũp)
2Wp2 and

Qp2(Qp2 − p2)(Qp2 + p) = 0. It follows from Corollary 4.3 that if f ∈ S2k(�0(pM))

then Qp2( f ) = pQp( f ), hence Qp2 stabilizes S2k(�0(pM)) and acts with eigenvalues p2

and −p on this subspace. In particular if f ∈ S2k(�0(M)) then Qp2( f ) = p2 f and if
f ∈ Snew2k (�0(pM)) then Qp2( f ) = −p f .

Further, if f ∈ Snew2k (�0(N )) is a primitive form then Ũp( f ) = 0 and so Qp2( f ) = 0.
Thus if f ∈ Snew2k (�0(N )) then Qp2( f ) = 0.

Consider the operator Q′
p2

= Wp2Qp2Wp2 = Wp2(Ũp)
2, then Q′

p2
(Q′

p2
− p2)(Q′

p2
+

p) = 0. We have the following lemma.

Lemma 5.15 Let N = p2M with (p, M) = 1.

(1) The operator Q′
p2

stabilizes the space V (p)S2k(�0(pM)) and its subspace V (p)X p.

(2) If g(z) = f (p2z) ∈ V (p2)S2k(�0(M)) where f ∈ S2k(�0(M)), then Q′
p2

(g) = p2g.

Consequently, Q′
p2

has eigenvalues p2 and −p on the space V (p)X p.

(3) If f ∈ Snew2k (�0(pM)) and g = f (pz) ∈ V (p)Snew2k (�0(pM)). Then Q′
p2

(g) = −pg.

(4) Let q, M ′ be positive integers such that (q, p) = 1 and qM ′ | M. Then
V (pq)Snew2k (�0(pM ′)) is contained in the −p eigenspace of Q′

p2
.

Thus Q′
p2

acts with eigenvalues p2 and −p on V (p)S2k(�0(pM)).

Proof Let g = f (pz) where f ∈ S2k(�0(pM)). It follows from Lemma 5.12 that

Wp2(g) = p−kWp( f ) where Wp acts via

(
p2β 1
pMγ p

)
. Since Wp is Atkin–Lehner opera-

tor on S2k(�0(pM)) and Qp2 stabilizes S2k(�0(pM)) and Wp2 maps S2k(�0(pM)) onto
V (p)S2k(�0(pM)) we get that Q′

p2
(g) belongs to V (p)S2k(�0(pM)). Thus Q′

p2
stabilizes

V (p)S2k(�0(pM)).
In particular, if f ∈ Snew2k (�0(pM)), since Wp preserves the space of newforms, we get

that Wp2(g) belongs to Snew2k (�0(pM)). Thus

Q′
p2(g) = Wp2Qp2(Wp2(g)) = −pWp2(Wp2(g)) = −pg,

proving (3).
Recall that V (p)X p = V (p)S2k(�0(M))⊕V (p2)S2k(�0(M)). Let g(z) = f (p2z)where

f ∈ S2k(�0(M)). Then by Lemma 5.12 we get that Wp2(g) = p−2k f and thus

Q′
p2(g) = Wp2Qp2(p

−2k f ) = p2Wp2(p
−2k f ) = p2g,

proving a part of (2). Now we shall complete the proof of (1) and (2).
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Let g(z) = f (pz) where f ∈ S2k(�0(M)). By Lemma 5.12, Wp2(g) = g and using
Lemma 5.3,

Q′
p2(g) = Wp2Qp2(g) = pWp2(p

1−2kTp( f ) − g) = p2Tp( f )(p
2z) − pg,

which clearly belongs to V (p)X p , showing (1). Now following arguments as in Corollary 5.4
and Proposition 5.5, we get that Q′

p2
acts with eigenvalues p2 and −p on V (p)X p and the

p2 eigenspace of Q′
p2

inside V (p)X p is V (p2)S2k(�0(M)).

To prove (4), we check that the operators V (q) and Q′
p2

on S2k(�0(p2M ′)) com-

mute. Since (Ũp)
2 commutes with V (q) [1, Lemma 15] it is enough to check that

Wp2 commutes with V (q). Let Wp2 acts via

(
p2β 1
Nγ p2

)
of determinant p2, then

(
q 0
0 1

)
Wp2

(
Wp2

(
q 0
0 1

))−1

belongs to�0(N/q). So for f ∈ S2k(�0(N/q)),Wp2V (q)( f )

= V (q)Wp2( f ). Hence Q′
p2
V (pq)( f ) = V (q)Q′

p2
V (p)( f ) for f ∈ Snew2k (�0(pM ′)).

