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Let k be an odd integer ≥ 3 and N be a positive integer such that 4 |N . Let χ be
an even Dirichlet character modulo N . Shimura decomposes the space of half-integral
weight cusp forms Sk/2(N, χ) as a direct sum

Sk/2(N, χ) = S0(N, χ) ⊕
M

F

Sk/2(N, χ, F ),

where F runs through all newforms of weight k−1, level dividing N/2 and character χ2,
the space Sk/2(N, χ, F ) is the subspace of forms that are “Shimura equivalent” to F , and
the space S0(N, χ) is the subspace spanned by single-variable theta-series. The explicit

computation of this decomposition is important for practical applications of a theorem of
Waldspurger relating the critical values of L-functions of quadratic twists of newforms of
even integral weight to coefficients of modular forms of half-integral weight. In this paper,
we give a more precise definition of the summands Sk/2(N, χ, F ) whilst proving that it
is equivalent to Shimura’s definition. We use our definition to give a practical algorithm
for computing Shimura’s decomposition, and illustrate this with some examples.

Keywords: Modular forms; half-integral weight; Shimura’s correspondence; Shimura’s
decomposition.
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1. Introduction

Let F be a newform of even integral weight. A theorem of Waldspurger [17]
expresses the critical value of the L-function of the nth twist of F in terms of
coefficients of certain cusp forms of half-integral weight. An example of this is the
celebrated theorem of Tunnell [16] which expresses L(En, 1), for the elliptic curve
En : Y 2 = X3 − n2X with n square-free, in terms of coefficients of theta-series
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corresponding to certain positive-definite ternary quadratic forms. As is well-known
[3, Chap. IV], Tunnell’s theorem gives an answer to the ancient congruent number
problem, partly conditional on the conjecture of Birch and Swinnerton-Dyer. In
explicit applications of Waldspurger’s theorem, for example Tunnell’s theorem, it is
necessary to compute, for a newform of integral weight F , the space of cusp forms
of half-integral weight that are “Shimura equivalent” to F .

Let k be an odd integer ≥ 3 and N be a positive integer such that 4 |N . Let χ
be an even Dirichlet character modulo N . Shimura decomposes the space of half-
integral weight forms Sk/2(N,χ) as a direct sum

Sk/2(N,χ) = S0(N,χ) ⊕
⊕
F

Sk/2(N,χ, F ), (1)

where F runs through all newforms of weight k − 1, level dividing N/2 and char-
acter χ2, and the space Sk/2(N,χ, F ) is the subspace of forms that are “Shimura
equivalent” to F . The space S0(N,χ) is the subspace spanned by single-variable
theta-series. The summands Sk/2(N,χ, F ) occur in Waldspurger’s theorem and their
computation is necessary for explicit applications of that theorem.

In this paper we give an algorithm for computing the decomposition (1). For
this, we will give a more precise definition of the summands Sk/2(N,χ, F ) whilst
showing that our definition is equivalent to Shimura’s definition. In a forthcoming
paper [11] we prove several Tunnell-like results with the help of our algorithm for
computing the Shimura decomposition.

The paper is organized as follows. In [13], Shimura gives a generating set for
S0(N,χ). In Sec. 2 we prove that this generating set is in fact an eigenbasis. This
allows us to determine the dimension of S0(N,χ). For studying Shimura equivalence,
we will need the theory of Shimura lifts, which relates cusp forms of half-integral
weight to modular forms of even integral weight. We will summarize what we need
in Sec. 3. In Sec. 4 we give Shimura’s definition of the summands Sk/2(N,χ, F ), our
definition and we give a proof of the decomposition (1) in which the summands have
been redefined. In Sec. 5 we give our algorithm for computing the decomposition,
prove its correctness, and remark on its practicality. We illustrate this practicality
by giving explicit examples in Sec. 6.

2. The Space S0(N, χ)

Let N be a natural number such that 4 |N . Let χ be an even Dirichlet character
of modulus N . In this section we study the subspace S0(N,χ) of Sk/2(N,χ) which
is defined as the subspace spanned by single-variable theta-series when k = 3; for
k ≥ 5, we define S0(N,χ) = 0. We give Shimura’s [13] definition of these theta-
series and prove that they in fact form a basis of eigenforms; we therefore know the
dimension of S0(N,χ).
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Let ψ be a primitive odd Dirichlet character of conductor rψ. Let

hψ(z) :=
∞∑
m=1

ψ(m)mqm
2
.

