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FAMILIES OF GALOIS REPRESENTATIONS

TADASHI OCHIAI

Abstract. In Theorem 1.6, we give a formula to compare the algebraic p-adic L-
functions for two different lattices of a given family of Galois representations over a
deformation ring R. This generalize a classical comparison formula by Schneider [Sc]
and Perrin-Riou [P], for which R is the cyclotomic Iwasawa algebra.

Recall that we studied the two-variable Iwasawa theory for residually irreducible
nearly ordinary Hida deformations in [O1], [O2] and [O3] and we acquired sufficient
understanding through these works. By applying our formula to Hida’s nearly ordinary
deformations, we understand better the two-variable Iwasawa theory for residually re-
ducible cases, where the choice of lattices is not unique anymore.
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1. Introduction

Let R be a local domain which is finitely generated and torsion-free over a power series
algebra Zp[[X1, · · · ,Xn]] with p a fixed odd prime number and let K be the fraction field
of R. We fix embeddings Q ↪→ Qp and Q ↪→ C, where Q and Qp are the algebraic
closures of the rational number field Q and the p-adic field Qp respectively. Throughout
the paper, we denote by Dv the decomposition subgroup of the absolute Galois group
G� = Gal(Q/Q) at a prime v.

Definition 1.1. Let V be a finite dimensional K-vector space with K-linear G�-action.
The representation ρ : G� −→ AutK(V) is called continuous if V has a finitely generated
R-submodule T with the following properties:

1. T ⊗R K is isomorphic to V.
2. The R-submodule T is stable under G�-action on V.
3. The action of G� on T is continuous with respect to the M-adic topology on T ,

where M is the maximal ideal of R.
An R-submodule T of V satisfying the above properties is called a lattice (of V). If T
and T ′ are lattices of the same continuous representation V, we say that T and T ′ are
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isogenious to each other. In general, a lattice T is not necessarily a free module over R.
When a lattice T is free R-module, we call it a free lattice.

In this paper, we always assume that the action of G� on T is unramified outside a
finite set of primes Σ ⊃ {p,∞}. We introduce several notations. Let R̃ be the integral
closure of R in K. Note that R̃ is a finitely generated R-module. Let T̃ = T ⊗R R̃ and
let Ã = T̃ ⊗

�R (R̃)∨ where (R̃)∨ is the Pontrjagin dual of R̃. When R̃ = R, we denote
Ã by A. We denote by Hom�p(R̃, Qp) the set of non-trivial Zp-algebra homomorphisms,
which is naturally endowed a p-adic topology and is regarded as a p-adic rigid analytic
space. For φ ∈ Hom�p(R̃, Qp), we define (T̃ )φ to be the p-adic Galois representation of
G� in usual sense obtained by specializing T̃ via φ.

Definition 1.2. Suppose also that we have a Dp-stable R-submodule F+Ã of Ã. Then,
we define the Selmer group Sel

�T as follows:

Sel
�T = Ker

⎡⎣H1(QΣ/Q, Ã) −→ H1(Ip,F−Ã)×
∏

l∈Σ\{p,∞}
H1(Il, Ã)

⎤⎦ ,(1)

where F−Ã means Ã/F+Ã, QΣ is the maximal algebraic extension of Q unramified
outside Σ and the map in the definition is the natural localization map. Though the
Selmer group Sel

�T depends on the fixed Dp-stable R-submodule F+Ã of Ã, we omit to
note it in the notation Sel

�T if there seems to be no confusion.

Remark 1.3. Since Sel
�T is a discrete R̃-module, the Pontrjagin dual (Sel

�T )∨ of Sel
�T is

naturally endowed with a structure of compact R̃-module. It is also not so hard to show
that (Sel

�T )∨ is a finitely generated R̃-module (cf. [Gr2, §4]).

We recall the following conjecture which we find in the paper [Gr2] (under slightly
different assumptions):

Conjecture 1.4. Let T be a lattice of an irreducible continuous K-linear representation
V of G� . We denote by d± the K-rank of the ±-eigenspace of V under the action of the
complex conjugation in G� . Assume further that the following conditions are satisfied:

1. The action of G� on T is unramified outside a finite set of primes Σ ⊃ {p,∞}.
2. V has a Dp-stable K-subspace F+V ⊂ V with rankKF+V = d+ such that V/F+V is

free of rank d−. (Note that F+V induces the filtration F+T̃ := T̃ ∩ F+V in T̃ and
the filtration F+Ã := F+T̃ ⊗

�R (R̃)∨ in Ã).
3. There exists a dense subset S ⊂ Hom�p(R̃, Qp) such that every φ ∈ S satisfies the

following conditions:
(a) For each φ ∈ S, there exists a pure motive Mφ over Q critical in the sense

of [De2] such that (T̃ )φ ⊗�p Qp is isomorphic to the p-adic étale realization
Vφ = Hét(Mφ ⊗� Q, Qp).