We note that V (p)Snew2k (�0(pM ′)) is contained in the −p eigenspace of Q′
p2

and so,

Q′
p2
V (pq)Snew2k (�0(pM ′)) = −pV (q)V (p)Snew2k (�0(pM ′)) concluding the proof.

Finally, since

V (p)S2k(�0(pM)) = V (p)Snew2k (�0(pM)) ⊕ V (p)X p ⊕
⊕qM ′|M,(q,p)=1V (pq)Snew2k (�0(pM

′)),

we get that Q′
p2

acts with eigenvalues p2 and −p on V (p)S2k(�0(pM)). 
�

Proposition 5.16 The operators Q p2 = (Ũp)
2Wp2 and Q′

p2
= Wp2Qp2Wp2 are self-

adjoint with respect to the Petersson inner product.

Proof The proof is similar to that of Proposition 5.7. 
�
Now we restate and prove Theorem 2.

Theorem 10 Let N = M2
1M where M1, M are square-free and coprime. Then f ∈

Snew2k (�0(N )) if and only if Q p( f ) = − f = Q′
p( f ) for all primes p dividing M and

Qp2( f ) = 0 = Q′
p2

( f ) for all primes p dividing M1.

Proof The one side implication is clear.
Conversely if f ∈ S2k(�0(N )) is such that Qp( f ) = − f = Q′

p( f ) for all primes p | M ,
then as before f is orthogonal to both S2k(�0(N/p)) and V (p)S2k(�0(N/p)) for all p | M .

Letq be a prime dividingM1 and N = q2N ′, so (q, N ′) = 1.Wehave already checked that
Q′

q2
stabilizes S2k(�0(N/q)) = S2k(�0(qN ′)) and acts with eigenvalues q2 and−q . Further

it follows from Lemma 5.15 that Q′
q2

stabilizes V (q)S2k(�0(N/q)) = V (q)S2k(�0(qN ′))
and actswith eigenvalues q2 and−q . Thus if Qq2( f ) = 0 = Q′

q2
( f ) for all primes q dividing

M1 then f is orthogonal to both S2k(�0(N/q)) and V (q)S2k(�0(N/q)) for all q | M1. Hence
f is in the new space at level N . 
�
Let p be an odd prime. Next we shall consider the action of twisting operators Rp and Rχ

[1, Sect. 6] where Rp is the twist by the Dirichlet character given by Kronecker symbol
( ·
p

)
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and Rχ is the twist by the Dirichlet character given by
(−1

·
)
. That is, if f (z) = ∑∞

n=1 anq
n ∈

S2k(�0(N )) then

Rp( f )(z) =
∞∑
n=1

(
n

p

)
anq

n, Rχ ( f )(z) =
∞∑
n=1

(−1

n

)
anq

n .

By [1, Lemma 33], Rp and Rχ are operators on S2k(�0(N )) provided p2 | N and 16 | N
respectively.

It is well known that Rp and Rχ are self-adjoint operators with respect to the Petersson
inner product.

Lemma 5.17 Let N = pnM where p is odd and coprime to M and n ≥ 2. If f ∈
Snew2k (�0(N )), then (Rp)

2( f ) = f . For 1 ≤ α ≤ n the space V (pα)(S2k(�0(pn−αM)))

is contained in the 0 eigenspace of R2
p.

Proof If f (z) = ∑∞
n=1 anq

n ∈ Snew2k (�0(N )) is a primitive form then since p2 | N we have
ap = 0 and consequently am = 0 for any m divisible by p. Thus f (z) = ∑∞

n=1
(n,p)=1

anqn .

Since Snew2k (�0(N )) has a basis of primitive forms, this holds for any f ∈ Snew2k (�0(N )). It
now follows that

R2
p( f )(z) =

∞∑
n=1

(n,p)=1

(
n2

p

)
anq

n =
∞∑
n=1

(n,p)=1

anq
n = f (z).

Let g(z) = f (pαz) where f (z) = ∑∞
n=1 anq

n ∈ S2k(�0(pn−αM)). Then g(z) =∑∞
n=1 anq

pαn . Since α ≥ 1 we have Rp(g) = 0. Hence the lemma follows. 
�
Following exactly similar arguments we also have the following lemma.

Lemma 5.18 Let N = 2nM with M odd and n ≥ 4. If f ∈ Snew2k (�0(N )), then (Rχ )2( f ) =
f . For 1 ≤ α ≤ n the space V (pα)(S2k(�0(pn−αM))) is contained in the 0 eigenspace of
R2

χ .

