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Explicit application of Waldspurger’s theorem

Soma Purkait

Abstract

For a given cusp form φ of even integral weight satisfying certain hypotheses, Waldspurger’s
theorem relates the critical value of the L-function of the nth quadratic twist of φ to the nth
coefficient of a certain modular form of half-integral weight. Waldspurger’s recipes for these
modular forms of half-integral weight are far from being explicit. In particular, they are expressed
in the language of automorphic representations and Hecke characters. We translate these
recipes into congruence conditions involving easily computable values of Dirichlet characters.
We illustrate the practicality of our ‘simplified Waldspurger’ by giving several examples.

1. Introduction

In 1983 Tunnell [28] gave a remarkable solution to the congruent number problem, assuming
that the celebrated Birch and Swinnerton-Dyer conjecture holds. This ancient Diophantine
question asks for the classification of congruent numbers, those positive integers which are
the areas of right-angled triangles whose sides are rational numbers. For positive n, write
En : y2 = x3 − n2x; note that En is the nth quadratic twist of E1. It is straightforward to show
that n is a congruent number if and only if the elliptic curve En/Q has positive rank. Tunnell
expresses the critical value of the L-function of En in terms of coefficients of certain modular
forms of weight 3/2. These modular forms are in turn written in terms of theta series of ternary
quadratic forms. Applying the conjecture of Birch and Swinnerton-Dyer, Tunnell is then able
to give a simple and elegant criterion for n to be a congruent number.

Tunnell’s theorem is a highly non-trivial consequence of a theorem of Waldspurger [30]. For a
given cusp form φ of even integral weight satisfying certain hypotheses, Waldspurger’s theorem
relates the critical value of the L-function of the nth quadratic twist of φ to the nth coefficient of
a certain modular form of half-integral weight. Waldspurger’s recipes for these modular forms
of half-integral weight are far from being explicit. In particular, they are expressed in the
language of automorphic representations and Hecke characters. We translate these recipes into
congruence conditions involving easily computable values of Dirichlet characters. We illustrate
the practicality of our ‘simplified Waldspurger’ by giving several Tunnell-like examples, of
which the following is the simplest.

Proposition 1.1. Let E be the elliptic curve of conductor 50 given by

E : Y 2 +XY + Y =X3 +X2 − 3X + 1. (1)

Let Q1, Q2, Q3, Q4 be the following positive-definite ternary quadratic forms,

Q1 = 25x2 + 25y2 + z2, Q2 = 14x2 + 9y2 + 6z2 + 4yz + 6xz + 2xy,
Q3 = 25x2 + 13y2 + 2z2 + 2yz, Q4 = 17x2 + 17y2 + 3z2 − 2yz − 2xz + 16xy.
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Let n be a positive square-free number such that 5 - n. Then,

L(E−n, 1) =
L(E−1, 1)√

n
· c2n

where E−n is the −nth quadratic twist of E and

cn =
4∑
i=1

(−1)i−1

2
·#{(x, y, z) :Qi(x, y, z) = n}.

For the elliptic curve E in (1) and n a positive square-free integer such that 5 - n, we give a
similar formula for L(En, 1) that involves 38 quadratic forms.

We would like to note here that all of the examples we consider deal with newforms whose
levels are neither odd nor square-free. In fact, for newforms φ of weight k − 1 and odd and
square-free level N with L(φ, 1) 6= 0 and k ≡ 3 (mod 4) there is an explicit recipe by Böcherer
and Schulze-Pillot [4] for constructing a modular form of weight k/2, level 4N that is Shimura
equivalent to φ. Their method uses generalized theta series and the Eichler correspondence
with automorphic forms on quaternion algebras. In particular, they show that given a rational
elliptic curve E of odd and square-free conductor, an inverse Shimura lift of φE (the newform
corresponding to E) comes from ternary quadratic forms if and only if L(E, 1) 6= 0. We note that
the form they construct belongs to the Kohnen subspace [15]. It follows from Waldspurger [30]
that in these cases the space of Shimura equivalent forms at level 4N is two-dimensional. In
a recent paper Hamieh [12] used [4] and Waldspurger’s recipe to compute a basis for this
two-dimensional space.

We would also like to mention the work of Shin-ichi Yoshida [31] in which he considers 2π/3-
and π/3-congruent number problems and uses Waldspurger’s result (Corollary 5.2 below) to
give a Tunnell-like criterion for a square-free number in certain congruence classes to be 2π/3-
and π/3-congruent.

The paper is arranged as follows. In § 2 we review Shimura’s decomposition of the space
of cusp forms of a certain level and half-integral weight into certain subspaces appearing in
Waldspurger’s theorem. In § 3 we review the correspondence between Dirichlet characters and
Hecke characters and we prove a result that allows us to evaluate components of a Hecke
character corresponding to a given Dirichlet character. Next, in § 4 we review the correspon-
dence between modular forms of even integral weight and automorphic representations and
prove a result needed for simplifying the hypotheses of Waldspurger’s theorem. In § 5 we state
Waldspurger’s theorem in simplified form. To apply Waldspurger’s theorem in conjunction with
the Birch and Swinnerton-Dyer conjectures it is convenient to express the period of the nth
twist of a given elliptic curve in terms of the period of the elliptic curve itself. We do this in § 6.
To apply Waldspurger’s recipes we need to be able to answer questions of the following form:
for a given cusp form of half-integral weight f =

∑
anq

n, and positive integers a, M , is an = 0
for all n≡ a (mod M)? We give an algorithm for answering this question in § 7. Finally, § 8
is devoted to extensive examples which combine our algorithm [18] for computing Shimura’s
decomposition with Waldspurger’s theorem as made explicit in this paper.

2. Shimura decomposition

Let k > 3 be an odd integer and N a positive integer such that 4 |N . Let χ be an even Dirichlet
character modulo N . We denote by Sk/2(N, χ) the space of cusp forms of weight k/2, level
N and character χ. Let S0

k/2(N, χ) be the subspace of Sk/2(N, χ) spanned by single-variable†

†The term ‘single-variable theta series’ refers to the theta series of weights 1/2 and 3/2 that come from a

quadratic form of one variable and are of the form
∑∞
n=−∞ ψ(n)nνqn

2
, where ν ∈ {0, 1} and ψ is a Dirichlet

character such that ψ(−1) = (−1)ν .



218 S. PURKAIT

theta series when k = 3; for k > 5, we define S0
k/2(N, χ) = 0. More precisely, a generating set

for S0
3/2(N, χ) is given by

S =
{ ∞∑
m=1

ψ(m)mqtm
2

: 4r2ψt |N and ψ is a primitive odd character of

conductor rψ such that χ=
(
−4t
.

)
ψ

}
,

which in fact constitutes a basis for S0
3/2(N, χ), as shown in [18]. The interesting part (from the

point of view of Waldspurger’s theorem) of the space Sk/2(N, χ) is the orthogonal complement
of S0

k/2(N, χ) with respect to the Petersson inner product, denoted by S′k/2(N, χ).
In his thesis Basmaji [3] gave an algorithm for computing a basis for the space of half-integral

weight modular forms of level divisible by 16. The main idea of the algorithm is to use theta
series Θ =

∑∞
n=−∞ qn

2
, Θ1 = (Θ− V (4)Θ)/2 and the following embedding,

ϕ : Sk/2(N, χ)→ S × S, f 7→ (fΘ, fΘ1),

where S = S(k+1)/2(N, χ · χ(k+1)/2
−1 ) and V is the usual shift operator. This idea has been

generalized by Steve Donnelly for level divisible by four and is implemented in MAGMA.
Let N ′ =N/2. For M |N ′ such that Cond(χ2) |M and a newform φ ∈ Snew

k−1(M, χ2) Shimura
defines

Sk/2(N, χ, φ) = {f ∈ S′k/2(N, χ) : Tp2(f) = λp(φ)f for almost all p -N},

where Tp(φ) = λp(φ)φ, and gives the following decomposition theorem [22].

Theorem 1 (Shimura [22]). We have S′k/2(N, χ) =
⊕

φ Sk/2(N, χ, φ) where φ runs

through all newforms φ ∈ Snew
k−1(M, χ2) with M |N ′ and Cond(χ2) |M .

We point out that the summands Sk/2(N, χ, φ) occur in Waldspurger’s theorem and their
computation is necessary for explicit applications of that theorem. However, the above theorem
is not suitable for computation since for any particular prime p -N , we do not know if it is
included or excluded in the ‘almost all’ condition. In [18] we proved the above theorem with a
more precise definition for the spaces Sk/2(N, χ, φ):

Sk/2(N, χ, φ) = {f ∈ S′k/2(N, χ) : Tp2(f) = λp(φ)f for all p -N},

whilst showing that our definition is equivalent to Shimura’s definition. We also proved the
following theorem that gives an algorithm for computing the Shimura decomposition.

Theorem 2 (Purkait [18]). Let φ be a newform of weight k − 1, level M dividing N ′,
and character χ2. Let p1, . . . , pn be primes not dividing N satisfying the following: for every
newform φ′ 6= φ of weight k − 1, level dividing N ′ and character χ2, there is some pi such that
λpi

(φ′) 6= λpi
(φ), where Tpi

(φ) = λpi
(φ) · φ. Then

Sk/2(N, χ, φ) = {f ∈ Sk/2(N, χ) : Tp2i (f) = λpi(φ)f for i= 1, . . . , n}.

3. Correspondence between Dirichlet characters and Hecke characters on A×Q/Q× of
finite order

We shall need the correspondence between Dirichlet characters and Hecke characters on
A×Q/Q× of finite order. This material is in Tate’s thesis [26], but we found the presentation in
[6, § 3.1] more useful.
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Proposition 3.1. Let χ = (χp) be a character on A×Q . Then there exists a finite set S
of places, including the Archimedean one, such that if p /∈ S, then χp is trivial on the unit
group Z×p .

Recall that if χp is trivial on the unit group Z×p , then χp is unramified. Thus by the above
proposition, χp is unramified for all but finitely many p.

Theorem 3 (Bump [6, Proposition 3.1.2]). Suppose that χ = (χp) is a character of finite
order on A×Q/Q×. There exists an integer N whose prime divisors are precisely the non-
Archimedean primes p such that χp is ramified, and a primitive Dirichlet character χ modulo
N such that if p -N is non-Archimedean, then χ(p) = χp(p). This correspondence χ 7→ χ is a
bijection between characters of finite order of A×Q/Q× and the primitive Dirichlet characters.

In our work, we shall need to start with a Dirichlet character χ of modulus N and then
perform computations with the corresponding Hecke character χ. We collect here some facts
that will help us with these computations.

Lemma 3.2. We keep the notation of Theorem 3.

(i) For any α ∈Q×,
∏
χp(α) = 1 where the product is taken over all places.

(ii) Suppose that p=∞ and α ∈Q×∞ = R×. Then χ∞(α) = 1 if α > 0 or if χ has odd order.
(iii) Let p be a non-Archimedean prime such that p |N and α, β ∈ Zp be non-zero. Suppose

that β ≡ α (mod αNZp). Then χp(β) = χp(α).
(iv) Let p be non-Archimedean such that p -N . Then χp is unramified.

Proposition 3.3. Let χ be a Dirichlet character modulo N (not necessarily primitive) and
let χ = (χp) be the corresponding character on A×Q/Q×. Let a ∈ Z be non-zero. For a prime q,
let νq(a) denote the exponent of the highest power of q that divides a.

(a) If q -N , then χq(a) = χ(q)r where r = νq(a).
(b) Suppose that q divides N and let q1, . . . , qr be the other primes dividing N . Let b be a

positive integer satisfying

b≡

{
a (mod aNZq)
1 (mod NZqi) i= 1, . . . , r;

such b can easily be constructed by the Chinese remainder theorem. Write

b= qνq(a)
s∏
j=1

`
βj

j

where the `j are distinct primes. Then

χq(a) =
s∏
j=1

χ(`j)−βj .