(b) The Dp-equivariant isomorphism HdR(Mφ)⊗�p BdR
∼−→ Vφ ⊗�p BdR of p-adic

Hodge theory induces an isomorphism Fil0(HdR(Mφ)) ⊗�p BdR
∼−→ F+Vφ ⊗�p
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BdR, where HdR(Mφ) is the de Rham realization of Mφ and {FiliHdR(Mφ)} is
the de Rham filtration.

(c) The zero locus N = {φ ∈ S | L(Mφ, 0) = 0} is contained in a certain Zariski
closed subset of Hom�p(R,Qp).

Then, we conjecture that (Sel
�T )∨ is a finitely generated torsion R̃-module.

For a noetherian integral domain R which is integrally closed in the fraction field, the
localization R� is a discrete valuation ring for every height-one prime p of R. Hence,
for a finitely generated torsion R-module M , we have an invariant lengthR�

M�. We
see that the invariant length

�R�
((Sel

�T )∨)� makes sense if Conjecture 1.4 holds for T .
On the other hand, an isomorphism class of lattices T in V is not unique when the
residual representation is reducible. Thus, it is important to compare the difference
between length

�R�
((Sel

�T )∨)� and length
�R�

((Sel
�T ′)∨)� when we take two lattices T and

T ′. After preparing necessary notations, we will state our main result (Theorem 1.6)
which calculate this difference.

Definition 1.5. Let us introduce the following conditions on a lattice T :
(F�) The coinvariant quotient (T ∗)G� is a pseudo-null R-module.
(F�) Ip acts non-trivially on every elements in F−T and Dp acts non-trivially on
every elements in F+T (−1) and F−T (−1). The Pontrjagin dual of (F−A)Dp is a
pseudo-null R-module.

(T) Sel
�T is a cotorsion R̃-module.

(T�) Sel
�T ∗(1) is a cotorsion R-module where T̃ ∗(1) = Hom

�R(T̃ , R̃)⊗�p Zp(1).

Further, we assume the following condition for each prime v ∈ Σ \ {∞, p} :
(F�) Dv acts non-trivially on every elements in T (−1) and the modules ADv and
(AIv)Dv are pseudo-null R-modules.

Our main result is as follows:

Theorem 1.6. Suppose that the ring R is isomorphic to O[[X1, · · · ,Xn]] with the integer
ring of integers O of a finite extension of Qp and a certain natural number n. Suppose
that T and T ′ are free lattices of a continuous representation V of G� over the fraction
field K of R unramified outside a finite set of primes Σ ⊃ {p,∞}. Let us assume the
conditions (F�), (F�), (T), (T�) and (F�) for both of them.

Then, we have

lengthR�
((SelT )∨)� − lengthR�

((SelT ′)∨)�
= lengthR�

((T /T ′)G�)� − lengthR�
((F+T /F+T ′))�

for every height-one prime p of R (Note that R = R̃ by assumption).

As we will see in the following remark, the assumptions of this theorem are satisfied by
a wide class of deformations. Hence, it ensures that we will have a plenty of applications
of the theorem.

Remark 1.7. 1. It is not difficult to show that the conditions (T) and (T�) are
isogeny invariant (That is, if the property holds for one lattice T ⊂ V, it holds
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for all lattices in V). The conditions (F�), (F�) and (F�) also might be isogeny
invariant under fairly general situation. But, we do not pursue the question of
isogeny invariance of these conditions and we assume them for both of T and T ′.

2. Let T ∼= Z⊕d
p be a p-adic Galois representation of G� unramified outside a finite

set of primes Σ ⊃ {p,∞}. We consider the cyclotomic Zp-extension Q∞ of Q with
Γ = Gal(Q∞/Q). We denote by Zp[[Γ]](χ̃) a rank-one Zp[[Γ]]-module on which
G� acts via the character χ̃ : G� −→ Zp[[Γ]]× obtained by tautological injection
G� � Γ ↪→ Zp[[Γ]]×. Then, we introduce the free Zp[[Γ]]-module T ⊗�p Zp[[Γ]](χ̃)
on which G� acts diagonally and we call it the cyclotomic deformation of T . The
Selmer group SelT for T = T ⊗�p Zp[[Γ]](χ̃) defined as in the definition (1) coincides
with the cyclotomic Selmer group SelA(Q∞) ⊂ H1(QΣ/Q∞, A) given in [Gr1] where
A = T ⊗�p Qp/Zp. When T is ordinary at p and SelA(Q∞)∨ is a torsion Zp[[Γ]]-
module, Theorem 1.6 was obtained by Perrin-Riou in the paper [P].