Shimura proves [13, Proposition 2.2] that hψ ∈ S3/2(4r2ψ, (
−1
. )ψ). Consider the

operator V (t). By definition,

V (t)(hψ)(z) =
∞∑
m=1

ψ(m)mqtm
2 ∈ S3/2

(
4r2ψt,

(−4t
.

)
ψ

)
.

In the literature (see, e.g., [10, p. 12; 6, p. 241]) these are called single-variable
theta-functions. Following Shimura [13, p. 478], we define the space S0(N,χ) to be
a subspace of S3/2(N,χ) spanned by

S =
{
V (t)(hψ) : 4r2ψt |N and ψ is a primitive odd character of conductor rψ

such that χ =
(−4t

.

)
ψ

}
.

The purpose of this section is to prove the following theorem.

Theorem 1. The set S constitutes a basis of Hecke eigenforms for S0(N,χ) under
Hecke operators Tp2 for all primes p. In particular, the dimension of S0(N,χ) is
simply #S.

The proof of Theorem 1 is similar to the proof of the corresponding result in
weight 1/2 by Serre and Stark [12]. We shall need a series of lemmas.

Lemma 2.1. V (t)hψ is an eigenform for the Hecke operators Tp2 for all primes p.
Indeed,

Tp2V (t)hψ =

{
ψ(p)(1 + p)V (t)hψ if p � 2t,

ψ(p)pV (t)hψ if p | 2t.

Proof. Let us write V (t)hψ(z) =
∑∞
n=1 anq

n. Thus

an =

{
ψ(m)m if n = tm2,

0 otherwise.

Let p be any prime. Write Tp2V (t)hψ =
∑∞

n=1 bnq
n. Then by [13, Theorem 1.7],

bn = ap2n +
(

4tn
p

)
ψ(p)an +

(−4t
p

)2

ψ(p)2pan/p2 .
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If n/t is not the square of an integer, then bn = 0. Write n = tm2. If p | 2t, then
bn = ap2n = atp2m2 = ψ(pm)pm. This completes the proof when p | 2t. Suppose
p � 2t. Then

bn = atp2m2 +
(

4t2m2

p

)
ψ(p)atm2 +

(−4t
p

)2

ψ(p)2patm2/p2

= atp2m2 +
(
m2

p

)
ψ(p)atm2 + ψ(p)2patm2/p2

=



atp2m2 +

(
m2

p

)
ψ(p)atm2 if p � m

atp2m2 + ψ2(p)patm2/p2 if p |m
= ψ(pm)pm+ ψ(pm)m

= (1 + p)ψ(p)atm2 .

Hence the lemma follows.

Lemma 2.2. Let ψ1 and ψ2 be primitive Dirichlet characters modulo r1 and r2
respectively, and suppose r1 |N, r2 |N . Let χ be a Dirichlet character modulo N

such that ψ1(n) = ψ2(n) = χ(n) for all n such that (n,N) = 1. Then r1 = r2 and
ψ1 = ψ2.

Proof. The proof is immediate from [1, Theorem 8.18].

Proof of Theorem 1. We will prove the theorem by showing that the elements
of the set S are linearly independent. Let S = {V (ti)(hψi) : 1 ≤ i ≤ k}. We claim
that ti are all distinct. Suppose not. Then there exist i, j such that ti = tj . We
know that χ = (−4ti

. )ψi = (−4tj
. )ψj . Thus, ψi(n) = ψj(n) for all (n,N) = 1. Since

ψi and ψj are primitive, we can apply Lemma 2.2 to get that ψi = ψj and that
V (ti)(hψi) = V (tj)(hψj ). Hence the claim follows. We can assume that t1 < t2 <

· · · < tk.
Now let αi for 1 ≤ i ≤ k be such that

α1V (t1)(hψ1) + α2V (t2)(hψ2) + · · · + αkV (tk)(hψk
) = 0.