Proof. Let N ′ be the conductor of χ and note that N ′ |N . Now if q -N , then χq is unramified.
Write a= qra′ where q - a′. Then a′ ∈ Z×q . Thus, by definition of unramified, χq(a′) = 1.
Moreover, from Theorem 3, χq(q) = χ(q). This proves part (a).

Now suppose that q |N and let q1, . . . , qr be the other primes dividing N . Let b be as in the
proposition. Since N ′ |N , we have

b≡

{
a (mod aN ′Zq)
1 (mod N ′Zqi) i= 1, . . . , r.



220 S. PURKAIT

By Lemma 3.2, χq(b) = χq(a), and χqi(b) = 1 for i= 1, . . . , r. Now

χq(a) = χq(b)

=
∏
p6=q

χp(b)−1 by part (i) of Lemma 3.2,

=
∏
p-N

χp(b)−1 since χqi
(b) = 1,

=
s∏
j=1

χ(`j)−βj using part (a).

This completes the proof. 2

4. Local components of the automorphic representations associated to modular forms of
even integer weight

Let k be a positive odd integer with k > 3. Let φ=
∑∞
n=1 anq

n ∈ Snew
k−1(N, χ) be a newform of

weight k − 1, level N and character χ.
We can associate to φ an automorphic representation ρ. Let ρp be the local component of ρ

at a prime p.
If φ=

∑∞
n=1 anq

n is an eigenform, then we define its twist by a character µ to be the modular
form φµ =

∑∞
n=1 anµ(n)qn.

Waldspurger works with the following different definition of twist: let φ be a newform of
weight k − 1 and character χ. Let µ a Dirichlet character. We denote by φ⊗ µ the (unique)
newform of weight k − 1 with character χµ2 satisfying λp(φ⊗ µ) = µ(p)λp(φ) for almost all
primes p, where λp is the eigenvalue under Tp.

Now fix a prime number p. Let ξp be the set of primitive Dirichlet characters with p-power
conductor. The following hold (see [30, § III]):

(i) ρp is supercuspidal if and only if for all µ ∈ ξp, the level of φ⊗ µ is divisible by p and
λp(φ⊗ µ) = 0;

(ii) ρp is an irreducible principal series if and only if either:
(a) there exists a character µ in ξp such that p does not divide the level of φ⊗ µ; or
(b) there exist two distinct characters µ1, µ2 in ξp such that λp(φ⊗ µ1) 6= 0, λp(φ⊗

µ2) 6= 0;
(iii) ρp is a special representation if and only if the following conditions hold:

(a) for all µ ∈ ξp, the level of φ⊗ µ is divisible by p; and
(b) there exists a unique µ in ξp such that λp(φ⊗ µ) 6= 0.

We shall need the following theorem which is extracted from the paper of Atkin and Li [1].

Theorem 4 (Atkin and Li [1]). Let φ=
∑∞
n=1 anq

n be a newform of weight k − 1,
character χ and level N . Let µ be a primitive character of conductor m. Then the following
hold.

(a) If gcd(m, N) = 1, then φ⊗ µ= φµ, and it is a newform of weight k − 1, character χµ2

and level Nm2 (see [1, Introduction]).
(b) Suppose that µ is of q-power conductor where q |N and write N = qsM where q -M .

Then φ⊗ µ is a newform of weight k − 1, character χµ2 and level qs
′
M for some s′ > 0.

Moreover, λp(φ⊗ µ) = µ(p)λp(φ) for all primes p -N (see [1, Theorem 3.2]). In particular,
if s= 1 and χ is trivial, then for µ with conductor qr, r > 1, it turns out that φ⊗ µ= φµ is a
newform of level q2rM and character µ2 (see [1, Corollary 4.1]).

(c) Let q |N . Suppose that φ is q-primitive and aq = 0. Then for all characters µ of q-power
conductor, φ⊗ µ= φµ is a newform of level divisible by N . (Recall that φ is q-primitive if φ
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is not a twist of any newform of level lower than N by a character of conductor equal to some
power of q.) See [1, Proposition 4.1].

(d) Let N = qsM where q -M ; let Q= qs. Let χQ be the Q-part† of the character χ. If s is
odd and cond χQ 6

√
Q, then φ is q-primitive.

Now suppose that q = 2. Then, if s= 2, then φ is always 2-primitive; if s is odd, then φ is
2-primitive if and only if cond χQ <

√
Q; if s is even and s> 4, then φ is 2-primitive if and

only if cond χQ =
√
Q (see [1, Theorem 4.4]).

We deduce the following corollaries which we use later.

Corollary 4.1. Let φ=
∑∞
n=1 anq

n ∈ Snew
k−1(N) be a newform with trivial character. Let

ρ2 be the local component at 2 of the corresponding automorphic representation. Suppose that
either N is odd or ν2(N) = 1. Then ρ2 is not supercuspidal. Further, if ν2(N) > 2 and φ is
2-primitive, then ρ2 is supercuspidal, hence if either ν2(N) = 2 or ν2(N)> 1 is odd then ρ2

is supercuspidal.

Proof. If N is odd, take µ to be the identity character. Thus, µ ∈ ξ2 and the level of φ⊗ µ is
odd and, hence, ρ2 is not supercuspidal. If N = 2M such that M is odd, then a2 6= 0, so taking
µ as the identity character we get that λ2(φ⊗ µ) = a2 6= 0 and, thus, ρ2 is not supercuspidal.

Let ν2(N) > 2. Then a2 = 0. If φ is 2-primitive, then it follows using part (c) of Theorem 4
that for any µ ∈ ξ2, φ⊗ µ= φµ is newform of level divisible by 2. Write T2(φµ) =

∑∞
n=1 bnq

n.
Then, bn = a2nµ(2n) + µ2(2)2k−2an/2µ(n/2) for all n. Thus, T2(φµ) = 0. Therefore, λ2(φ⊗
µ) = λ2(φµ) = 0 and ρ2 is supercuspidal. The final statement is a direct application of part (d)
of Theorem 4. 2

Corollary 4.2. Let φ be as in the above corollary.
(i) If N = pM with M coprime to p and ap 6= 0, then ρp is a special representation.
(ii) If p -N , then ρp is an irreducible principal series.

Proof. We first prove part (i). By part (b) of Theorem 4, for any µ ∈ ξp, the level of φ⊗ µ
is divisible by p. Further if µ is the identity character then λp(φ⊗ µ) = ap 6= 0; we claim that
this is unique such character in ξp. Let µ ∈ ξp be such that µ is a character of conductor pr,
r > 1. Then φ⊗ µ= φµ is a newform in Sk−1(p2rM, µ2) such that λp(φµ) = apµ(p) = 0 and,
hence, λp(φ⊗ µ) = 0.

The proof of part (ii) is obvious and does not require the condition that newform φ has
trivial character. 2

5. Waldspurger’s theorem and notation

In this section we present Waldspurger’s theorem. We introduce and simplify the notation used
in the theorem. This is needed in the following section where we will discuss how to use the
theorem for elliptic curves and compute critical values of L-functions in terms of coefficients
of corresponding half-integral weight forms. An important application is the computation of
orders of the Tate–Shafarevich groups assuming the Birch and Swinnerton-Dyer conjecture.

Let k be positive integers with k > 3 odd. Let χ be an even Dirichlet character with modulus
divisible by 4. Fix a newform φ of level Mφ in Snew

k−1(Mφ, χ
2). Let p be a prime number. Let νp

be the p-adic valuation on Q and Q×p . Let mp = νp(Mφ) and λp be the Hecke eigenvalue of φ
corresponding to the Hecke operator Tp.

†Let χ be a Dirichlet character with modulus pr11 . . . pr
n

n where the pi are distinct primes. Then χ can be
written uniquely as a product

∏
χ
p

ri
i

where χ
p

ri
i

has modulus p
ri
i . See [1].
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Let ρ be the automorphic representation associated to φ and ρp be the local component of
ρ at p. Let S be the (finite) set of primes p such that ρp is not irreducible principal series. If
p /∈ S, ρp is equivalent to π(µ1,p, µ2,p) where µ1,p and µ2,p are two continuous characters on
Qp such that µ1,pµ2,p 6= |·|±1. Let (H1) be the following hypothesis:

(H1) For all p /∈ S, µ1,p(−1) = µ2,p(−1) = 1.

Theorem 5 (Flicker [11]). There exists N such that Sk/2(N, χ, φ) 6= {0} if and only if the
hypothesis (H1) holds.

Theorem 6 (Vigneras [29]). Flicker’s condition (H1) always holds whenever φ is a newform
of even weight with trivial character.

Proof. For the proof refer to [29]. 2

From the theorems of Flicker and Vigneras we have the following easy corollary.

Corollary 5.1. Let φ be a newform of weight k − 1, level Mφ and trivial character χtriv.
Let χ be a Dirichlet character satisfying χ2 = χtriv. Then there exists some N such that
Sk/2(N, χ, φ) 6= {0}.

Henceforth, we will always assume that φ has trivial character and χ is quadratic, thus the
conclusion of the corollary holds. We will now introduce several pieces of notation used by
Waldspurger [30, §VIII] before stating his main theorem.

Let χ0 be the Dirichlet character associated to χ given by

χ0(n) := χ(n)
(
−1
n

)(k−1)/2

.

Let χ0,p be the local component of χ0 at a prime p. For each prime p we will define (page 225)
a non-negative integer ñp that depends only on the local components ρp and χ0,p. Let Ñφ be
given by

Ñφ :=
∏
p

pñp .

For prime p and natural number e, we will also define a set Up(e, φ) which consists of some
finite number of complex-valued functions on Q×p having support in Zp ∩Q×p .

Let Nsc be the set of positive square-free numbers and for n ∈ N, let nsc be the square-free
part of n. Let A be a function on the set Nsc having values in C and E be an integer such
that Ñφ | E. We use the notation ep = νp(E) for all prime numbers p and let c= (cp) be any
element of

∏
p Up(ep, φ). Define

f(c, A)(z) :=
∞∑
n=1

A(nsc)n(k−2)/4
∏
p

cp(n) qn, z ∈H

and let U(E, φ, A) be the space generated by these functions f(c, A) on H where c ∈∏
p Up(ep, φ).
With the above notation, we are now ready to state the main theorem of Waldspurger

[30, Théorème 1].

Theorem 7 (Waldspurger [30]). Let (H2) be the hypothesis that one of the following holds:
(a) the local component ρ2 is not supercuspidal;
(b) the conductor of χ0 is divisible by 16;
(c) 16 |Mφ.
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Let χ be a Dirichlet character and φ be a newform of weight k − 1 and character χ2 such
that (H1) and (H2) hold. Then there exists a function Aφ on Nsc such that for t ∈ Nsc:

Aφ(t)2 := L
(
φ⊗ χ−1

0 χt,
k − 1

2

)
· ε
(
χ−1

0 χt,
1
2

)
. (2)

Moreover, for N > 1,

Sk/2(N, χ, φ) =
⊕

U(E, φ, Aφ)

where the sum is over all E > 1 such that Ñφ | E |N .

Here χt = ( t· ) is a quadratic character with conductor |t| if t≡ 1 (mod 4), otherwise with
conductor |4t| if t≡ 2, 3 (mod 4).

Remark. Note that the function Aφ depends only on χ and φ. However, Aφ is not
determined by (2), so we cannot use this theorem for computing a basis for the space
Sk/2(N, χ, φ). However, in Theorem 2 we have already given an algorithm to compute this
space, and if f(z) =

∑∞
n=1 anq

n is one of the basis elements, then we can express the critical
value of the L-function of the twist of the newform φ by the character χ−1

0 χt, in terms of the
square of the Fourier coefficient at and the factor ε(χ−1

0 χt, 1/2) which depends on the local
components of φ and χ0.