3. We verify the conditions of the theorem in the following cases.
(a) Let Tp(E) be the p-Tate module of an elliptic curve E over Q with ordinary

reduction at p and let T := Tp(E)⊗�p Zp[[Γ]](χ̃). Note that a finitely generated
Zp[[Γ]]-module is pseudo-null if and only if it is finite. In this situation, the
conditions (T) and (T�) always hold by results of Rubin [R1] (CM case) and
Kato [Ka] (non CM case). Recall that the group E(Q∞)p-tors := ∪

m≥1
E(Q∞)[pm]

is always finite as studied by Imai [I]. On the other hand, (T ∗)G� is the Pon-
trjagin dual of E(Q∞)p-tors by Shapiro’s lemma. Hence, T always satisfies the
condition (F�). Let v ∈ Σ \ {p,∞}. We see easily that Dv acts non-trivially
on every elements of T (−1) = Tp(E)(−1) ⊗�p Zp[[Γ]](χ̃). The group ADv is
isomorphic to a finite number of copies of E(Qv,∞)p-tors = ∪

m≥1
E(Qv,∞)[pm]

where Qv is the completion of Q at v and Qv,∞ = Q∞Qv. Since it is easy to see
that E(Qv,∞)p-tors is a finite group, the Pontrjagin dual of ADv is a pseudo-null
R-module. This implies immediately that the Pontrjagin dual of (AIv)Dv is a
pseudo-null R-module. Thus, (F�) is satisfied for each v ∈ Σ \ {p,∞}. Let us
discuss about the condition (F�). Since Ip acts non-trivially on any Tate-twist
of Zp[[Γ]](χ̃), Ip acts on every elements in F−T (r) = F−Tp(E)(r)⊗�p Zp[[Γ]](χ̃)
for any integer r. The group (F−A)Dp is isomorphic to ( ∪

m≥1
F−E[pm])G�p,∞

where Qp,∞ = Q∞Qp. This group is a finite group except when E has split-
multiplicative reduction at p since the action of Frobenius element is non-trivial.
Hence, the condition (F�) is satisfied except when E has split-multiplicative
reduction at p. More generally, let T be a lattice of the p-adic representation
V associated to an ordinary eigen cuspform f of weight k ≥ 2 in the sense of
Deligne [De] and let T := T ⊗�p Zp[[Γ]](χ̃). The conditions (T) and (T�) hold
by the above mentioned results by Rubin and Kato. The conditions (F�), (F�)
and (F�) for every v ∈ Σ \ {p} hold in fairy general situations.
Thus, the assumptions of Theorem 1.6 are checked to be true in these cases and
we give another proof of results by Schneider [Sc] (for abelian varieties) and
Perrin-Riou [P] (for ordinary p-adic representations).
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(b) Suppose that T is a free lattice of the two-variable nearly ordinary Hida defor-
mation V ∼= K⊕2 associated to a Λ-adic ordinary eigen cuspform F . Here, K
is isomorphic to a finite extension of the fraction field of Zp[[X,Y ]]. Suppose
that the ring of integers R of K is isomorphic to O[[X1,X2]] with the integer
ring of integers O of a finite extension of Qp and let us take a height-one prime
I of R such that R/I is also a regular local ring. Then, a finitely generated
R-module M is a torsion (resp. pseudo-null) R-module if M/IM is a torsion
(resp. pseudo-null) R/I-module. The conditions (T) and (T�) are proved
by the control theorem at a height-one prime If specializing to the cyclotomic
deformation of a cusp form f in the Hida family F and the above mentioned
results by Kato and Rubin for the cyclotomic deformation of f (The proof is the
same as [O3, Proposition 4.9], where we prove it for T with irreducible resid-
ual representation). Similarly, (F�), (F�) and (F�) are proved by specializing
method. For (F�), if we have If corresponding to a cusp form f of weight two
associated to an elliptic curve with split-multiplicative reduction at p, (F�) is
not true over R/If as we saw above. The specialization method does not work
for this If . However, if we choose If so that the weight of f is greater than two,
(F�) is always true over R/If . In this way, (F�), (F�), (T), (T�) and (F�)
are always true for two-variable nearly ordinary deformations.

By applying Theorem 1.6, we obtain the difference of the algebraic p-adic L-function
for Hida deformations in Corollary 4.4 after preparing notations in §4. Note that the
method in [P] is not applicable anymore to such more general deformations. We also
remark that previous results by Schneider [Sc] and Perrin-Riou [P] for the cyclotomic
deformations of elliptic curves can be recovered from our result in a completely different
manner.