By the above equation and the q-expansion of V (ti)(hψi), it follows that

coefficient of qt1 = α1ψ1(1) = 0.

Hence α1 = 0. Repeating the same argument with t2, t3, . . . , tk, we obtain α2 =
α3 = · · · = αk = 0, completing the proof.

Note. Recall that for k ≥ 5, we defined S0(N,χ) = 0. In the upcoming sections we
will use the following notation:

S′
k/2(N,χ) := S0(N,χ)⊥;
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in words, the orthogonal complement to S0(N,χ) with respect to the Petersson
inner-product. Thus, for k ≥ 5,

S′
k/2(N,χ) = Sk/2(N,χ).

3. Shimura Lifts

For this section fix positive integers k, N with k ≥ 3 odd and 4 |N . Let χ be an
even Dirichlet character of modulus N . Let N ′ = N/2. We will need the following
theorem of Shimura.

Theorem 2 (Shimura). Let λ = (k − 1)/2. Let f(z) =
∑∞
n=1 anq

n ∈ Sk/2(N,χ).
Let t be a square-free integer and let ψt be the Dirichlet character modulo tN

defined by

ψt(m) = χ(m)
(−1
m

)λ (
t

m

)
.

Let At(n) be the complex numbers defined by

∞∑
n=1

At(n)n−s =

( ∞∑
i=1

ψt(i)iλ−1−s
)
 ∞∑
j=1

atj2j
−s


. (2)

Let Sht(f)(z) =
∑∞
n=1At(n)qn. Then:

(i) Sht(f) ∈Mk−1(N ′, χ2).
(ii) If k ≥ 5 then Sht(f) is a cusp form.
(iii) If k = 3 and f ∈ S′

3/2(N,χ) then Sht(f) is a cusp form.
(iv) Suppose f is an eigenform for Tp2 for all primes p and let Tp2f = λpf . Then∑∞

n=1A0(n)qn ∈Mk−1(N ′, χ2) where A0(n) is defined by
∞∑
n=1

A0(n)n−s =
∏
p

(1 − λpp
−s + χ(p)2pk−2−2s)−1. (3)

In fact if at �= 0 then Sht(f)/at =
∑∞

n=1A0(n)qn.

Proof. For (i), (ii) and (iv) see [13, Sec. 3, Main Theorem, Corollary], for the rest
see [9, Theorem 3.14]. In particular, the fact that N ′ = N/2 was proved by Niwa
[8, Sec. 3].

The form Sht(f) is called the Shimura lift of f corresponding to t. The following
property of Shimura lifts is well known; see, for example, [9, Chap. 3, Corollary
3.16] or [4].

Proposition 3.1. Suppose f ∈ Sk/2(N,χ). Let t be a square-free positive integer.
If p � tN is a prime then

Sht(Tp2f) = Tp Sht(f).
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Here Tp2 is the Hecke operator on Sk/2(N,χ) and Tp is the Hecke operator on
Mk−1(N ′, χ2).

In [10], we prove the following strengthening of this result.

Proposition 3.2. Suppose f ∈ Sk/2(N,χ) and t a square-free positive integer. If
p is a prime then

Sht(Tp2f) = Tp Sht(f).

In [10] we use this stronger result to give the generators of Hecke algebra as
a Z[ζ]-module, where ζ is a primitive ϕ(N)th root of unity; here ϕ stands for the
Euler’s totient function.

4. Shimura’s Decomposition

In this section we state and refine a theorem of Shimura that conveniently decom-
poses the space of cusp forms of half-integral weight.

As before let k, N be positive integers with k ≥ 3 odd and 4 |N . Let χ be
an even Dirichlet character of modulus N . Let N ′ = N/2. For M |N ′ such that
Cond(χ2) |M and a newform F ∈ Snew

k−1(M,χ2) define

Sk/2(N,χ, F ) = {f ∈ S′
k/2(N,χ) : Tp2(f) = λFp f for almost all p � N};

here Tp(F ) = λFp F .

Theorem 3 (Shimura [14]). We have S′
k/2(N,χ) =

⊕
F Sk/2(N,χ, F ) where F

runs through all newforms F ∈ Snew
k−1(M,χ2) with M |N ′ and Cond(χ2) |M .