It is to be noted that ε(χ, 1/2) for any Hecke character χ can be computed as shown in Tate’s
article [27]. In particular, when χ is quadratic, ε(χ, 1/2)=1. Since we will be dealing only with
quadratic characters, we can ignore the ε-factor. Moreover, note that if χ is quadratic, then
the conductor of χ0 is at most divisible by 8, so we do not need to consider possibility (b) of
the hypothesis (H2).

Further by Corollary 4.1, possibilities (a) and (c) of the hypothesis (H2) can be simply stated
in terms of the level Mφ. Assuming χ to be quadratic, Waldspurger’s theorem is applicable
whenever one of the following holds: Mφ is odd; ν2(Mφ) = 1 and λ2 6= 0; or ν2(Mφ) > 4. The
last condition is the same as possibility (c) of (H2).

We also state the following corollary of Waldspurger [30, p. 483].

Corollary 5.2 (Waldspurger [30]). Let φ ∈ Snew
k−1(Mφ, χ

2) be a newform such that φ
satisfies (H1). Suppose† that f(z) =

∑∞
n=1 anq

n ∈ Sk/2(N, χ, φ) for some N > 1 such that Mφ

divides N/2. Suppose that n1, n2 ∈ Nsc such that n1/n2 ∈Q×p
2

for all p |N . Then we have the
following relation:

a2
n1

L(φχ−1
0 χn2 , 1)χ(n2/n1)nk/2−1

2 = a2
n2

L(φχ−1
0 χn1 , 1)nk/2−1

1 .

In what follows (·, ·)p denotes the Hilbert symbol defined on Q×p ×Q×p . Recall that (see, for
example, [8]) if p= 2 and a, b are odd, then

(2sa, 2tb)2 =
(

2
|a|

)t( 2
|b|

)s
(−1)(a−1)(b−1)/4.

For an odd prime p and a, b coprime to p,

(psa, ptb)p =
(
−1
p

)st(
a

p

)t(
b

p

)s
.

In particular, for an odd n, (n,−1)2 = (−1)(n−1)/2 and (2, n)2 = (−1)(n
2−1)/8. Also, if νp(n) =

0, then (p, n)p = (np ), and if νp(n) = 1 and n= pn′, then (p, n)p = (−n
′

p ).

†In this corollary we do not require f to be of the form f(c, Aφ).
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We now write down explicitly the definitions of the integers ñp and the local factors U(e, φ)
used in Waldspurger’s theorem. It should be noted that for Waldspurger’s theorem, we require
the values of the functions in Up(e, φ) only at square-free positive integers. We will first define
a certain set of functions.

Case 1: p odd. Waldspurger considered the following set of functions.

Λp := {c(0)p,δ, c
(1)
p,δ, c

(2)
p,δ, c

(3)
p,δ, c

(4)
p,δ, c

(5)
p,δ, c

(6)
p,δ : δ ∈ C}.

We are interested only in values of the functions in Λp at square-free numbers in Zp \ {0}.
Let n ∈ Zp \ {0} be square-free, that is νp(n) = 0 or νp(n) = 1. We get the following after
simplification:

c
(0)
p,δ(n) = 1,

c
(1)
p,δ(n) =

{
1 if νp(n) = 0;
δ if νp(n) = 1,

c
(2)
p,δ(n) =

{
1− (p, n)pχ0,p(p)p−1/2δ−1 if νp(n) = 0;
1 if νp(n) = 1,

c
(3)
p,δ(n) =

{
1 if νp(n) = 0;
δ − (p, n)pχ0,p(p)p−1/2 if νp(n) = 1,

c
(4)
p,δ(n) =

{
0 if νp(n) = 0;
δ(p− 1)−1 if νp(n) = 1,

c
(5)
p,δ(n) =

21/2 if νp(n) = 0 and (p, n)p =−p1/2χ0,p(p−1)δ;
0 if νp(n) = 0 and (p, n)p = p1/2χ0,p(p−1)δ;
1 if νp(n) = 1,

c
(6)
p,δ(n) =


1 if νp(n) = 0;
21/2δ if νp(n) = 1 and (p, n)p =−p1/2χ0,p(p−1)δ;
0 if νp(n) = 1 and (p, n)p = p1/2χ0,p(p−1)δ.

Case 2: p= 2. In this case Waldspurger considered the following set of functions:

Λ2 := {c(0)2,δ, c
(1)
2,δ, c

(2)
2,δ, c

(3)
2,δ, c

(4)
2,δ, c

(5)
2,δ, c

(6)
2,δ : δ ∈ C}.

Let n ∈ Z2 \ {0} be square-free so that either ν2(n) = 0 or ν2(n) = 1. We have

c
(0)
2,δ(n) =

{
1 if ν2(n) = 0;
δ if ν2(n) = 1,

c
(1)
2,δ(n) =

δ − (2, n)2χ0,2(2)2−1/2 if ν2(n) = 0 and (n,−1)2 = χ0,2(−1);
1 if ν2(n) = 0 and (n,−1)2 =−χ0,2(−1);
1 if ν2(n) = 1,

c
(2)
2,δ(n) =

δ if ν2(n) = 0 and (n,−1)2 = χ0,2(−1);
0 if ν2(n) = 0 and (n,−1)2 =−χ0,2(−1);
0 if ν2(n) = 1,

c
(3)
2,δ(n) =


δ−1 if ν2(n) = 0;
δ − (2, n)2χ0,2(2)2−1/2 if ν2(n) = 1 and (n,−1)2 = χ0,2(−1);
1 if ν2(n) = 1 and (n,−1)2 =−χ0,2(−1),
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c
(4)
2,δ(n) =


0 if ν2(n) = 0;
2δ − (2, n)2χ0,2(2)2−1/2 if ν2(n) = 1 and (n,−1)2 = χ0,2(−1);
1 if ν2(n) = 1 and (n,−1)2 =−χ0,2(−1),

c
(5)
2,δ(n) =


0 if ν2(n) = 0, (n,−1)2 = χ0,2(−1) and (2, n)2 = 21/2χ0,2(2−1)δ;
21/2δ if ν2(n) = 0, (n,−1)2 = χ0,2(−1) and (2, n)2 =−21/2χ0,2(2−1)δ;
1 if ν2(n) = 0 and (n,−1)2 =−χ0,2(−1);
1 if ν2(n) = 1,

c
(6)
2,δ(n) =


δ−1 if ν2(n) = 0;
0 if ν2(n) = 1, (n,−1)2 = χ0,2(−1) and (2, n)2 = 21/2χ0,2(2−1)δ;
21/2δ if ν2(n) = 1, (n,−1)2 = χ0,2(−1) and (2, n)2 =−21/2χ0,2(2−1)δ;
1 if ν2(n) = 1 and (n,−1)2 =−χ0,2(−1).

We will be interested in the above functions only for particular values of δ. We will specify
and further simplify them later.

Recall that λp is the Hecke eigenvalue of φ corresponding to the Hecke operator Tp for any
prime p, and mp = νp(Mφ). Let λ′p = p1−k/2λp. For p -Mφ let αp and α′p be such that

αp + α′p = λ′p,

αp · α′p = 1.

It should be noted that if φ is rational newform of weight 2, then αp 6= α′p, since otherwise
λ2
p = 4, which is a contradiction as λp is rational (pth Fourier coefficient of φ).
Next, we need to consider a subset of Q×p /Q×p

2, denoted by Ωp(φ), which is defined as

Ωp(φ) = {ω ∈Q×p /Q×p
2 : ∃f ∈ Sk/2(N, χ, φ) for some N and ∃n> 1 such that:

(i) the image of n in Q×p /Q×p
2 is ω; (ii) the nth coefficient of f 6= 0}. (3)

Note that the set Ωp(φ) depends on the newform φ and character χ that we started with.
Computation of this set is important in our applications and we will see that we need this
set only in the case when mp > 1 and λp = 0. We use the results of § 7 and our algorithm in
Theorem 2 to compute most of the elements of this set.

Waldspurger defined another set of local functions on Q×p /Q×p
2 taking values in Z/2Z:

Γp := {γe,υ : e ∈ Z, υ ∈Q×p /Q×p
2such that νp(υ)≡ e (mod 2)},

where

γe,υ(u) =
{

1 if u ∈ υQ×p
2 and νp(u) = e;

0 otherwise.

If p= 2, define

γ′e,υ = 1
2 (γe,υ + γe,5υ),

γ′′e (u) =
{

1 if ν2(u) = e;
0 otherwise,

and

γ0
e (u) =

{
1 if ν2(u) = e and (u,−1)2 =−χ0,2(−1) or ν2(u) = e+ 1;
0 otherwise.

Now we are ready to define the local factors ñp and the set Up(e, φ) for e= ñp. We will be
dealing with several cases and subcases and in each of them we will be simplifying Waldspurger’s
formulae and making them more explicit for our use.
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Case 1: p odd and mp > 1. We consider the following subcases.
(a) λp = 0.

In this case we need to compute Ωp(φ). We know that Q×p /Q×p
2 = {1, p, u, pu} where u is

unit in Zp which is a non-square mod p. If there exists a ω ∈ Ωp(φ) such that νp(ω) = 0,
then ñp =mp, and Up(ñp, φ) = {γ0,ω : ω ∈ Ωp(φ) and νp(ω) = 0}. In this case, the set
Up(ñp, φ) consists of at most the functions γ0,1 and γ0,u. Otherwise, for all ω ∈ Ωp(φ),
νp(ω) = 1. In this case ñp =mp + 1, and Up(ñp, φ) = {γ1,ω : ω ∈ Ωp(φ) and νp(ω) = 1},
hence Up(ñp, φ) consists of at most γ1,p and γ1,pu. Note that γ0,1, γ0,u, γ1,p, γ1,pu are
characteristic functions of 1, u, p, pu modulo Q×p

2, respectively.
(b) λp 6= 0.

In this case we must have mp = 1, since mp > 2 implies that λp = 0. Note that p ∈ S
since by Corollary 4.2 ρp is a special representation and, hence, not irreducible principal
series. We have further subcases.
(i) χ0,p is unramified.

Here again ñp =mp = 1 and Up(1, φ) = {c(5)p,λ′p}. We use the theory of newforms

to simplify the function c
(5)
p,λ′p

. Since mp = 1 we get that λp =−ωpp(k−3)/2 and
λ′p =−ωpp−1/2. Here ωp ∈ {±1} is the eigenvalue under the Atkin–Lehner involution
corresponding to the prime p. Hence, we have in this case,

c
(5)
p,λ′p

(n) =


21/2 if νp(n) = 0 and

(
n

p

)
= ωpχ0,p(p−1);

0 if νp(n) = 0 and
(
n

p

)
=−ωpχ0,p(p−1);

1 if νp(n) = 1.

(ii) χ0,p is ramified.
We have ñp =mp = 1 and Up(1, φ) = {c(6)p,λ′p}. As in the above subcase, we get the
following simplification:

c
(6)
p,λ′p

(n) =


1 if νp(n) = 0;
−ωp21/2p−1/2 if νp(n) = 1 and (p, n)p = ωpχ0,p(p−1);
0 if νp(n) = 1 and (p, n)p =−ωpχ0,p(p−1).

Case 2: p odd and mp = 0. We have the following subcases.
(a) χ0,p is unramified.

Here, ñp =mp = 0 and Up(0, φ) = {c(0)p,λ′p}. It should be noted that c(0)p,λ′p takes the value
1 at any square-free n.

(b) χ0,p is ramified.
We have ñp = 1 and Up(1, φ) = {c(3)p,αp , c

(3)
p,α′p
} if αp 6= α′p, otherwise Up(1, φ) = {c(3)p,αp ,

c
(4)
p,αp}. We note that if p does not divide the modulus of χ, then we do not need to

consider this subcase because in this case χ0,p is unramified by Lemma 3.2.

Case 3: p= 2 and m2 > 1. Consider the following subcases.
(a) λ2 = 0.