Since R2
p and R2

χ are self-adjoint operators, using Corollary 5.13 and Lemma 5.17 and
Lemma 5.18, and following a similar argument as in Theorem 9 we obtain the following
theorem (Theorem 4 of Sect. 2).

Theorem 11 Let N = 2β p1 p2 · · · prqα1
1 qα2

2 · · · qαs
s where pi , qi are distinct odd primes

and β ≥ 4 and α j ≥ 2 for all 1 ≤ j ≤ s. Then f ∈ Snew2k (�0(N )) if and only if Q pi ( f ) =
− f = Q′

pi ( f ) for all 1 ≤ i ≤ r , (Rq j )
2( f ) = f for all 1 ≤ j ≤ s and (Rχ )2( f ) = f , and

Sqγ ,γ−1( f ) = 0 for all primes q such that qγ ‖N with γ ≥ 2.

6 Characterization of old spaces

In the previous section we described the space of newforms in S2k(�0(N )) as a common
eigenspace of certain Hecke operators. In this section we extend this description to the
subspaces of old forms of typeV (d)Snew2k (�0(M)) that appear in the direct sumdecomposition
of the old space Sold2k (�0(N )) in (1).

We first consider the case when N is square-free. In the theorem below we characterize
the various summands in the old space as common eigenspaces of the operators Qp , Q′

p as
p varies over the prime divisors of N .
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Theorem 12 Let N be square-free and f ∈ S2k(�0(N )). Then

(1) f ∈ S2k(�0(1)) if and only if Q p( f ) = p f for all p | N.
(2) Let 1 �= M | N. Then f ∈ Snew2k (�0(M)) if and only if Q p( f ) = − f = Q′

p f for all
p | M and Qq( f ) = q f for all q | (N/M).

(3) Let 1 �= M ′ | N. Then f ∈ V (M ′)S2k(�0(1)) if and only if Q′
q( f ) = q f for all q | M ′

and Qq( f ) = q f for all q | (N/M ′).
(4) Let M and M ′ > 1 and MM ′ | N. Then f ∈ V (M ′)Snew2k (�0(M)) if and only if

Q p( f ) = − f = Q′
p f for all p | M, Q′

q( f ) = q f for all q | M ′ and Qq( f ) = q f for
all q | (N/MM ′).

The proof relies on the description of eigenspaces of Qp and Q′
p in Sect. 5.1 and the following

lemma.

Lemma 6.1 Let dM | N where M �= 1 and d is coprime to M. If f ∈ V (d)Snew2k (�0(M)),
then Qp( f ) = − f = Q′

p f for all p | M.

Proof Let f = V (d) f1 where f1 ∈ Snew2k (�0(M)) and p be a prime divisor of M . Then
Qp( f ) = ŨpWp,N (V (d) f1) where Wp,N is the Atkin–Lehner operator on S2k(�0(N )).
Note that for f ∈ S2k(�0(M)), we have Wp,N ( f ) = Wp,M ( f ). Further, Wp,N commutes
with V (d) on S2k(�0(M)) as the matrix Wp,N V (d)(V (d)Wp,N )−1 ∈ �0(M), and by [1,
Lemma 15] Ũp commutes with V (d) since (d, p) = 1. Hence by Theorem 8,

Qp( f ) = V (d)ŨpWp,M f1 = V (d)Qp( f1) = −V (d) f1 = − f.

The case of Q′
p follows similarly. 
�

Proof of Theorem 12 We shall give a proof of (4). The other parts follow similarly. Let M
and M ′ > 1 and N = MM ′t for some t ∈ N.

If f ∈ V (M ′)Snew2k (�0(M)) then by Lemma 6.1, Qp( f ) = − f = Q′
p f for all p | M .

Further for each q | M ′, V (M ′)Snew2k (�0(M)) ⊆ V (q)S2k(�0(N/q)), and so Q′
q( f ) = q f

for all q | M ′. Similarly for each q | t we have V (M ′)Snew2k (�0(M)) ⊆ S2k(�0(N/q)) and
so Qq( f ) = q f for all q | t .