For us this theorem is not suitable for computation since for any particular prime
p � N , we do not know if it is included or excluded in the “almost all” condition.
In fact we shall prove this theorem with a more precise definition for the spaces
Sk/2(N,χ, F ).

From now on and for the rest of the paper we take the following as the definition
of the space Sk/2(N,χ, F ):

Sk/2(N,χ, F ) = {f ∈ S′
k/2(N,χ) : Tp2(f) = λFp f for all p � N}.

We say that f ∈ S′
k/2(N,χ) is Shimura equivalent to F if f belongs to the space

Sk/2(N,χ, F ).

Theorem 4. Shimura’s decomposition in Theorem 3 holds with this new definition.

Proof. It is well-known that the operators χ(p)Tp2 on Sk/2(N,χ) with p � N com-
mute and are Hermitian; see, for example, [3]. They also preserve the subspace
S′
k/2(N,χ). Therefore, there exists an eigenbasis f1, f2, . . . , fn for S′

k/2(N,χ) with
respect to the operators Tp2 for p � N . Let f be one of the fi. Let H = Sht(f), the
Shimura lift of f corresponding to t (Theorem 2) with any square-free t. We know
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that H ∈ Sk−1(N ′, χ2). Moreover, for all p � N we know that H is an eigenfunc-
tion for Tp and it has the same eigenvalue as f under Tp2 ; see Proposition 3.2. By
the theory of newforms of integral weight modular forms [7, Corollary 4.6.20], we
know that there exists uniquely a divisorM ofN ′ with Cond(χ2) |M and a newform
F ∈ Snew

k−1(M,χ2) such that F has the same Tp-eigenvalues asH for all primes p �N ′.
Thus f ∈ Sk/2(N,χ, F ). Hence S′

k/2(N,χ) is a sum of the subspaces Sk/2(N,χ, F )
as F runs through newforms F ∈ Snew

k−1(M,χ2) with M |N ′ and Cond(χ2) |M .
We now show that this sum is actually a direct sum. For this, we just need to
show that if h1, h2, . . . , hr are all the elements of the above eigenbasis that belong
to Sk/2(N,χ, F0) where F0 is a fixed newform in Snew

k−1(M0, χ
2) with M0 |N ′ and

Cond(χ2) |M0, then they actually form a basis for the space Sk/2(N,χ, F0). We can
reorder our basis elements such that fi = hi for 1 ≤ i ≤ r. Let h ∈ Sk/2(N,χ, F0)
and suppose h = α1f1 + α2f2 + · · ·+ αnfn. We show that αi = 0 for r+ 1 ≤ i ≤ n.
We will show that αr+1 = 0 and the same argument follows for the others. We know
that fr+1 ∈ Sk/2(N,χ, F ) for some suitable newform F and F0 �= F . This implies
there exists a prime p � N such that λ0

p �= λp where λ0
p and λp are corresponding

Tp-eigenvalues of F0 and F . Applying Tp2 to h we get αr+1 = 0. The theorem
follows.

In fact, as a corollary to the proof of Theorem 4 we can deduce the following
precise relationship between the Shimura lift H and the newform F .

Corollary 4.1. Let F be a newform belonging to Snew
k−1(M,χ2) where M |N ′ and

Cond(χ2) |M . Let f ∈ Sk/2(N,χ, F ) and let H = Sht(f) for any square-free t.
Then we can write H as a linear combination

H =
∑

d|(N ′/M)

αdVd(F ).

The following is an easy lemma that shows equivalence of the two definitions
thereby leading to an alternate proof of Theorem 3.

Lemma 4.2. Our definition of Sk/2(N,χ, F ) agrees with Shimura’s definition. In
other words, if we write

SSh
k/2(N,χ, F ) = {f ∈ S′

k/2(N,χ) : Tp2(f) = λFp f for almost all p � N},

then SSh
k/2(N,χ, F ) = Sk/2(N,χ, F ).