We would like to study the Iwasawa Main conjecture for Hida deformations (equality
between the algebraic p-adic L-function and the analytic p-adic L-function). When the
residual representation for F is irreducible, we had much progress (We refer to [O3, §2]
for a review of those as well as notations on Hida deformations which we will use in
this paper). Thus, we are interested in the case where the reducible representation for
F is reducible. In spite of the difficulty of ambiguity of the choice of lattice, it seems
to be possible to say something around the main conjecture. First important ingredient
for this is that we are able to calculate the difference of the algebraic p-adic L-functions
for different choices of lattices by Corollary 4.4. Secondly, with help of [St] in which we
find a conjectural answer on the minimal choice of lattice of the p-adic representation
for elliptic modular forms of weight two, it seems reasonable to a canonical lattice TF
associated to F constructed in §4 gives the minimal one in the sense that the algebraic
p-adic L-function for TF is the minimal one among those for all lattices associated to F .
By combining these two points, we understand the Iwasawa Theory for F with reducible
residual representation better than before.

For the proof of the main result (Theorem 1.6), the key tool is the Euler-Poincaré
characteristic formula (Theorem 2.1) for a family of Galois representation proved in §2.
The use of this generalized Euler-Poincaré characteristic formula is the most important
difference from the proof of [P], which makes us generalize the result in [P]. We also re-
mark that the of proof of Theorem 2.1 is based on the specialization principle developed
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in [O2] which allows us to recover the characteristic ideal of a given R-module M from
the information on various specializations of M . Though the proof of Theorem 2.1 occu-
pies the whole of §2, the statement of the theorem is very natural and is understandable
at a first glance.

Acknowledgements. First of all, the author would like to thank Ralph Greenberg.
The work of the author is greatly influenced by some of articles of Greenberg and sev-
eral times of personal conversation. He also thanks to Robert Pollack for stimulating
conversations. This paper has been typed during his stay at University of Paris 13 from
February 2006 for two years. He is thankful to the arithmetic geometry group of Uni-
versity of Paris 13 for their hospitality. Finally, he thanks to anonymous referee for
suggestions for modifications of the article.

2. Euler-Poincaré characteristic with large coefficients

In this section, we prove the Euler-Poincaré characteristic formula for Galois coho-
mologies with coefficients in a power series algebra R generalizing the classical one with
coefficients in the ring of integers of a p-adic field (cf. Theorem 2.1). The Euler-Poincaré
characteristic formula for a family of Galois representation is studied a little bit in [Gr1,
Proposition 3]. However, the formula in [Gr1, Proposition 3] concerns only the R-rank
of Galois cohomologies for only when R = Zp[[Γ]]. In this section, we rather study the
characteristic ideal of R-cotorsion Galois cohomologies and we treat more general R’s.
The key tool for the proof of this section is “the specialization principle” established
in the previous paper [O2]. The main result of this section (Theorem 2.1) will play an
important role in the next section for the proof of Theorem 1.6.

Throughout the paper, we will denote the Galois group Gal(QΣ/Q) by GΣ for short.
For a finite abelian group A, we denote by �A the order of A. Our main result in this
section is as follows:

Theorem 2.1. Suppose that the ring R is isomorphic to O[[X1, · · · ,Xn]] with the integer
ring of integers O of a finite extension of Qp and with a certain natural number n. Let
C be a discrete R-module such that C∨ is a finitely generated torsion R-module with
GΣ-action. Then, we have the following formula for every height-one prime p of R :

1. We have the following Global Euler-Poincaré characteristic formula:∑
0≤i≤2

(−1)ilengthR�
(Hi(GΣ, C)∨)� = lengthR�

(C∨)� − lengthR�
((CG�)∨)�.

2. We have the following local Euler-Poincaré characteristic formula:⎧⎪⎪⎨⎪⎪⎩
∑

0≤i≤2

(−1)ilengthR�
(Hi(Dv, C)∨)� = 0 for v �= p,∑

0≤i≤2

(−1)ilengthR�
(Hi(Dp, C)∨)� = lengthR�

(C∨)� for v = p.

To prove the above theorem, we recall necessary results from the paper [O2]. From
now on throughout the section, we fix a power series O[[X1, · · · ,Xn]] and denote it by
Λ(n)
O for short. We recall the following definition (cf. §3 of [O2]):
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Definition 2.2. Let n ≥ 1 be an integer.

1. A linear element l in an n-variable Iwasawa algebra Λ(n)
O = O[[X1, · · · ,Xn]] is a

polynomial l = a0 +a1X1 + · · · anXn ∈ Λ(n)
O with ai ∈ O of degree at most one such

that l is not divisible by a uniformizer π of O and is not invertible in Λ(n)
O . That is,

l is a polynomial of degree at most one such that a0 is divisible by π, but not all ai

are divisible by π.
2. We denote by L(n)

O the set of all linear ideals of Λ(n)
O . That is:

L(n)
O =

{
(l) ⊂ Λ(n)

O

∣∣∣ l is a linear element in Λ(n)
O

}
.

3. Let n ≥ 2. For a torsion Λ(n)
O -module M , we denote by L(n)

O (M) a subset of L(n)
O

which consists of (l) ⊂ L(n)
O satisfying the following conditions:

(a) The quotient M/(l)M is a torsion Λ(n)
O /(l)-module.