We compute Ω2(φ). Note that Q×2 /Q
×
2

2
= {±1,±2,±5,±10}. If there exists a ω ∈ Ω2(φ)

such that ν2(ω) = 0, then ñ2 =m2 + 2, and U2(ñ2, φ) = {γ0,ω : ω ∈ Ω2(φ) and ν2(ω) =
0}. In this case, the set U2(ñ2, φ) consists of at most γ0,1, γ0,3, γ0,5 and γ0,7.
Otherwise, for all ω ∈ Ω2(φ), ν2(ω) = 1 and then ñ2 =m2 + 3, and U2(ñ2, φ) = {γ1,ω :
ω ∈ Ω2(φ) and ν2(ω) = 1}, hence U2(ñ2, φ) consists of at most γ1,2, γ1,6, γ1,10 and γ1,14.
As above, γ0,i for i ∈ {1, 3, 5, 7} are the characteristic functions of an odd residue class
modulo 8 and γ1,j for j ∈ {2, 6, 10, 14} are the characteristic functions of even residue
class modulo Q×2

2
.
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(b) λ2 6= 0.
We must have m2 = 1. As before Corollary 4.2 implies that ρ2 is a special representation
and hence p ∈ S. We have the following subcases.
(i) χ0,2 is trivial on 1 + 4Z2.

Here ñ2 = 2 and U2(2, φ) = {c(5)2,λ′2
}. Since m2 = 1 we get that λ2 =−ω22(k−3)/2

and λ′2 =−ω22−1/2; ω2 ∈ {±1} is the eigenvalue under the Atkin–Lehner involution
corresponding to 2. Hence, we have

c
(5)
2,λ′2

(n) =



0 if ν2(n) = 0, (−1)(n−1)/2 = χ0,2(−1) and
(−1)(n

2−1)/8 =−ω2χ0,2(2−1);
−ω2 if ν2(n) = 0, (−1)(n−1)/2 = χ0,2(−1) and

(−1)(n
2−1)/8 = ω2χ0,2(2−1);

1 if ν2(n) = 0, (−1)(n−1)/2 =−χ0,2(−1);
1 if ν2(n) = 1.

(ii) χ0,2 is non-trivial on 1 + 4Z2.
Here ñ2 = 3 and U2(3, φ) = {c(6)p,λ′2 , γ

′′
0 } and we get the following simplification:

c
(6)
2,λ′2

(n) =



−ω221/2 if ν2(n) = 0;
0 if ν2(n) = 1, (n,−1)2 = χ0,2(−1) and

(2, n)2 =−ω2χ0,2(2−1);
−ω2 if ν2(n) = 1, (n,−1)2 = χ0,2(−1) and

(2, n)2 = ω2χ0,2(2−1);
1 if ν2(n) = 1, (n,−1)2 =−χ0,2(−1).

Case 4: p= 2 and m2 = 0. We have the following subcases.
(a) χ0,2 is trivial on 1 + 4Z2.

We have ñ2 = 2 and U2(2, φ) = {c(1)2,α2
, c

(1)
2,α′2
} if α2 6= α′2, otherwise U2(2, φ) =

{c(1)2,α2
, c

(2)
2,α2
}.

(b) χ0,2 is non-trivial on 1 + 4Z2.
Here ñ2 = 3 and U2(3, φ) = {c(3)2,α2

, c
(3)
2,α′2

, γ′′0 } if α2 6= α′2, otherwise U2(3, φ) =

{c(3)2,α2
, c

(4)
2,α2

, γ′′0 }.
We would like to point out the following useful lemma.

Lemma 5.3. Let χ be a quadratic character modulo N such that ν2(N) is at most 2. Then,
χ0,2 is trivial on 1 + 4Z2.

Proof. Since χ is a quadratic, χ0 is also quadratic with modulus lcm(4, N) = 4N ′ where
2 -N ′. Now the lemma follows from part (iii) of Lemma 3.2. 2

Remark. These simplifications along with our method to compute a basis for Sk/2(N, χ, φ)
for suitable N and χ lead to an algorithm for computing critical values of the L-functions of
certain quadratic twists of φ. For example, if Mφ = pα for some odd prime p, then the possible
values for Ñφ are either 4pα or 4pα+1, hence we compute bases for spaces Sk/2(4pα, χtriv, φ)
and Sk/2(4pα+1, χtriv, φ) and the sets U2(2, φ), Up(α, φ), Up(α+ 1, φ) to apply Theorem 7 in
order to obtain the desired results.

Note that in the above we have discussed computation of Up(e, φ) only for e= ñp. But in
certain cases working with the level Ñφ is not sufficient to obtain the complete information
and one might need to go to higher levels.
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6. Periods

Lemma 6.1. Let E/Q be an elliptic curve, given by a minimal Weierstrass model, and let
En be the minimal model of its twist by a square-free positive integer n. Then there is a
computable non-zero rational number αn such that

Ω(En) =
αnΩ(E)√

n
.

The proof we give also explains how to compute αn.

Proof. Let ω = dx/(2y + a1x+ a3) be the invariant differential for the model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

By definition, the period

Ω(E) =
∫
E(R)

|ω|.

Recall [23, p. 49] that a change of variable

x= u2x′ + r, y = u3y′ + u2sx′ + t

leads to a model E′ with invariant differential ω′ = uω; thus, the periods are related by
Ω(E′) = |u|Ω(E). Completing the square in y we obtain the model

E′ : y′2 = x′
3 +Ax′

2 +Bx′ + C

where

A=
b2
4
, B =

b4
2
, C =

b6
4
.

Since u= 1 in this change of variable, ω′ = ω and Ω(E′) = Ω(E). Now let the model E′′ be the
twist of E′ by n:

E′′ : y′′2 = x′′
3 +Anx′′

2 +Bn2x′′ + Cn3.

Note that these are related by the change of variable

y′′ = n3/2y′, x′′ = nx′.

Thus, the invariant differentials satisfy

ω′′ =
dx′′

2y′′
=

ω′√
n
.

Thus,

Ω(E′′) =
Ω(E′)√

n
=

Ω(E)√
n
.

Now the model E′′ is not necessarily minimal (nor even integral at 2), but by Tate’s algorithm
there is a change of variables

x′′ = u2X + r, y′′ = u3Y + u2sX + t

with rational u, s, t (and u 6= 0) such that the resulting model En is minimal. By the above

Ω(En) = uΩ(E′′) =
|u|Ω(E)√

n
. 2

Lemma 6.2. Let E : Y 2 =X3 +AX2 +BX + C be an elliptic curve with A, B, C ∈ Z.
Suppose that the discriminant of this model is sixth-power free. Let n be a square-free
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positive integer. Then a minimal model for the nth twist is En : Y 2 =X3 +AnX2 +Bn2X +
Cn3. Moreover, the periods are related by the formula

Ω(En) =
Ω(E1)√

n
.

Proof. Let ∆ be the discriminant of the model E : Y 2 =X3 +AX2 +BX + C. We are
assuming that ∆ is sixth-power free. Thus, it is 12th-power free, and so E is minimal. Now the
model En : Y 2 =X3 +AnX2 +Bn2X + Cn3 has discriminant ∆n = ∆ · n6. Since n is square-
free this is 12th-power free. Thus, the model for En is minimal. The argument in the proof of
Lemma 6.1 completes the proof. 2

7. Modular forms are determined by coefficients modulo n

As usual N is a positive integer divisible by 4 and χ is a Dirichlet character modulo N . Let
k be an odd integer. Let φ be a newform of weight k − 1, level dividing N/2 and character
χ2. To apply Waldspurger’s theorem, we need to know (see (3)) for certain primes p, certain
ω ∈Q×p /Q×p

2 and certain forms f =
∑
anq

n ∈ Sk/2(N, χ, φ), whether there is some n such that
the image of n in Q×p /Q×p

2 is ω and an 6= 0. Given such p, f and ω we can write down the
first few coefficients of f and test whether the image of n in Q×p /Q×p

2 is ω and an 6= 0. If there
is such an n, then we should be able to find it by writing down enough coefficients. However,
sometimes it appears that an = 0 for all n that are equivalent in Q×p /Q×p

2 to ω. To be able to
prove that, we have developed the results in this section.

Theorem 8. Let N be a positive integer such that 4 |N and χ be a Dirichlet character
modulo N . Let f(z) =

∑∞
n=1 anq

n ∈ Sk/2(N, χ). Let a, M be integers such that (a, M) = 1. Let
R= (k/24)[SL2(Z) : Γ1(NM2)]. Suppose that an = 0 whenever n 6≡ a (mod M) for all integers
n up to R+ 1. Then an = 0 whenever n 6≡ a (mod M) for all n. Moreover, if M2 |N , then the
above statement holds with

R=


k

24
[SL2(Z) : Γ1(N)] if

N

M
≡ 0 (mod 4);

k

24
[SL2(Z) : Γ1(2N)] if

N

M
≡ 2 (mod 4).

We will be requiring the analogue, in the case of half-integral weight forms, of the following
theorem of Sturm.

Theorem 9 (Sturm [25, p. 276]). Let Γ be a congruence subgroup and k be a positive
integer. Let f , g ∈Mk(Γ) such that f and g have coefficients in OF , the ring of integers of a
number field F . Let λ be a prime ideal of OF . If

ordλ(f − g)>
k

12
[SL2(Z) : Γ],

then ordλ(f − g) =∞, that is, f ≡ g (mod λ).

In the above statement if f(z) =
∑
n>0 anq

n, then ordλ(f) := inf{n : an /∈ λ}. If an ∈ λ for
all n, then we let ordλ(f) :=∞.

Lemma 7.1. Let Γ′ be a congruence subgroup such that Γ′ ⊆ Γ0(4) and k′ be a positive odd
integer. Then the statement of Theorem 9 is valid for Γ = Γ′ and k = k′/2.
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Proof. Let h := f − g ∈ Sk′/2(Γ′). By assumption, ordλ(h)> (k′/24)[SL2(Z) : Γ′]. Let
h′ = h4. Then h′ ∈M2k′(Γ′). This is because for any γ =

[
a b
c d

]
∈ Γ′ and z ∈H,

h′(γz) = h4(γz)

= j(γ, z)4k
′
h4(z)

= (cz + d)2k
′
h′(z).

Also, ordλ(h′) = 4 · ordλ(h)> (2k′/12)[SL2(Z) : Γ′]. So we apply Theorem 9 to h′ to get that
ordλ(h′) =∞. Hence, ordλ(h) =∞. 2

We note that the above lemma still holds if f , g ∈Mk′/2(Γ0(N), χ); the above proof works
by taking h′ = h4n where n is the order of Dirichlet character χ.

We will need the following lemmas for the proof of Theorem 8.

Lemma 7.2. Let M be a positive integer and a ∈ Z such that (a, M) = 1. Define

Ia(n) :=

{
1 if n≡ a (mod M);
0 otherwise.

Then we have

Ia(n) =
∑

ψ∈X(M)

ψ(a)−1

ϕ(M)
ψ(n)

where X(M) denotes the group of Dirichlet characters of modulus M and ϕ is Euler’s phi
function.

Proof. See [20, p. 63, Chapter 6]. 2

Lemma 7.3. Let
[
a b
c d

]
∈ Γ0(N) and m2 |N . Let 0 6 ν′ <m and cν′/m≡ 0 (mod 4). Then,

( c
d+cν′/m ) = ( cd ).

The proof of the above lemma requires the following reciprocity law as stated in Cassels and
Fröhlich [26, p. 350].

Proposition 7.4. Let P , Q be positive odd integers and a be any non-zero integer with
a= 2αa0, a0 odd. Then, (

a

P

)
=
(
a

Q

)
if P ≡Q (mod 8a0).