Proof. Clearly, the right-hand side is contained in the left-hand side. Suppose f
is in left-hand side. We use the decomposition Theorem 4 with our definition of
summands. Let G run through the newforms of levels dividing N/2. Then we can
write f =

∑
fG where fG ∈ Sk/2(N,χ,G). Here F is one of the Gs. We know that
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for almost all primes p,

Tp2f = λFp f =
∑

λFp fG

where TpF = λFp F . But,

Tp2f =
∑

Tp2(fG) =
∑

λGp fG

where TpG = λGp G. Thus ∑
(λFp − λGp )fG = 0.

By the fact that the summands belong to a direct sum, we see that each summand
must individually be zero. If fG �= 0 then λFp = λGp for almost all p which forces
G = F by [7, Theorem 4.6.19]. Thus f = fF ∈ Sk/2(N,χ, F ) as required.

5. Algorithm for Computing Shimura’s Decomposition

The following theorem gives our algorithm for computing the Shimura decomposi-
tion.

Theorem 5. Let F1, . . . , Fm be the newforms of weight k − 1, character χ2 and
level dividing N ′. For prime p, and F one of these newforms, write Tp(F ) = λFp F .
Let p1, . . . , pn � N be primes such that the m vectors of eigenvalues (λFp1 , . . . , λ

F
pn

),
with F = F1, . . . , Fm, are pairwise distinct. If f ∈ S′

k/2(N,χ) is an eigenform for
Tp2i for i = 1, . . . , n then f belongs to one of the summands Sk/2(N,χ, F ).

Proof. Suppose f ∈ S′
k/2(N,χ) is an eigenform for Tp2i for i = 1, . . . , n. Write

Tp2i f = µif . By Shimura’s decomposition, we can write

f =
∑
F

fF

for some unique fF ∈ Sk/2(N,χ, F ); here F varies over Fi, 1 ≤ i ≤ m. Thus∑
F

λFpi
fF = Tp2i f = µi

∑
F

fF .

As the decomposition is a direct sum, we find that

(λFpi
− µi)fF = 0, i = 1, . . . , n.

We will show that at most one fF is non-zero. This will force f to be in one of the
components Sk/2(N,χ, F ) which is what we want to prove. Suppose therefore that
fF1 �= 0 and fF2 �= 0. Then

λF1
pi

= µi = λF2
pi
, i = 1, 2, . . . , n.
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This contradicts the assumption that the vectors of eigenvalues are distinct, and
completes the proof.

We can reframe Theorem 5 as follows.

Corollary 5.1. Let F be a newform of weight k − 1, level M dividing N ′, and
character χ2. Let p1, . . . , pn be primes not dividing N satisfying the following: for
every newform F ′ �= F of weight k − 1, level dividing N ′ and character χ2, there is
some pi such that λF

′
pi

�= λFpi
, where Tpi(F ) = λFpi

· F . Then

Sk/2(N,χ, F ) = {f ∈ S′
k/2(N,χ) : Tp2i (f) = λFpi

f for i = 1, . . . , n}.
Recall that S′

k/2(N,χ) = Sk/2(N,χ) except possibly when k = 3. We have
the following refinement of the above corollary which takes care of the case when
S′
k/2(N,χ) � Sk/2(N,χ), that is, S0(N,χ) �= 0.

Corollary 5.2. Assuming the notation in the above corollary, the following stronger
statement holds:

Sk/2(N,χ, F ) = {f ∈ Sk/2(N,χ) : Tp2i (f) = λFpi
f for i = 1, . . . , n}.

Proof. Let f1, . . . , fr be the basis of eigenforms for S0(N,χ) as stated in Theorem 1.
Recall that fi = V (ti)hψi where ψi is primitive odd character of conductor rψi

such that 4r2ψi
ti |N and χ =

(−4ti
.