Conversely let f ∈ S2k(�0(N )) be such that Qp( f ) = − f = Q′
p f for all

p | M , Q′
q( f ) = q f for all q | M ′ and Qq( f ) = q f for all q | (N/MM ′). Let

q be any prime such that q | M ′t . Let V := ⊕dr |N ,q|r V (d)Snew2k (�0(r)) and W :=
⊕dr |N ,(q,r)=1V (d)Snew2k (�0(r)). Then S2k(�0(N )) = V ⊕ W and since N is square-free
we haveW = Xq . By Lemma 6.1, V is contained in the intersection of the −1 eigenspace of
Qq and Q′

q . Now f can be uniquely written as f = v + w with v ∈ V and w ∈ W . If q | t
then Qq f = q f and so, qv + qw = Qqv + Qqw = −v + Qqw where Qqw ∈ W . Thus
v = 0 and f ∈ W . In the case q | M ′ we get the same conclusion by using the operator Q′

q
instead. Since the above argument works for all primes dividing M ′t , we get that f belongs
to ⊕dr |N ,r |MV (d)Snew2k (�0(r)).

Now let q | M ′ be any prime. Then ⊕dr |N ,r |M,(d,q)=1V (d)Snew2k (�0(r)) ⊆ S2k(�0(N/q))

and⊕dr |N ,r |M,q|dV (d)Snew2k (�0(r)) ⊆ V (q)S2k(�0(N/q)). Thus f ∈ Xq . Since Q′
q f = q f

and the q eigenspace of Q′
q in Xq is precisely V (q)S2k(�0(N/q)), we get that f belongs to

⊕dr |N ,r |M,q|dV (d)Snew2k (�0(r)). Applying the same argument for all primes q dividing M ′
we get that f belongs to ⊕dr |N ,r |M,M ′|dV (d)Snew2k (�0(r)).

Let q be a prime dividing t . Then ⊕dr |N ,r |M,M ′|d,(d,q)=1V (d)Snew2k (�0(r)) ⊆ S2k
(�0(N/q))while⊕dr |N ,r |M,M ′|d,q|dV (d)Snew2k (�0(r)) ⊆ V (q)S2k(�0(N/q)). Thus f ∈ Xq .
Since Qq f = q f , f ∈ ⊕dr |N ,r |M,M ′|d,(d,q)=1V (d)Snew2k (�0(r)). As before applying this
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argument for all primes q dividing t we get that f belongs to ⊕dr |MM ′,r |M,M ′|dV (d)Snew2k
(�0(r)) := Y .

Finally, let p be a prime dividing M . Then Y = Y1 ⊕ Y2 ⊕ Y3 where Y1 =
⊕dr |MM ′,r |M,M ′|d,(dr,p)=1V (d)Snew2k (�0(r)), Y2 = ⊕dr |MM ′,r |M,M ′|d,p|dV (d)Snew2k (�0(r))
and Y3 = ⊕dr |MM ′,r |M,M ′|d,p|r V (d)Snew2k (�0(r)). Clearly, Y1 ⊕ Y2 ⊆ X p . We write f
uniquely as f = g + h where g ∈ Y1 ⊕ Y2 and h ∈ Y3. Since Qp( f ) = − f = Q′

p f
and Qp(h) = −h = Q′

ph we get that Qp(g) = −g = Q′
pg. Thus g is orthogonal to X p ,

but g ∈ X p , hence g = 0. Applying the same argument for all primes p dividing M we get
that f ∈ ⊕dr |MM ′,r=M,M ′|d which is precisely V (M ′)Snew2k (�0(M)). 
�

We now consider the case N = pn where p is a prime. The characterization of the old
space summands will be done inductively on n. The case n = 1 follows from Theorem 12.
We assume that n ≥ 2. It follows from (1) that

S2k(�0(p
n)) = S2k(�0(p

n−1)) ⊕
n⊕

r=0

V (pn−r )Snew2k (�0(p
r )).

By Corollary 5.10, S2k(�0(pn−1)) is precisely the p eigenspace of the operator Spn ,pn−1 and
hence we can characterize the summands that appear inside the direct sum decomposition of
S2k(�0(pn−1)) using the induction hypothesis.

So we need to only deal with the spaces of type V (pn−r )Snew2k (�0(pr )) for 0 ≤ r ≤ n.
Using Lemma 5.12, the operatorWpn maps Snew2k (�0(pr )) onto V (pn−r )Snew2k (�0(pr )). Thus
a form f ∈ S2k(�0(pn)) belongs to the space V (pn−r )Snew2k (�0(pr )) if and only if Wpn ( f )
belongs to Snew2k (�0(pr )). By the previous section we already know how to characterize the
forms in Snew2k (�0(pr )), thus we can characterize Wpn ( f ) and hence f .

Using the above argument a similar statement as Theorem 12 can be made for general
level N .
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