Proposition 7.5. Let k be a positive odd integer, χ be a Dirichlet character modulo N
where 4 |N and f(z) =

∑∞
n=0 anq

n ∈Mk/2(N, χ). Suppose that ψ is a Dirichlet character of
conductor m and fψ(z) =

∑∞
n=0 ψ(n)anqn. Then:

(i) fψ ∈Mk/2(Nm2, χψ2);
(ii) if m2 |N and N/m≡ 0 (mod 4), then fψ ∈Mk/2(N, χψ2);
(iii) if m2 |N and N/m≡ 2 (mod 4), then fψ ∈Mk/2(2N, χψ2).
Moreover, if f is a cusp form, then so is fψ.

Proof. The proof essentially follows that of Proposition 17 of [14, Chapter III], which is the
integral weight case, with some necessary changes. We use Lemma 7.3 to obtain (ii) and (iii). 2

Lemma 7.6. Let k, N be positive integers such that k is odd and 4 |N . Suppose
that f(z) =

∑∞
n=1 anq

n ∈ Sk/2(N, χ). Let a, M be positive integers such that (a, M) = 1.
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Define

g(z) :=
∞∑
n=1

Ia(n)anqn.

Then g ∈ Sk/2(Γ1(NM2)).

Proof. We have

g(z) =
∞∑
n=1

Ia(n)anqn

=
∞∑
n=1

∑
ψ∈X(M)

ψ(a)−1

ϕ(M)
ψ(n)anqn

=
∑

ψ∈X(M)

αψ

∞∑
n=1

ψ(n)anqn

=
∑

ψ∈X(M)

αψfψ,

where αψ = ψ(a)−1/ϕ(M). Using Proposition 7.5, for all ψ ∈X(M) we have fψ ∈
Sk/2(Γ1(NM2)). Hence, g ∈ Sk/2(Γ1(NM2)). 2

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let h= f − g where g is as in the above lemma. Since f ∈
Sk/2(Γ1(NM2)), so does h. It is clear that

coefficient of qn in h=

{
an if n 6≡ a (mod M);
0 otherwise.

Thus, h(z) =
∑
n6≡a (mod M) anq

n ∈ Sk/2(Γ1(NM2)). Since we have assumed an = 0 whenever
n 6≡ a (mod M) for all integers n up to R+ 1, we apply Lemma 7.1 to get h= 0. If M2 |N we
apply parts (ii) and (iii) of Proposition 7.5 to Lemma 7.6. 2

Remark. Note that in Lemma 7.6 if all of the Dirichlet characters modulo M are quadratic
then by Proposition 7.5, in fact, g ∈ Sk/2(Γ0(NM2, χ)). Hence, in this case Theorem 8 holds
with R= (k/24)[SL2(Z) : Γ0(NM2)]. For example, if N = 1984, k = 3 and M = 8, since all
Dirichlet characters modulo 8 are quadratic we have R= (3/24)[SL2(Z) : Γ0(1984)] = 384.

8. Applications of Waldspurger’s theorem

In this section we will present a few examples explaining how to use Waldspurger’s theorem.
The idea of using Waldspurger’s theorem for an elliptic curve is motivated by Tunnell’s famous
work on the congruent number problem. We will see, however, that our case needs many
more computations to get any desired result. In the examples that follow we will first use our
algorithm in Theorem 2 to compute the space of cusp forms that are Shimura equivalent to
the given elliptic curve and then use Waldspurger’s theorem to investigate some L-values. We
will follow the notation adopted in the previous section.

8.1. A first example

Our first example will be the elliptic curve E over Q given by

E : Y 2 =X3 +X + 1.
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The conductor of E is 496 = 16× 31 and E does not have complex multiplication. Let
φ ∈ Snew

2 (496, χtriv) be the corresponding newform given by the Modularity theorem; φ has
the following q-expansion:

φ= q − 3q5 + 3q7 − 3q9 − 2q11 − 4q13 − q19 +O(q20).

It is to be noted that φ satisfies the hypothesis (H1): this follows by Theorem 6, and since
16 |Mφ, φ satisfies (H2). Let χ be a Dirichlet character with χ2 = χtriv. By Theorem 5 there
exists N such that S3/2(N, χ, φ) 6= {0}. Note that we must have 496 | (N/2).

In order to apply Waldspurger’s theorem we would like to compute an eigenbasis for the
summand S3/2(N, χ, φ) for a suitable N and χ. We will assume χ to be the trivial character
χtriv. We use Theorem 2 to find out that S3/2(992, χ, φ) = {0}. However, at level 1984 we get
that the space S3/2(1984, χ, φ) has a basis {f1, f2, f3} where f1, f2 and f3 have the following
q-expansions:

f1 = q3 + q43 − 2q75 + 2q83 + q91 + 3q115 − 3q123 +O(q145) :=
∞∑
n=1

anq
n,

f2 = q15 + q23 − q31 + 2q55 + q79 − 3q119 +O(q145) :=
∞∑
n=1

bnq
n,

f3 = q17 + q57 + q65 + 2q73 − q89 − q105 + q137 +O(q145) :=
∞∑
n=1

cnq
n.

We note that the space S3/2(1984, χ) is 119-dimensional.
By Waldspurger’s theorem (Theorem 7) there exists a function Aφ on square-free positive

integers n such that

Aφ(n)2 = L(E−n, 1)

and

S3/2(1984, χ, φ) =
⊕

U(E, φ, Aφ),

where the sum is over all E > 1 such that Ñφ | E | 1984. We already know the left-hand side
of the above identity. Henceforth, we will be interested in computing the right-hand side. We
will first compute Ñφ and then U(E, φ, Aφ) for Ñφ | E | 1984.

We need to compute local components ñp for each prime p. We consider the following cases.

Case 1: p odd and p 6= 31. In this case mp = 0 and since p -N the local character χ0,p is
unramified. Hence we get that ñp = 0.

Case 2: p= 31. Here m31 = 1. Since λ31 6= 0, using Corollary 4.2 it follows that the local
component ρ31 is a special representation of GL2(Q31) and so 31 ∈ S. Also, note that Z×31/Z

×
31

2

is generated by 11 mod Z×31
2

and using Proposition 3.3 we can show that χ0,31(11) = 1. Thus
χ0,31 is unramified and so, ñ31 = 1.

Case 3: p= 2. In this case m2 = 4 and it is clear from the q-expansion of φ that λ2 = 0. We
need some information about the set Ω2(φ) (see (3)). In our case, looking at f1, f2 and f3, we
get that {1, 3, 7} ⊆ Ω2(φ). Since ν2(1) = ν2(3) = ν2(7) = 0, we get ñ2 =m2 + 2 = 6.

Hence,

Ñφ = 31× 26 = 1984.

Thus, we have E = Ñφ = 1984 and we would like to know how the space U(1984, φ, Aφ)
looks. For that the next immediate task will be to compute Up(ep, φ) where ep = νp(1984). We
consider the following cases.
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Case 1: p odd and p 6= 31. Here, ep = 0 and Up(0, φ) consists of only one function c(0)p,λ′p defined

on Q×p . Recall that c(0)p,λ′p(n) = 1 for n square-free.

Case 2: p= 31. In this case e31 = 1 and as already seen, 31 ∈ S and χ0,31 is unramified. So,
U31(1, φ) = {c(5)31,λ′31

}. Note that λ31 =−1 and, hence, λ′31 = (31)−1/2λ31 =−(31)−1/2. Again
using Proposition 3.3 we can show that χ0,31(31−1) =−1. Also note that (31, n)31 = ( n31 ). So
for n square-free, we have

c
(5)
31,λ′p

(n) =


21/2 if ν31(n) = 0 and

(
n

31

)
=−1;

0 if ν31(n) = 0 and
(
n

31

)
= 1;

1 if ν31(n) = 1.

Case 3: p= 2. Here e2 = 6. Since λ2 = 0 and {1, 3, 7} ⊆ Ω2(φ), we see that U2(6, φ) consists
of γ0,1, γ0,3, γ0,7 which are the characteristic functions of residue classes of 1, 3, 7 modulo 8,
respectively. By our methods so far we do not know whether 5 belongs to Ω2(φ) or not.

Recall that U(E, φ, Aφ) is the space generated by the functions f(c, Aφ) where c ∈∏
p Up(ep, φ). Thus, in our case c= (cp)p where, for odd primes p 6= 31 we have cp = c

(0)
p,λ′p

,

c31 = c
(5)
31,λ′31

and for c2 the possible choices are γ0,1, γ0,3, γ0,5 and γ0,7. By using Waldspurger’s

theorem (Theorem 7) we have

S3/2(1984, χ, φ) = U(1984, φ, Aφ)

and so every cusp form in the space on the left-hand side can be written in terms of

f(c, Aφ)(z) :=
∞∑
n=1

Aφ(nsc)n1/4
∏
p

cp(n)qn

for some c= (cp) ∈
∏
Up(ep, φ).

We use Theorem 8 to conclude that f1 has non-zero nth coefficients only for n≡ 3 (mod 8),
f2 has non-zero coefficients only for n≡ 7 (mod 8) and f3 has non-zero coefficients only for
n≡ 1 (mod 8).

Since f1 has non-zero an only for n≡ 3 (mod 8), taking c as above with c2 = γ0,3 we get
that for n square-free,

an = β1Aφ(n)n1/4c2(n)c31(n)

=


21/2β1Aφ(n)n1/4 if ν31(n) = 0,

(
n

31

)
=−1 and n≡ 3 (mod 8);

β1Aφ(n)n1/4 if ν31(n) = 1 and n≡ 3 (mod 8);
0 otherwise,

(4)

for some complex constant β1. Similarly, taking c2 = γ0,7 for f2 and c2 = γ0,1 for f3 respectively
we get that

bn = β2Aφ(n)n1/4c2(n)c31(n)

=


21/2β2Aφ(n)n1/4 if ν31(n) = 0,

(
n

31

)
=−1 and n≡ 7 (mod 8);

β2Aφ(n)n1/4 if ν31(n) = 1 and n≡ 7 (mod 8);
0 otherwise,

(5)
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for some complex constant β2 and

cn = β3Aφ(n)n1/4c2(n)c31(n)

=


21/2β3Aφ(n)n1/4 if ν31(n) = 0,

(
n

31

)
=−1 and n≡ 1 (mod 8);

β3Aφ(n)n1/4 if ν31(n) = 1 and n≡ 1 (mod 8);
0 otherwise,

(6)

for some complex constant β3.
We have the following proposition which allows us to calculate the critical values of the

L-functions of E−n, the (−n)th quadratic twists of E.

Proposition 8.1. Let E be as above and n be a positive square-free integer.
(i) If ν31(n) = 0, n≡ 3 (mod 8) and ( n31 ) =−1, then

L(E−n, 1) =
a2
n

2β1
2√n

.

(ii) If ν31(n) = 1, n≡ 3 (mod 8), then

L(E−n, 1) =
a2
n

β1
2√n

.

(iii) If ν31(n) = 0, n≡ 7 (mod 8) and ( n31 ) =−1, then

L(E−n, 1) =
b2n

2β2
2√n

.

(iv) If ν31(n) = 1, n≡ 7 (mod 8), then

L(E−n, 1) =
b2n

β2
2√n

.

(v) If ν31(n) = 0, n≡ 1 (mod 8) and ( n31 ) =−1, then

L(E−n, 1) =
c2n

2β3
2√n

.

(vi) If ν31(n) = 1, n≡ 1 (mod 8), then

L(E−n, 1) =
c2n

β3
2√n

.

Proof. Using Waldspurger’s theorem (Theorem 7) we know the existence of a function Aφ
on square-free numbers such that Aφ(n)2 = L(E−n, 1). The proof now follows using (4)–(6). 2

We will show now how we use the above to calculate the order of the Tate–Shafarevich
group X(E−n/Q). We will be assuming the Birch and Swinnerton-Dyer conjecture for rank
zero elliptic curves:

L(E−n, 1) =
|X(E−n/Q)| · ΩE−n

·
∏
p cp

|E−n,tor|2
(7)

where ΩE−n
stands for the real period of E−n (since E−n(R) is connected), cp for the pth

Tamagawa number of E−n and E−n,tor stands for the torsion group of E−n, all of which are
easily computable.