)
ψi. Let q = pi for some fixed i. We claim

that Tq2(fi) �= λFq fi for any 1 ≤ i ≤ r. Since F is a newform of weight 2 we
know by Deligne’s work on Weil conjectures that |λFq | ≤ 2

√
q. By Lemma 2.1,

Tq2(fi) = ψi(q)(1 + q)fi as q � N . Clearly |ψi(q)(1 + q)| = |1 + q| > 2
√
q. Hence the

claim follows.
Let g ∈ Sk/2(N,χ) such that Tp2i (g) = λFpi

g for 1 ≤ i ≤ n. We can write g
uniquely as g = g1 + g2 where g1 ∈ S0(N,χ) and g2 ∈ S′

k/2(N,χ). Since the Hecke

operators Tp2i preserve the subspaces S0(N,χ) and S′
k/2(N,χ) we obtain Tp2i (gj) =

λFpi
gj for all 1 ≤ i ≤ n and j = 1, 2. Thus by Corollary 5.1, g2 ∈ Sk/2(N,χ, F ). We

show that g1 = 0. Let g1 =
∑r

i=1 aifi. In particular for the prime q we must have
aiTq2(fi) = aiλ

F
q fi. The above claim implies that ai = 0 for all 1 ≤ i ≤ r. Hence

we are done.

A remark on the practicality of our algorithm. The working of the algorithm
is based on multiplicity-one theorem [7, Theorem 4.6.19] of newforms of integral
weight and Sturm’s bound [15]. Indeed multiplicity-one guarantees existence of the
primes pi in the algorithm. However thanks to Sturm’s result we need to look for
such primes only up to the Sturm’s bound. In practice, the set of these primes is
usually very small. For example, for the decomposition of the space S′

3/2(1984, χ0)
in Example 3 below, we only need to work with primes in the set {3, 5, 7, 13, 19}. In
fact running our algorithm for level 4N with 4 ≤ 4N ≤ 3000, we observe that 31 is
the largest prime we need to work with in order to decompose the space S3/2(4N,χ)
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into Shimura equivalent spaces; here χ is a quadratic Dirichlet character modulo
4N . Furthermore we have to go as far as the prime 31 in only five instances. One
could heuristically argue that given two distinct rational newforms of weight 2 the
probability that P is the first prime where the Fourier coefficients differ is roughly
(1 − 1

4
√
P

) ·∏ 1
4
√
p where the product runs over primes p less than P with p not

dividing the levels of the newforms. One can develop such a heuristic argument
to explain why the set of primes that we need for our algorithm is rather small,
although it does not seem possible to supply a rigorous proof that the set of primes
is small.

6. Examples

Example 1. Let χ0 be the trivial Dirichlet character modulo 32. One can see using
dimension formula [2] that the space S7/2(32, χ0) has dimension 6. We use Theorem
4 to obtain the following decomposition:

S7/2(32, χ0) = S7/2(32, χ0, G4) ⊕ S7/2(32, χ0, G8)

⊕S7/2(32, χ0, G16) ⊕ S7/2(32, χ0, G
′
16),

where G4, G8 and G16, G′
16 are the newforms of weight 6, trivial character and

levels 4, 8 and 16 respectively and are given by following q-expansions:

G4 = q − 12q3 + 54q5 − 88q7 − 99q9 + 540q11 +O(q12),

G8 = q + 20q3 − 74q5 − 24q7 + 157q9 + 124q11 +O(q12),

G16 = q + 12q3 + 54q5 + 88q7 − 99q9 − 540q11 +O(q12),

G′
16 = q − 20q3 − 74q5 + 24q7 + 157q9 − 124q11 +O(q12).

We use our algorithm (Theorem 5) to obtain

S7/2(32, χ0, G4) = 〈g1, g2, g3, g4〉, S7/2(32, χ0, G8) = 〈g5, g6〉,
S7/2(32, χ0, G16) = {0} = S7/2(32, χ0, G

′
16),

where gi have the following q-expansions:

g1 = q − 3q9 − 8q17 + 29q25 +O(q30),

g2 = q2 − 6q6 + 10q10 + 4q14 − 21q18 + 10q22 − 18q26 +O(q30),

g3 = q4 − 2q8 − 4q20 + 12q24 +O(q30),

g4 = q5 − 7q13 + 18q21 − 21q29 +O(q30),

g5 = q2 + 2q6 − 6q10 − 12q14 + 11q18 + 18q22 − 2q26 +O(q30),

g6 = q3 − 5q11 + 3q19 + 20q27 +O(q30).