(b) The image of the characteristic ideal char
Λ

(n)
O

(M) ⊂ Λ(n)
O in Λ(n)

O /(l) is equal to

the characteristic ideal char
Λ

(n)
O /(l)

(M/(l)M) ⊂ Λ(n)
O /(l).

We will use the following theorem which was proved in [O2]:

Theorem 2.3 (Proposition 3.6 and Proposition 3.11 in [O2]). Let M and N be finitely
generated torsion O[[X]]-modules. We have the following:
(1) The following conditions are equivalent:

(a) There exists an integer h ≥ 0 such that charΛO(M) ⊃ (πh)charΛO(N).
(b) Let O′ be arbitrary complete discrete valuation ring which is finite flat over
O. Then there exists a constant c depending only on MO′ and NO′ such that
�(MO′/(l)MO′) divides c · �(NO′/(l)NO′) for all but finitely many (l) ∈ L(1)

O′ .
(2) As for the difference by the power of π, we have the following equivalence:

(a) Let M(π) (resp. N(π)) be the localization of M (resp. N) at the prime ideal (π).
Then we have length(ΛO)(π)

(M(π)) ≤ length(ΛO)(π)
(N(π)).

(b) There exists a set of principal ideals

{(Em) | Em is an Eisenstein polynomial of degree m}m∈�≥1

and a constant c depending only on M and N such that �(M/(Em)M) divides
c · �(N/(Em)N) for all but finitely many m ∈ Z≥1.

Let n ≥ 2 be an integer and let M and N be a finitely generated torsion Λ(n)
O -modules.

Then the following three statements are equivalent.
1. We have char

Λ
(n)
O

(M) ⊃ char
Λ

(n)
O

(N).

2. There exists a complete discrete valuation ring O′ which is finite flat over O such
that we have the inclusion

char
Λ

(n)

O′ /(l)
(MO′/(l)MO′) ⊃ char

Λ
(n)

O′ /(l)
(NO′/(l)NO′)

for all but finitely many (l) ∈ L(n)
O′ (MO′) ∩ L(n)

O′ (NO′).
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Remark 2.4. 1. Not only the above theorem, but also a lot of basic properties on
linear elements and linear specializations are developed in [O2, §3]. We refer to [O2,
§3] for some properties possibly used implicitly later in this paper.

2. Concerning known other results on the technique of specialization, the referee in-
formed the author that, for the case of modules of rank two, there are a similar
version of Theorem 2.3 (1) proved by Plater and an equivalent version of Lemma
2.5 (1) by Nekovar and Plater (cf. [NP]).

Under the above preparation, we return to the proof of Theorem 2.1. For a finitely
generated Λ(n)

O -module M , we denote by Mnull the largest pseudo-null Λ(n)
O -submodule of

M .

Lemma 2.5. Let C be a discrete R-module with continuous GΣ-action such that C∨ is
a finitely generated torsion R-module. Suppose that R is isomorphic to Λ(n)

O . For each
complete discrete valuation ring O′ finite flat over O, the following statements follows:

1. Suppose that n = 1 (R is isomorphic to O[[X]]). The numerator and the denomi-

nator of the ratio
�Hi(GΣ, CO′ [f ])
�Hi(GΣ, CO′)[f ]

is bounded when f ∈ O′[[X]] runs over elements

prime to the characteristic ideal of (CO′)∨. Similarly, for each v ∈ Σ \ {∞}, the

ratio
�Hi(Dv , CO′ [f ])
�Hi(Dv , CO′)[f ]

is bounded when f ∈ O′[[X]] varies as above.

2. Suppose that n ≥ 2. Then, there exist pseudo-null R-modules Y i
Σ(O′) and Zi

Σ(O′)
such that the Pontrjagin duals of the kernel and the cokernel of H i(GΣ, CO′ [l]) −→
H i(GΣ, CO′)[l] are pseudo-null Λ(n)

O′ /(l)-modules for every l ∈ L(n)
O′ ((C∨O′)null⊕Y i

Σ(O′)⊕
Zi

Σ(O′)). Similarly, for each v ∈ Σ \ {∞}, there exist pseudo-null R-modules
Y i

v (O′) and Zi
v(O′) such that the Pontrjagin duals of the kernel and the coker-

nel of H i(Dv , CO′ [l]) −→ H i(Dv, CO′)[l] are pseudo-null Λ(n)
O′ /(l)-modules for every

l ∈ L(n)
O′ ((C∨O′)null ⊕ Y i

v (O′)⊕ Zi
v(O′)).