We have the following lemma.

Lemma 8.2. Let E : Y 2 =X3 +X + 1. Then En,tor = 0 for all square-free integers n.
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Proof. Let K = Q(
√
n). It is well-known that the map

En(Q)→ E(K)

given by

O 7→O, (X, Y ) 7→
(
X

n
,
Y

n
√
n

)
is an injective group homomorphism†. Thus, it is sufficient to show that E(K) has trivial torsion
subgroup. Recall that the discriminant of E is −496 =−16× 31. Let p 6= 2, 31 be a rational
prime and let P be a prime ideal of K dividing p. Then E has good reduction at P. Moreover,
if eP < p− 1, then the reduction map E(K)tor→ E(FP) is injective [13, p. 501], where eP is
the ramification index for P and FP denotes the residue field of P. Thus, if p> 5 and p 6= 31,
then this map is injective. Now we take p= 5, 7, so E(FP) is a subgroup of E(F25) and E(F49)
respectively. Using MAGMA we find

E(F25)∼= Z/3Z× Z/9Z, E(F49)∼= Z/55Z.

Since these two groups have coprime orders, it follows that E(K)tor = 0 and so En,tor = 0. 2

Further, since the discriminant of E−1 is −496 = 24 × 31, by Lemma 6.2 we know that
Ω(E−n) = Ω(E−1)/

√
n.

It is clear that the quantity L(E−n, 1)/ΩE−n
is an integer, according to the Birch

and Swinnerton-Dyer conjecture. Using MAGMA we compute this integer for n ∈ {3, 15, 17}.
In particular for n= 3 we get that L(E−3, 1)/ΩE−3 = 2. Substituting this in part (i) of
Proposition 8.1 and using Lemma 6.2, it follows that ΩE−1 = 1/4β1

2. Doing similar calculations
with n= 15, 17 we get

ΩE−1 =
1

4β1
2 =

1
4β2

2 =
1

8β3
2 . (8)

Now recall that W (E−n/Q) denotes the root number for elliptic curve E−n over rational
numbers. We have the following proposition. The methods used here to compute the root
numbers are well known and we refer to [9].

Proposition 8.3. For E as above and n positive square-free the following hold.

(i) If ν31(n) = 0, then

W (E−n/Q) =



−1 if n≡ 1, 3, 7 (mod 8),
(
n

31

)
= 1 or

n≡ 5 (mod 8),
(
n

31

)
=−1 or

n even,

(
n

31

)
=−1;

1 if n≡ 1, 3, 7 (mod 8),
(
n

31

)
=−1 or

n≡ 5 (mod 8),
(
n

31

)
= 1 or

n even,

(
n

31

)
= 1.

†As the map simply scales the variables, it takes lines to lines and so must define a homomorphism of

Mordell–Weil groups.
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(ii) If ν31(n) = 1, then

W (E−n/Q) =


−1 if n≡ 5 (mod 8) or

n even;
1 if n≡ 1, 3, 7 (mod 8).

Before computing the order of the Tate–Shafarevich group X(E−n/Q), we have the following
refinement of Theorem 8.1.

Theorem 10. Let E : Y 2 =X3 +X + 1 and f = f1 + f2 +
√

2f3 =
∑
dnq

n. Then, for
positive square-free n≡ 1, 3, 7 (mod 8),

L(E−n, 1) =
2(ν31(n)+1)ΩE−1√

n
· d2
n.

Proof. Note that dn = an + bn +
√

2cn. It is important for the proof to note that an = 0
for n 6≡ 3 (mod 8), bn = 0 for n 6≡ 7 (mod 8) and cn = 0 for n 6≡ 1 (mod 8); we proved this by
applying Theorem 8. It follows from (4)–(6) that dn = 0 whenever n≡ 1, 3, 7 (mod 8) and the
Kronecker symbol ( n31 ) = 1. Further by Proposition 8.3 if n≡ 1, 3, 7 (mod 8) and ( n31 ) = 1, then
W (E−n,Q) =−1 and so L(E−n, 1) = 0. Thus, the theorem follows when ( n31 ) = 1.

In the case when ( n31 ) =−1, the refinement follows by using (8) in Proposition 8.1. 2

We have now the following corollary which computes the order of the Tate–Shafarevich group
X(E−n/Q).

Corollary 8.4. Let E : Y 2 =X3 +X + 1 and f = f1 + f2 +
√

2f3 =
∑
dnq

n. Let n be
positive square-free number such that n≡ 1, 3, 7 (mod 8) and E−n has rank zero. Then,
assuming the Birch and Swinnerton-Dyer conjecture,

|X(E−n/Q)|= 2(ν31(n)+1)∏
p cp

· d2
n

where the Tamagawa numbers cp of E−n are given by

c2 =

{
1 if n≡ 3, 7 (mod 8);
2 if n≡ 1, 5 (mod 8),

c31 =


1 if 31 - n;

4 if 31 | n and

(
n/31
31

)
= 1;

2 if 31 | n and

(
n/31
31

)
=−1,

cp = #E−1(Fp)[2] for p | n, p 6= 31, and cp = 1 for all other primes p.

Proof. From Lemma 8.2 we have E−n,tor = 0 for all square-free integers n. Substituting this
and Ω(E−n) = Ω(E−1)/

√
n in (7) we get that

|X(E−n/Q)|= L(E−n, 1) ·
√
n

ΩE−1 ·
∏
p cp

=
2(ν31(n)+1)∏

p cp
· d2
n;

the last equality follows by Theorem 10.
We use Tate’s algorithm (see [24, pp. 364–368]) to compute the Tamagawa numbers cp. 2

We have the following easy corollary to Theorem 10.

Corollary 8.5. Suppose n≡ 1, 3, 7 (mod 8) and ( n31 ) =−1. Then assuming the Birch and
Swinnerton-Dyer conjecture,

Rank(E−n) > 2⇔ dn = 0.
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Proof. By Proposition 8.3, if n≡ 1, 3, 7 (mod 8) and ( n31 ) =−1 then W (E−n/Q) = 1. Thus,
the analytic rank is even, and so by the Birch and Swinnerton-Dyer conjecture, the rank is
even. The corollary now follows using Theorem 10. 2

Remark. By Proposition 8.3 if n is a square-free integer such that n≡ 5 (mod 8), then
L(E−n, 1) = 0 whenever either ν31(n) = 1 or ν31(n) = 0 and ( n31 ) =−1. One can also obtain
this by using Waldspurger’s Theorem. In fact, since f1, f2, f3 span S3/2(1984, χ, φ) and none
of them have a non-zero coefficient for n≡ 5 (mod 8) we obtain

Aφ(n)c31(n) = 0 whenever n≡ 5 (mod 8).

The statement now follows since c31(n) 6= 0 if either ν31(n) = 1 or ν31(n) = 0 and ( n31 ) =−1.
However, these methods fail to provide any information† about L(E−n, 1) if n≡ 5 (mod 8) and
( n31 ) = 1. We hope to predict what happens in these cases by either going to higher levels, by
suitably twisting E or by allowing non-trivial characters.

We note here that for newforms φ of weight k − 1 and odd and square-free level Baruch
and Mao [2, Theorem 10.1] obtain Waldspurger-type results for L(φ⊗ χD, (k − 1)/2) for all
fundamental discriminants D. In a subsequent paper Mao [17, Theorem 1.3] removes the
square-free condition using the generalized Shimura correspondence.

8.2. Second example

Our second example will be the rational elliptic curve E of conductor 144 given by

E : Y 2 =X3 − 1.

The corresponding newform φ is given by

φ= q + 4q7 + 2q13 − 8q19 − 5q25 + 4q31 − 10q37 − 8q43 + 9q49 +O(q50).

Here Mφ = 144. Using Theorem 2 for computing Shimura’s decomposition, we find that at the
level 576, the space S3/2(576, χtriv, φ) 6= {0}; and this space has a basis {f1, f2, f3, f4} where
f1, f2, f3 and f4 have the following q-expansions:

f1 = q − q25 + 5q49 − 6q73 − 6q97 +O(q100) :=
∞∑
n=1

anq
n,

f2 = q5 + q29 − q53 − 2q77 +O(q100) :=
∞∑
n=1

bnq
n,

f3 = q13 − 2q61 + q85 +O(q100) :=
∞∑
n=1

cnq
n,

f4 = q17 − q41 − q89 +O(q100) :=
∞∑
n=1

dnq
n.

Doing similar calculations as in the previous example we have the following result.

Theorem 11. Let E : Y 2 =X3 − 1. Let

f = f1/
√

6 + f2 +
√

2f3 +
√

3f4 :=
∞∑
n=1

enq
n.

†In fact, performing computations using MAGMA we get, for example, that L(E−n, 1) 6= 0 for n= 5, 69, 101, 109,
133, 157, 165; these n satisfy the conditions n≡ 5 (mod 8) and ( n

31
) = 1. However, for n= 149, 173, which also

satisfy the same two conditions, we get that L(E−n, 1) = 0 (using the root number argument Rank(E−n) > 2
for n= 149, 173). We do not detect a general pattern.
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Let n 6= 1† be a positive square-free integer such that n≡ 1 or 2 (mod 3). Then,

L(E−n, 1) =
ΩE−1√
n
· e2n. (9)

Further, assuming that the Birch and Swinnerton-Dyer conjecture holds, if E−n has rank
zero, then

|X(E−n/Q)|= 4∏
p cp
· e2n

where the Tamagawa numbers c2 = 3 if n≡ 1 (mod 8), c2 = 1 if n≡ 3, 5, 7 (mod 8); c3 = 2;
cp = #E−1(Fp)[2] for p | n, p 6= 3; and cp = 1 for all other primes p.

Remark. To consider the case when 3 |N , we try to instead work with elliptic curve
E3. The curve E3 has conductor 36 and is isogenous to E−1. Hence, L(E3n, 1) = L(E−n, 1)
and L(En, 1) = L(E−3n, 1) for all positive square-free n coprime to 3. Thus, computation of
L(E−3n, 1) for all such n will lead to a formula for L(En, 1) for all n square-free. Since the
hypothesis (H2) is not satisfied we cannot apply Theorem 7 to E3. Let F := E3 and φ′ be
the corresponding newform. Using Theorem 2 we find that S3/2(72, χtriv, φ

′) is two-dimensional
spanned by g1 and g2 where

g1 = q − 2q10 − 2q13 + 4q22 − q25 + 2q34 + 4q37 +O(q40),
g2 = q2 − q5 − 2q14 + q17 + 3q29 +O(q40).

Let g = g1 + g2 =
∑∞
n=1 anq

n. We try to instead apply Corollary 5.2. Let I = {1, 5, 13, 17},
then for each i in I we obtain

L(F−n, 1) =
a2
n · L(F−i, 1)

a2
i

√
i

n
for n≡ i (mod 24).

Also by root number calculations L(F−n, 1) = 0 for n≡ 7, 11, 19, 23 (mod 24). So the cases we
are left with are n≡ j (mod 24) for j ∈ J = {2, 10, 14, 22}. We make the following observation.
Using MAGMA for positive square-free n6 1000 we check that up to 30 decimal places

L(F−n, 1) =
a2
n · L(F−j , 1)

a2
j

√
j

n
for n≡ j (mod 24).

This observation does not follow from Corollary 5.2, for example L(F−74, 1) = 4 ·
(L(F−2, 1)/

√
37) but 74/2 /∈Q×2

2
.

8.3. Example with a non-rational newform

In this example we start with a non-rational newform ψ and we show that we can get similar
formulae as before for the critical values of L-functions of ψ ⊗ χ−n.