Example 2. Let χ3 be Dirichlet character modulo 72 given by χ3(·) =
(

3
·
)
. As

before using dimension formula [2] we can see that the space S5/2(72, χ3) has
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dimension 12. We use Theorem 4 to obtain the following decomposition:

S5/2(72, χ3) = S5/2(72, χ3, H6) ⊕ S5/2(72, χ3, H9) ⊕ S5/2(72, χ3, H12)

⊕S5/2(72, χ3, H18) ⊕ S5/2(72, χ3, H36),

where H6, H9, H12, H18, H36 are the unique newforms of weight 4, trivial character
and levels 6, 9, 12, 18 and 36 respectively and are given by following q-expansions:

H6 = q − 2q2 − 3q3 + 4q4 + 6q5 + 6q6 − 16q7 − 8q8

+ 9q9 − 12q10 + 12q11 +O(q12),

H9 = q − 8q4 + 20q7 +O(q12),

H12 = q + 3q3 − 18q5 + 8q7 + 9q9 + 36q11 +O(q12),

H18 = q + 2q2 + 4q4 − 6q5 − 16q7 + 8q8 − 12q10 − 12q11 +O(q12),

H36 = q + 18q5 + 8q7 − 36q11 +O(q12).

We use our algorithm (Theorem 5) to obtain

S5/2(72, χ3, H6) = 〈h1, h2, h3, h4, h5, h6〉, S5/2(72, χ3, H9) = {0},
S5/2(72, χ3, H12) = 〈h7, h8, h9〉, S5/2(72, χ3, H18) = 〈h10, h11〉,
S5/2(72, χ3, H36) = 〈h12〉,

where hi have the following q-expansions:

h1 = q + 4q10 − 8q13 − 8q22 + 11q25 +O(q30),

h2 = q2 − q5 − 2q14 + q17 + 6q26 − 3q29 +O(q30),

h3 = q3 − 2q12 − 3q27 +O(q30),

h4 = q4 − 2q16 − 2q19 +O(q30),

h5 = q8 − q11 − q20 +O(q30),

h6 = q9 − 2q18 − 2q21 +O(q30),

h7 = q − 2q10 + 4q13 − 8q22 − 13q25 +O(q30),

h8 = q2 − 4q5 + 10q14 − 2q17 − 18q26 + 12q29 +O(q30),

h9 = q6 − q9 − q18 +O(q30),

h10 = q − 8q10 + 4q13 + 16q22 − q25 +O(q30),

h11 = q4 − 2q7 + 2q16 − 4q28 +O(q30),

h12 = q2 + 2q5 − 2q14 − 8q17 − 6q26 + 6q29 +O(q30).
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Remark. Given a newform F of integral weight k − 1 and level N , it is natural
to ask the minimum level at which one can find the Shimura equivalent forms
of weight k/2 corresponding to F . This has been answered by Mao [6, Theorem
1.1] when the level of F is odd. We are interested in looking at the cases when
N is even and in particular when either 4 ‖N or 8 ‖N . We note that in these
particular cases Waldspurger’s theorem [17, Théorème 1] is not applicable. We apply
our algorithm to several such examples of newforms. We observe that if F is a
newform in Snew

k−1(4N) with N odd and square-free then the smallest level at which
there is a non-zero Shimura equivalent form is 8N and the space Sk/2(8N,χ0, F )
is one-dimensional; here χ0 is the trivial character. Further if F is a newform in
Snew
k−1(8N) with N odd and square-free then the smallest level at which there is a

non-zero Shimura equivalent form is 32N and the space Sk/2(32N,χ0, F ) is now two-
dimensional. In particular, in Example 1, we find that S7/2(16, χ0, G8) = 0 while
S7/2(32, χ0, G8) is two-dimensional. Also in Example 2 we find that for H12 and H36

the respective Shimura equivalent spaces S5/2(24, χ3, H12) and S5/2(72, χ3, H36) are
each one-dimensional.

Example 3. In Sec. 1 we mentioned that computing the subspace of Shimura equiv-
alent half-integral weight forms is necessary for applying Waldspurger’s theorem [17]
to a given integral weight form. In this example we shall illustrate this, working with
the weight 2 newform F corresponding to the elliptic curve

E/Q : Y 2 = X3 +X + 1.