Proof. For both of the case n = 1 and the case n ≥ 2, we prove our statement only for
the cohomology of the semi-global Galois group GΣ. The case for the cohomology of Dv

is done in the same way and will be omitted.
First, let us discuss the first assertion (the case with n = 1). Let C0 be the O[[X]]-

submodule of C such that (C/C0)∨ is the largest finite submodule of C∨. Fix a complete
discrete valuation ring O′ which is finite flat over O. Note that C0

O′ := C0 ⊗O O′ is the
O′[[X]]-submodule of CO′ := C⊗OO′ such that (CO′/C0

O′)∨ is the largest finite submodule
of C∨O′ . Since H i(GΣ, CO′/C0

O′) is a finite group for each i, we put:

ai(O′) := �Hi(GΣ, CO′/C0
O′).

For each f ∈ O′[[X]] prime to the characteristic ideal of (CO′)∨, we consider the following
commutative diagram:

· · · −−−→ H i(GΣ, C0
O′) −−−→ H i(GΣ, CO′) −−−→ H i(GΣ, CO′/C0

O′) −−−→ · · ·

×f

⏐⏐� ⏐⏐�×f

⏐⏐�×f

· · · −−−→ H i(GΣ, C0
O′) −−−→ H i(GΣ, CO′) −−−→ H i(GΣ, CO′/C0

O′) −−−→ · · ·
8



By decomposing the two long exact sequences of the diagram into short exact sequences
and by applying the snake lemma, we obtain the following inequality for each i ≥ 0 :

1 ≤ �Hi(GΣ, CO′)[f ]
�Hi(GΣ, C0

O′)[f ]
≤ ai(O′).(2)

Since (C0
O′)∨ has no finite O′[[X]]-submodule and f is prime to the characteristic ideal of

(C0
O′)∨, we have:

0 −→ C0
O′ [f ] −→ C0

O′
×f−−→ C0

O′ −→ 0.

We also put

bi(O′) := �the largest finite O′[[X]]-module of H i(GΣ, C0
O′)∨.

This gives us the following inequality for each i ≥ 0 :

1 ≤ �Hi(GΣ, C0
O′)[f ]

�Hi(GΣ, C0
O′ [f ])

≤ bi−1(O′),(3)

where b−1(O′) is defined to be 1. We have the following short exact sequence for each
f ∈ O′[[X]] prime to the characteristic ideal of C∨ :

0 −→ C0
O′ [f ] −→ CO′ [f ] −→ (CO′/C0

O′)[f ] −→ 0.

Since the number ofO′-submodules of CO′/C0
O′ is finite, we note that �Hi(GΣ, (CO′/C0

O′)[f ])
is bounded when f varies. We define:

ci(O′) := the maximum of �Hi(GΣ, (CO′/C0
O′)[f ]) when f varies.

We have the following inequality for each i ≥ 0 :

ci−1(O′)
ci(O′)

≤ �Hi(GΣ, C0
O′ [f ])

�Hi(GΣ, CO′ [f ])
≤ ci−1(O′),(4)

where c−1(O′) is defined to be 1. By adding three inequalities (2), (3) and (4), we obtain
the following inequality :

ci−1(O′)
ci(O′)

≤ �Hi(GΣ, CO′)[f ]
�Hi(GΣ, CO′ [f ])

≤ ai(O′)bi−1(O′)ci−1(O′).(5)

Hence
�Hi(GΣ, CO′)[f ]
�Hi(GΣ, CO′ [f ])

is bounded when f ∈ O′[[X]] runs elements prime to the charac-

teristic ideal of (CO′)∨. This proves the first assertion of the lemma.
Next, we consider the case n ≥ 2. Let C0 be a Λ(n)

O -submodule of C such that (C/C0)∨ ∼=
(C∨)null. We consider the following commutative diagram:

· · · −−−→ H i(GΣ, C0
O′) −−−→ H i(GΣ, CO′) −−−→ H i(GΣ, CO′/C0

O′) −−−→ · · ·

×l

⏐⏐� ⏐⏐�×l

⏐⏐�×l

· · · −−−→ H i(GΣ, C0
O′) −−−→ H i(GΣ, CO′) −−−→ H i(GΣ, CO′/C0

O′) −−−→ · · ·
For finitely generated torsionR-modules M and N , havingR-linear map M −→ N whose
kernel and cokernel are pseudo-null R-modules is an equivalence relation called pseudo-
isomorphism. We write M ∼ N when M and N are pseudo-isomorphic. By decomposing
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the two long exact sequences of the above diagram into short exact sequences and by
applying the snake lemma, we obtain the following statement for each i ≥ 0:

(Hi(GΣ, CO′)[l])∨ ∼ (Hi(GΣ, C0
O′)[l])∨ if l ∈ L(n)

O′ (Y i
Σ(O′)),(6)

where

Y i
Σ(O′) =

{
H i(GΣ, CO′/C0

O′)∨ ⊕H i−1(GΣ, CO′/C0
O′)∨ if i ≥ 1,

H0(GΣ, CO′/C0
O′)∨ if i = 0,

For a linear element l ∈ Λ(n)
O′ prime to the characteristic ideal of C∨, we have the short

exact sequence 0 −→ C0
O′ [l] −→ C0

O′
×l−→ C0

O′ −→ 0. This implies that

H i(GΣ, C0
O′ [l])∨ ∼ (Hi(GΣ, C0

O′)[l])∨ if l ∈ L(n)
O′ (Zi

Σ(O′)),(7)

where

Zi
Σ(O′) =

{
H i−1(GΣ, C0

O′)∨)null if i ≥ 1,
0 if i = 0.