Let ψ ∈ Snew
2 (62, χtriv) be a newform of weight 2, level 62 and trivial character given by the

following q-expansion,

ψ = q − q2 + aq3 + q4 + (−2a+ 2)q5 − aq6 + 2q7 − q8 + (2a− 1)q9 +O(q10)

where a has minimal polynomial x2 − 2x− 2.
As before using Theorem 2 we get that the space S3/2(124, χtriv, ψ) = 〈f〉 where f has the

following q-expansion,

f = q + (a+ 1)q2 − q4 − 2aq5 − aq7 + (−a− 1)q8 + (a+ 1)q9 − 2q10 +O(q12).

†In the case n= 1 we still have L(E−n, 1) = (ΩE−1/
√
n) · e2n, but since |E−1,tor|= 6 we get that

|X(E−n/Q)|= (36/
∏
p cp) · e2n.
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Note that Waldspurger’s theorem is applicable for the newform ψ since ρ2, the local
automorphic representation of ψ at 2, is not supercuspidal; this follows since ν2(62) = 1
(see Corollary 4.1).

We have the following proposition.

Proposition 8.6. Let ψ and f :=
∑∞
n=1 anq

n be as above. Let n be square-free such that
n 6≡ 3 (mod 8) and ( n31 ) 6=−1. Then

L(ψ ⊗ χ−n, 1) =


β√
n
· a2
n if ν31(n) = 1;

β

2
√
n
· a2
n if ν31(n) = 0,

where β = 2 · L(ψ ⊗ χ−1, 1).

Proof. The proof follows by calculations similar to those in the previous examples. 2

8.4. Ternary quadratic forms and Tunnell-like formulae

For a positive-definite integral quadratic form Q(x1, . . . , xm) we define its theta series by

θQ(z) =
∞∑
n=0

#{a ∈ Zm :Q(a) = n} · qn; q = exp(2πiz).

Let AQ = (∂2Q/∂xi∂xj) be the matrix of the quadratic form Q. The level of Q is defined to
be the smallest positive integer NQ such that NQAQ−1 is a matrix with integer entries that
has even integers on the main diagonal. Let dQ = det(AQ) if m≡ 0 (mod 4), dQ =−det(AQ)
if m≡ 2 (mod 4) and dQ = det(AQ)/2 if m is odd. Then the character of Q is defined to be
χdQ

= (dQ

· ).
Shimura [21] showed that θQ ∈Mm/2(NQ, χdQ

). Further Siegel [19] showed that if Q1 and
Q2 are positive-definite integral ternary quadratic forms both having level N , character χd
and belonging to the same genus, then θQ1 − θQ2 ∈ S3/2(N, χd). Denote by Sq(N, χd) the
subspace of S3/2(N, χd) generated by all such differences of theta series.

It is interesting, when applying Waldspurger’s theorem to a weight 2 cuspform φ, to ask
whether the relevant modular form of weight 3/2 belongs to Sq(N, χd); in this case we would
obtain a Tunnell-like formula expressing the critical values of the L-functions of twists of φ in
terms of ternary quadratic forms. We will illustrate this below by presenting several examples.
We point out, however, that this is not always possible. In particular, for the elliptic curve in
our first example, E : Y 2 =X3 +X + 1, the space S3/2(1984, χtriv, φE) has trivial intersection
with the subspace Sq(1984, χtriv). Note that L(E, 1) = 0. As we mentioned in the introduction,
for elliptic curves of odd and square-free conductor, Böcherer and Schulze-Pillot [4] showed that
an inverse Shimura lift comes from ternary quadratic forms if and only if the curve has analytic
rank zero. In the examples below we consider levels that are neither odd and square-free but
the result of Böcherer and Schulze-Pillot still seems to hold.

We do not give details of how to compute Sq(N, χd) or the intersection Sq(N, χd) ∩
S3/2(N, χd, φ). We merely point out that it is straightforward to compute a basis for the space
Sq(N, χd) with the help of an algorithm of Dickson [10, 16] for computing quadratic forms of
a given level and character up to equivalence. Computing the intersection with S3/2(N, χd, φ)
is easy using a suitable adaptation of our Theorem 2, and a result of Bungert [7, Proposition 4]
for computing the Hecke action on theta series.

We note here that expressing the forms in S3/2(N, χ, φ) in terms of ternary quadratic forms
has a big advantage in running time for the computation of coefficients of such modular
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forms for large values of n and, hence, for the computation of critical values of the L-functions
for large twists of φ. In Example 2 below the run time for computing the first 105 coefficients
of the theta series is just 304.200 s on a modest laptop while the same computation takes
over 36 CPU hours if we do not use the representation in terms of ternary quadratic forms.
Similarly in Example 1 the run time for computing the first 105 coefficients of the theta series
is 358.820 s.

Notation. We will denote by [a, b, c, r, s, t] the ternary quadratic form given by ax2 + by2 +
cz2 + ryz + sxz + txy.

Example 1. Let E be an elliptic curve of conductor 50 as in Proposition 1.1. Let φ be the
newform corresponding to E,

φ= q + q2 − q3 + q4 − q6 − 2q7 + q8 − 2q9 − 3q11 +O(q12).

Note that ν2(50) = 1, hence ρ2 is not supercuspidal and we can apply Waldspurger’s theorem.
We get that Ñφ = 100 and S3/2(100, χtriv, φ) has a basis consisting of f1 and f2 where

f1 = q + q4 − q6 − q11 − 2q14 +O(q15) :=
∞∑
n=1

anq
n,

f2 = q2 − q3 + q8 − q12 + 2q13 +O(q15) :=
∞∑
n=1

bnq
n.

In fact, it turns out that f1 = (θQ1 − θQ2)/2 and f2 = (θQ3 − θQ4)/2 where Qi are the ternary
quadratic forms in Proposition 1.1. This can now be proved along similar lines to Theorem 10.

Again we can compute the order of X(E−n/Q) assuming that the Birch and Swinnerton-
Dyer conjecture holds. For example, we get that

|X(E−9318/Q)|= 332 = 1089.

We can further consider the real quadratic twists En. For this we work with the elliptic curve
E−1 of conductor 400,

E−1 : Y 2 =X3 +X2 − 48X − 172.

We can show that if 5 - n, then

L(En, 1) =


L(E1, 1)√

n
· c2n if

(
n

5

)
= 1;

L(E17, 1) ·
√

17
n
· c2n if

(
n

5

)
=−1,

where cn is the nth coefficient of the following linear combination of theta series of weight 3/2
and level 1600 coming from the ternary quadratic forms:

− 1
5 · θ[5,5,17,−2,−4,0] + 1

5 · θ[5,9,10,2,2,4] + 1
10 · θ[1,4,400,0,0,0] −

1
10 · θ[5,17,20,−8,0,−2]

− 1
10 · θ[5,17,20,4,4,2] + 1

10 · θ[8,13,20,12,8,4] −
1
5 · θ[1,32,52,−16,0,0] + 1

5 · θ[8,13,17,6,4,4]

+ 1
10 · θ[4,5,400,0,0,−4] − 1

10 · θ[4,16,101,0,−4,0] + 1
10 · θ[400,100,1,0,0,0]

− 1
10 · θ[125,100,4,0,0,100] + 1

5 · θ[89,56,9,−4,−2,−44] − 1
5 · θ[49,36,29,24,22,16]

− 1
2 · θ[400,13,8,4,0,0] −

1
10 · θ[100,25,17,10,0,0] + 1

10 · θ[52,32,25,0,0,16]

+ 1
2 · θ[53,33,25,−10,−10,−14] + 1

2 · θ[400,400,1,0,0,0] + 9
10 · θ[400,25,16,0,0,0]

− 1
2 · θ[201,201,4,4,4,2] + 1

10 · θ[224,89,9,−2,−8,−88] − 1
10 · θ[209,36,25,20,10,36]
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− 9
10 · θ[129,100,16,0,−16,−100] − 4

5 · θ[84,81,25,10,20,4] + 4
5 · θ[89,49,41,−6,−14,−38]

− 1
5 · θ[400,29,16,16,0,0] + 1

5 · θ[125,100,16,0,0,100] −
2
5 · θ[100,96,21,8,20,80]

+ 2
5 · θ[84,69,29,2,12,28] −

2
5 · θ[400,32,13,8,0,0] + 2

5 · θ[117,52,32,−16,−24,−44]

+ 1
5 · θ[400,25,17,10,0,0] + 1

5 · θ[212,48,17,8,4,48] + 1
10 · θ[208,32,25,0,0,32]

− 1
5 · θ[212,33,25,−10,−20,−28] − 1

10 · θ[208,33,32,32,32,16] −
1
5 · θ[113,52,32,16,8,52].

Further, using root number arguments, we get that L(E−5n, 1) = 0 whenever n 6≡ 3 (mod 8)
and L(E5n, 1) = 0 whenever n≡ 5 (mod 8). We have been unable to derive similar formulae for
L(E−5n, 1) when n≡ 3 (mod 8) and for L(E5n, 1) when n 6≡ 5 (mod 8). We consider the twist
E5 whose conductor is again 50 and for which the minimum level to obtain non-zero Shimura
equivalent forms is 500, however no new information can be obtained from these forms.

Example 2. This example formulates Theorem 11 in terms of ternary quadratic forms. Let
E : Y 2 =X3 − 1. Let n be a positive square-free integer such that n≡ 1 or 2 (mod 3). Then

L(E−n, 1) =
ΩE−1√
n
· a2
n

where an is the nth coefficient of the cusp form f of weight 3/2 and level 576 that can be
written as follows as a linear combination of theta series:

f =
∞∑
n=1

anq
n

=
1√
6
·
(

1
2
· θ[1,36,45,−36,0,0] −

1
2
· θ[4,9,37,0,−4,0] +

1
2
· θ[144,9,4,0,0,0] −

1
2
· θ[45,36,4,0,0,36]

− 1
2
· θ[144,16,9,0,0,0] +

1
2
· θ[49,36,16,0,−16,−36]

)
+

1
2
· θ[144,29,5,2,0,0]

− 1
2
· θ[45,32,20,−16,−12,−24] +

√
2 ·
(

1
4
· θ[144,13,13,10,0,0] −

1
4
· θ[45,36,16,0,0,36]

)
+
√

3 ·
(

1
6
· θ[1,4,144,0,0,0] −

1
6
· θ[4,4,37,0,−4,0] +

1
6
· θ[4,5,36,0,0,−4] −

1
6
· θ[4,13,13,−10,0,0]

+
1
3
· θ[1,20,32,−16,0,0] +

1
6
· θ[4,5,29,−2,0,0] −

1
2
· θ[4,9,17,−6,0,0] +

1
6
· θ[144,16,1,0,0,0]

− 1
6
· θ[16,16,9,0,0,0] −

1
3
· θ[144,5,4,4,0,0] +

1
6
· θ[37,16,4,0,4,0] +

1
6
· θ[16,13,13,10,0,0]

+
1
6
· θ[32,21,4,−4,0,−16] −

1
6
· θ[29,16,5,0,2,0] −

1
2
· θ[144,36,1,0,0,0] +

1
2
· θ[144,9,4,0,0,0]

− 1
6
· θ[144,144,1,0,0,0] +

1
6
· θ[49,36,16,0,−16,−36] +

1
2
· θ[45,32,20,−16,−12,−24]

− 1
2
· θ[32,29,29,22,16,16] −

1
6
· θ[80,32,9,0,0,32] +

1
2
· θ[80,17,17,−2,−16,−16]

− 1
3
· θ[41,32,20,16,20,8]

)
.

Example 3. Let E : Y 2 + Y =X3 − 7 be an elliptic curve of conductor 27 and let φ be
the corresponding newform. Using Corollary 4.1, we get that the local component of φ at 2
is not supercuspidal and hence we can apply Waldspurger’s theorem. We have the following
proposition.
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Proposition 8.7. With E as above let n be a square-free integer.
(i) Suppose that n≡ 1 (mod 3). Let f be given by

f =
∞∑
n=1

anq
n =−1

2
· θ[1,6,15,−6,0,0] +

1
2
· θ[4,4,7,4,4,2] + θ[27,27,1,0,0,0]

− θ[28,27,4,0,4,0] −
1
2
· θ[27,7,4,2,0,0] −

1
2
· θ[16,9,7,−6,−4,−6] + θ[31,16,7,4,2,16].