The elliptic curve E has conductor N0 = 496 = 16 × 31 and j-invariant 6912/31;
in particular E does not have complex multiplication. Let F ∈ Snew

2 (496) be the
corresponding newform with trivial character given by the Modularity theorem; F
has the following q-expansion,

F = q − 3q5 + 3q7 − 3q9 − 2q11 − 4q13 − q19 +O(q20).

In order to apply Waldspurger’s theorem [17] we would like to find a suitable N
divisible by 2N0 = 992, and character χ, such that the summand S3/2(N,χ, F ) is
non-trivial, and we also need to compute an eigenbasis for this summand. Let χ0

be the trivial character. Using Theorem 5 we found that S3/2(992, χ0, F ) = {0}.
Next we considered level N = 1984. The space S3/2(1984, χ0) is 119-dimensional
(see [2]). From Theorem 1 it follows that the space S0(1984, χ0) is one-dimensional
and is spanned by the theta-series given by

∑∞
m=1 χ−1(m)mqm

2
where χ−1 is the

Dirichlet character of conductor 4 given by χ−1(·) =
(−1

·
)
. Using our algorithm

we obtain the following decomposition of S′
3/2(1984, χ0) where the Fi vary over

the newforms of levels dividing 992 and trivial character, deg Q(Fi) denotes the
degree of number field generated by the coefficients of Fi and Di is the dimension
of the space S3/2(1984, χ0, Fi). In this table we group conjugate newforms on the
same row.
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Level Newforms Fi deg Q(Fi) Di

31 F1, F2 2 12

32 F3 1 0

62 F4 1 9

62 F5, F6 2 9

124 F7 1 6

124 F8 1 6

248 F9 1 3

248 F10 1 3

248 F11 1 3

248 F12, F13 2 3

248 F14, . . . , F16 3 3

496 F17 1 3

496 F18 1 3

496 F19 1 3

496 F20 1 2

Level Newforms Fi deg Q(Fi) Di

496 F21 1 2

496 F22 1 1

496 F23, F24 2 3

496 F25, F26 2 0

496 F27, F28 2 1

496 F29, . . . , F31 3 3

992 F32, F33 2 0

992 F34, F35 2 0

992 F36, . . . , F38 3 0

992 F39, . . . , F41 3 0

992 F42, . . . , F45 4 0

992 F46, . . . , F49 4 0

992 F50, . . . , F55 6 0

992 F56, . . . , F61 6 0

Our F is in fact F17 in the above table. From the table we see that the space
S3/2(1984, χ0, F17) is three-dimensional. Our algorithm also gives an eigenbasis
{f1, f2, f3} given by the following q-expansions:

f1 = q3 + q43 − 2q75 + 2q83 + q91 + 3q115 − 3q123 +O(q145) :=
∞∑
n=1

anq
n,

f2 = q15 + q23 − q31 + 2q55 + q79 − 3q119 +O(q145) :=
∞∑
n=1

bnq
n,

f3 = q17 + q57 + q65 + 2q73 − q89 − q105 + q137 +O(q145) :=
∞∑
n=1

cnq
n.

Using Waldspurger’s theorem now we can prove the following statement. One
can find the details of the proof in [11].

Proposition 6.1. Let f = f1+f2+
√

2f3 =
∑
dnq

n. For positive square-free n ≡ 1,
3, 7 (mod 8),

(a) L(E−n, 1) =
2(ν31(n)+1)ΩE−1√

n
· d2
n.

(b) Let E−n has rank zero. Then assuming the Birch and Swinnerton-Dyer
conjecture,

|III(E−n/Q)| =
2(ν31(n)+1)∏

p cp
· d2
n,
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where the Tamagawa numbers cp of E−n are given by

c2 =

{
1 n ≡ 3, 7 (mod 8),

2 n ≡ 1, 5 (mod 8),
c31 =




1 31 � n,

4 31 |n,
(
n/31
31

)
= 1,

2 31 |n,
(
n/31
31

)
= −1

and cp = #E−1(Fp)[2] for p |n, p �= 31, and cp = 1 for all other primes p.
(c) Suppose

(
n
31

)
= −1. Then assuming the Birch and Swinnerton-Dyer conjecture,

Rank(E−n) ≥ 2 ⇔ dn = 0.
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