Finally, the sequence 0 −→ C0
O′ [l] −→ CO′ [l] −→ (CO′/C0

O′)[l] −→ 0 implies that we have
the sequence for each i ≥ 0 :

H i(GΣ, C0
O′ [l])∨ ∼ H i(GΣ, CO′ [l])∨ if l ∈ L(n)

O′ ((C∨O′)null)(8)

By combining (6), (7) and (8), we see that (Hi(GΣ, CO′)[l])∨ and H i(GΣ, CO′ [l])∨ is
pseudo-isomorphic to each other for every l ∈ L(n)

O′ ((C∨O′)null ⊕ Y i
Σ(O′) ⊕ Zi

Σ(O′)). This
completes the proof of the second assertion for the cohomologies of GΣ. For the coho-
mologies of Dv, the proof is done exactly in the same way by putting :

Y i
v (O′) =

{
H i(Dv , CO′/C0

O′)∨ ⊕H i−1(Dv , CO′/C0
O′)∨ if i ≥ 1,

H0(Dv, CO′/C0
O′)∨ if i = 0,

and

Zi
v(O′) =

{
H i−1(Dv , C0

O′)∨)null if i ≥ 1,
0 if i = 0.

Let us return to the proof of Theorem 2.1.

Proof of Theorem 2.1. As in the proof of Lemma 2.5, we prove our statement only for
the cohomology of the semi-global Galois group GΣ. The case for the cohomology of Dv

is done in the same way and will be omitted.
We apply Theorem 2.3 to the following modules:

M = H0(GΣ, C)∨ ⊕H2(GΣ, C)∨ ⊕ (CG�)∨,

N = H1(GΣ, C)∨ ⊕ C∨

We will show that M is pseudo-isomorphic to N as a Λ(n)
O -module by induction with

respect to n. Let us assume that n = 1 at first. For a complete discrete valuation ring
O′ finite flat over O, MO′ (resp. NO′) is isomorphic to H0(GΣ, CO′)∨ ⊕H2(GΣ, CO′)∨ ⊕
((CO)G�)∨ (resp. H1(GΣ, CO′)∨ ⊕ (CO′)∨). Let f be any element in O′[[X]]. The groups
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(MO′/(f)MO′) and (NO′/(f)NO′) are finite when f is prime to the characteristic ideal
of (CO′)∨. Lemma 2.5 immediately implies the following claim:

Claim 2.6. Let us introduce the following rational numbers:

rf := �(MO′/(f)MO′)/ �(NO′/(f)NO′),

sf := �
(
H0(GΣ, CO′ [f ])⊕H2(GΣ, CO′ [f ])⊕ (CG�

O′ [f ])
)/

�
(
H1(GΣ, CO′ [f ])⊕ CO′ [f ]

)
.

Then the numerator and the denominator of rf/sf is bounded when f runs elements
prime to the characteristic ideal of (CO′)∨.

By the Global Euler-Poincaré characteristic formula for finite GΣ-modules (cf. [NSW,
Chap. VIII]), we have ∏

0≤i≤2

�Hi(GΣ, A)(−1)i =
�A

�AG�
.(9)

This shows that sf = 1 for every f ∈ O′[[X]] prime to the characteristic ideal of (CO′)∨.
Thus, rf = �(MO′/(f)MO′)/ �(NO′/(f)NO′) is bounded when f varies in O′[[X]]. By
the first half of Theorem 2.3, we conclude that M and N are pseudo-isomorphic to each
other.

Next, let n ≥ 2 and assume that Theorem 2.1 is proved for n− 1. We define M ′
O′ and

NO′ to be

M ′
O′ = MO′ ⊕ Y 0

Σ(O′)⊕ Z0
Σ(O′)⊕ Y 2

Σ(O′)⊕ Z2
Σ(O′),

N ′
O′ = NO′ ⊕ Y 1

Σ(O′)⊕ Z1
Σ(O′).

By Lemma 2.5 and inductive assumption, M ′
O′/(l)M ′

O′ is pseudo-isomorphic to N ′
O′/(l)N ′

O′

as Λ(n)
O′ /(l)-module for every l ∈ L(n)

O′ (M ′
O′)∩L(n)

O′ (N ′
O′). Hence, the last half of Theorem

2.3 implies that M ′
O is pseudo-isomorphic to N ′

O as Λ(n)
O -module. Since M ′

O (resp. N ′
O)

is pseudo-isomorphic to M (resp. N) over Λ(n)
O by definition, this completes the proof for

the cohomologies of GΣ. For the cohomologies of Dv, we apply the local Euler-Poincaré
characteristic formula for finite Dv-modules (cf. [NSW, Chap. VII]) in place of the
Global Euler-Poincaré characteristic formula when n = 1. Since the proof for n = 1 and
n ≥ 2 is done in the same way, we omit it.