If either ν2(n) = 1, or ν2(n) = 0 and n≡ 1, 5 (mod 8), then

L(E−n, 1) =
L(E−1, 1)√

n
· a2
n.

Otherwise,

L(E−n, 1) =
κ√
n
· a2
n

where κ=
√

19 · L(E−19, 1) if n≡ 3 (mod 8) and κ=
√

7 · L(E−7, 1) if n≡ 7 (mod 8).
(ii) Suppose that n≡ 0 (mod 3) and let n= 3m. Let h ∈ S3/2(324, χtriv, φ) be the cusp form

having the following q-expansion

h= q3 − q21 + 2q30 − q39 − 2q48 − q57 − 2q66 + q75 +O(q80) :=
∞∑
n=1

bnq
n.

Further suppose that (m3 ) = 1. If either ν2(n) = 1, or ν2(n) = 0 and n≡ 1, 5 (mod 8), then

L(E−n, 1) = L(E−21, 1) ·
√

21
n
· b2n.

If n≡ 3, 7 (mod 8), then

L(E−n, 1) =
κ√
n
· b2n

where κ=
√

3 · L(E−3, 1) if n≡ 3 (mod 8) and κ=
√

39 · L(E−39, 1) if n≡ 7 (mod 8).
(iii) If n= 3m and (m3 ) =−1, then L(E−n, 1) = 0.
(iv) If n≡ 2 (mod 3), then L(E−n, 1) = 0.

The proof of (i) and (ii) follows as in the previous examples, while for (iii) and (iv) one can
use root number arguments. We point out that the cusp form h which appears in (ii) does
not come from ternary quadratic forms. Moreover, since E is isogenous to E−3, for n positive
square-free L(En, 1) = L(E−3n, 1). Thus, using the above proposition we are able to compute
the critical values L(En, 1) for all n square-free.

9. Tables

In this section we present tables of orders of Tate–Shafarevich groups for twists of some of
the elliptic curves considered in the previous section. We are assuming that the Birch and
Swinnerton-Dyer conjecture holds.

We first consider the elliptic curve E : Y 2 =X3 +X + 1 and use the formula in Corollary 8.4
to obtain the following table of orders of X(E−n/Q) for positive square-free n6 2000 with
n≡ 1, 3, 7 (mod 8) and L(E−n, 1) 6= 0.

|X(E−n/Q)|= 1 for n= 15, 17, 23, 31, 43, 57, 65, 79, 89, 91, 105, 137, 145, 151, 155, 161, 179,
201, 215, 217, 239, 251, 263, 303, 305, 313, 321, 323, 337, 339, 393, 395, 399, 401, 403, 409,
465, 471, 527, 551, 571, 595, 601, 611, 619, 633, 651, 663, 673, 681, 697, 699, 705, 755, 759,
767, 787, 843, 849, 871, 879, 895, 921, 953, 959, 991, 1015, 1019, 1057, 1119, 1129, 1153, 1159,
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1171, 1193, 1201, 1209, 1235, 1255, 1257, 1271, 1329, 1339, 1355, 1367, 1385, 1401, 1441, 1479,
1481, 1545, 1553, 1615, 1633, 1641, 1649, 1673, 1689, 1691, 1729, 1731, 1735, 1751, 1759, 1767,
1779, 1841, 1851, 1887, 1891, 1921, 1939, 1951, 1959

|X(E−n/Q)|= 4 for n= 55, 73, 83, 167, 209, 223, 241, 259, 265, 331, 371, 385, 415, 449, 457,
491, 499, 587, 649, 695, 703, 761, 881, 983, 1023, 1047, 1049, 1067, 1115, 1139, 1145, 1199,
1295, 1297, 1379, 1407, 1439, 1463, 1483, 1577, 1579, 1603, 1655, 1687, 1703, 1705, 1793, 1811,
1889, 1903, 1913, 1915, 1937, 1979, 1999

|X(E−n/Q)|= 9 for n= 115, 119, 123, 177, 203, 247, 271, 291, 347, 427, 433, 447, 455, 489,
523, 579, 615, 713, 719, 739, 743, 771, 817, 823, 827, 863, 899, 905, 911, 943, 951, 1003, 1065,
1191, 1195, 1231, 1239, 1267, 1313, 1319, 1391, 1417, 1491, 1505, 1511, 1515, 1531, 1635, 1695,
1711, 1819, 1897, 1977, 1983

|X(E−n/Q)|= 16 for n= 353, 463, 643, 647, 859, 947, 1097, 1111, 1147, 1243, 1345, 1363,
1387, 1393, 1419, 1447, 1487, 1571, 1643, 1667, 1697, 1835, 1855, 1943, 1945, 1987

|X(E−n/Q)|= 25 for n= 327, 487, 553, 623, 923, 1207, 1263, 1315, 1455, 1543, 1607, 1627,
1747, 1763, 1995

The following is data for higher orders of X(E−n/Q) which are attained for n as above with
n6 10 000:

|X(E−n/Q)|= 36 for n= 383, 635, 967, 2347, 2351, 2383, 2411, 2563, 3155, 3391, 3743, 4091,
4367, 4487, 4519, 4591, 4609, 5323, 5327, 5393, 5423, 5467, 5479, 5555, 5657, 5659, 5803, 5883,
5963, 6691, 6863, 7159, 7215, 7297, 7307, 7343, 7559, 7567, 7607, 7639, 7895, 7963, 8159, 8283,
8515, 8635, 8683, 9047, 9385, 9631, 9665, 9667, 9787, 9791

|X(E−n/Q)|= 49 for n= 1623, 1753, 2337, 2603, 2927, 2999, 3153, 3279, 3347, 3563, 4043,
4115, 4331, 4507, 4555, 4955, 4971, 5199, 5347, 5595, 5795, 5955, 6131, 6227, 6447, 6593, 6663,
6695, 7123, 7283, 7545, 7591, 7687, 7951, 8071, 8135, 8259, 8407, 8431, 8455, 8567, 8755, 8835,
8897, 8923, 9609, 9771, 9827, 9839

|X(E−n/Q)|= 64 for n= 1007, 1727, 2183, 2243, 2455, 2555, 2723, 3763, 3905, 4963, 5137,
5417, 6587, 6935, 7467, 7483, 7811, 8273, 8737, 9343, 9923

|X(E−n/Q)|= 81 for n= 1567, 2683, 2931, 3247, 3323, 3547, 3587, 3855, 3867, 6087, 6305,
6403, 7153, 7223, 7339, 7833, 7993, 8227, 8447, 8779, 8887, 8895, 9327, 9393, 9931

|X(E−n/Q)|= 100 for n= 2827, 3463, 4103, 4543, 5207, 5663, 6847, 7415, 8011, 8015, 8335,
8393, 9143, 9323, 9379

|X(E−n/Q)|= 121 for n= 2743, 5703, 7451, 7703, 7873, 7903, 8795, 8983, 9755, 9763

|X(E−n/Q)|= 144 for n= 3307, 4643, 9497, 9995

|X(E−n/Q)|= 169 for n= 3687, 6527

|X(E−n/Q)|= 196 for n= 7867, 9355

|X(E−n/Q)|= 225 for n= 7143

|X(E−n/Q)|= 289 for n= 5003, 6823, 8903

Moreover, using Corollary 8.5 we obtain the following list of positive square-free n6 10 000
with n≡ 1, 3, 7 (mod 8) and ( n31 ) =−1 such that dn = 0. Hence, for these values of n,
Rank(E−n) > 2, assuming that the Birch and Swinnerton-Dyer conjecture holds.

11, 127, 139, 185, 199, 367, 451, 511, 519, 561, 569, 631, 641, 737, 799, 809, 835, 883, 889,
897, 929, 985, 987, 995, 1009, 1081, 1091, 1131, 1137, 1169, 1177, 1283, 1443, 1499, 1561, 1563,
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1639, 1739, 1801, 1871, 1873, 1883, 2207, 2409, 2441, 2479, 2495, 2571, 2627, 2785, 2905, 2935,
3081, 3121, 3143, 3289, 3343, 3377, 3431, 3487, 3499, 3551, 3561, 3799, 3927, 3929, 3959, 4145,
4177, 4209, 4339, 4355, 4395, 4415, 4463, 4481, 4663, 4735, 4811, 4921, 5017, 5169, 5335, 5345,
5449, 5561, 5579, 5665, 5671, 5779, 5793, 5849, 5889, 5919, 5951, 5969, 5979, 5995, 6007, 6031,
6153, 6193, 6211, 6289, 6409, 6465, 6491, 6505, 6719, 6739, 6761, 6857, 6895, 6911, 6959, 6967,
6999, 7023, 7195, 7207, 7265, 7315, 7331, 7359, 7513, 7601, 7643, 7711, 7777, 7815, 8139, 8201,
8241, 8249, 8363, 8369, 8507, 8691, 8769, 8807, 8889, 9127, 9129, 9281, 9311, 9313, 9415, 9417,
9515, 9543, 9551, 9591, 9647, 9795, 9851, 9895

Next we consider the curve E : Y 2 =X3 − 1. We use Theorem 11 to obtain the orders of
X(E−n/Q) for n6 100 000 positive square-free with n≡ 1, 2 (mod 3) and L(E−n, 1) 6= 0. Here
we present a table for values of such n with |X(E−n/Q)|> 256.

|X(E−n/Q)|= 256 for n = 33 997, 35 341, 38 821, 48 109, 50 893, 62 261, 62 821, 65 285, 70 573,
71 501, 73 309, 75 493, 77 773, 77 797, 84 157, 85 277, 85 333, 89 045, 90 037, 94 813, 96 613, 97 205

|X(E−n/Q)|= 289 for n = 12 893, 14 717, 14 845, 27 893, 28 661, 30 029, 37 589, 37 621, 39 821,
41 189, 44 789, 45 293, 45 677, 45 869, 53 149, 53 437, 55 061, 55 313, 58 757, 62 989, 68 141, 68 501,
72 077, 72 301, 72 341, 73 421, 80 317, 80 533, 80 813, 82 141, 85 165, 86 357, 87 485, 87 797, 89 501,
89 909, 93 497, 93 565, 95 021, 95 717, 96 221, 96 989, 97 397

|X(E−n/Q)|= 324 for n = 34 501, 64 237, 79 693, 82 549

|X(E−n/Q)|= 361 for n = 18 773, 30 341, 31 541, 31 765, 40 949, 43 517, 43 853, 48 341, 49 789,
58 733, 59 021, 61 949, 63 773, 69 541, 71 693, 75 269, 75 949, 76 957, 78 893, 83 093, 83 597, 86 077,
863 41, 86 813, 86 981, 88 045, 92 357, 93 629, 95 429, 95 957, 96 157, 98 269

|X(E−n/Q)|= 400 for n = 52 261, 64 693, 66 373, 80 029

|X(E−n/Q)|= 441 for n = 15 629, 23 957, 24 533, 49 157, 53 549, 66 029, 68 813, 70 853, 71 893,
82 333, 82 781, 86 837

|X(E−n/Q)|= 484 for n = 83 677, 92 797

|X(E−n/Q)|= 529 for n = 40 829, 51 869, 70 157, 70 877, 73 517, 76 541, 77 213, 79 901, 83 117,
86 117

|X(E−n/Q)|= 576 for n = 60 037, 85 669, 99 109, 99 469

|X(E−n/Q)|= 625 for n = 56 605, 57 221, 60 101, 61 757, 85 853, 92 237, 95 653

|X(E−n/Q)|= 729 for n = 57 557, 65 309, 69 221, 71 741, 71 837, 82 613, 88 661, 98 573

|X(E−n/Q)|= 841 for n = 76 733

|X(E−n/Q)|= 1089 for n = 74 933

|X(E−n/Q)|= 1225 for n = 78 797
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