3. Proof of Theorem 1.6

In this section, we will complete the proof of Theorem 1.6 by using the results in
§2. Throughout the section, we suppose that R is isomorphic to O[[X1, · · · ,Xn]] with
O the ring of integers of a finite extension of Qp and n a natural number. We fix an
injection between two free lattices T −→ T ′ and we denote by C the kernel of the induced
surjective map A −→ A′ where A (resp. A′) is T ⊗R R∨ (resp. T ′ ⊗R R∨). First, we
prepare the following notation:

Definition 3.1. Let (M,F+) be a discrete GΣ-module with Dp-stable R-submodule
F+M ⊂M .

11



1. Loci
M is defined to be Loci

M = H i(Dp,F−M)⊕
⊕

v∈Σ\{∞,p}
H i(Dv,M) (Though Loci

M

depends on the choice of F+M , we leave the notation as it is if there causes no
confusion).

2. We denote by loci
M the natural localization map:

H i(GΣ,M) −→
⊕

v∈Σ\{∞}
H i(Dv ,M) −→ Loci

M .

Our strategy is to consider the following commutative diagram:

· · · −−−→ H i(GΣ, C) −−−→ H i(GΣ,A) −−−→ H i(GΣ,A′) −−−→ · · ·

loci
C

⏐⏐� ⏐⏐�loci
A

⏐⏐�loci
A′

· · · −−−→ Loci
C −−−→ Loci

A −−−→ Loci
A′ −−−→ · · · .

(10)

We show that the kernels or cokernels of some of vertical homomorphisms in the above
diagram vanish and this will give us a relation between the orders of the kernels and
cokernels of the vertical homomorphisms. In the first half of this section, we will show
that Ker(loc1

A) (resp. Ker(loc1
A′)) is very “close to” SelT (resp. SelT ′). Then, in the

latter half of the section, we calculate the difference between Ker(loc1
A) and Ker(loc1

A′)
by the diagram (10) and by the Euler characteristic formula established in §2.

The goal of the first half of the section is the proposition as follows:

Proposition 3.2. Let us assume the conditions (T �), (F�) and (F�) for each v ∈
Σ \ {∞, p}. We have the following equality:

lengthR�
(Ker(loc1

A)∨)� = lengthR�
((SelT )∨)�

for each height one prime p of R and Coker(loc1
A)∨ is pseudo-null. The same result also

holds for A′.

The proofs for A and A′ are exactly the same. Hence we only treat the case of A. Let
us also recall the following notation:

H1
ur(Dv,M) = Ker

[
H1(Dv ,M) −→ H1(Iv,M)

]
for any finite prime v of Q and for any Dv-module M . Before proving Proposition 3.2,
we recall the following lemma:

Lemma 3.3. Under the assumption (T �), the following localization map is surjective:

H1(GΣ,A) −→ H1(Dp,A)
H1

Gr(Dp,A)
⊕

⊕
v∈Σ\{∞,p}

H1(Dv ,A)
H1

ur(Dv ,A)
,(11)

where H1
Gr(Dp,M) = Ker

[
H1(Dp,A) −→ H1(Ip,F−A)

]
.

We omit the proof of the lemma, since it is done in the same way as [O3, Corollary
4.12] where the same statement is proved for two-variable Hida deformations.
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Proof of Proposition 3.2. As we remarked earlier, it suffices to prove only in the case of
A. We start from the proof of the first assertion. By the definition of loc1

A (cf. Definition
3.1), we have the following commutative diagram:

0 −−−−→ H1(GΣ,A) −−−−→ H1(GΣ,A) −−−−→ 0⏐⏐� ⏐⏐�loc1A

⏐⏐�α

0 −−−−→ H1
ur(Dp, F−A)⊕

⊕
v∈Σ\{∞,p}

H1
ur(Dv,A) −−−−→ Loc1

A −−−−→ X −−−−→ 0

where X =
H1(Dp,A)
H1

Gr(Dp,A)
⊕

⊕
v∈Σ\{∞,p}

H1(Dv ,A)
H1

ur(Dv ,A)
. Note that H1

ur(Dp,F−A) = (AIv)Dv

and H1
ur(Dv ,A) = (AIv)Dv for each v ∈ Σ \ {∞, p} are pseudo-null by the assumptions

(F�) and (F�). Since the module Ker(α) is SelT by definition, we complete the proof
of the first assertion by the snake lemma. On the other hand, we have Coker(α) = 0 by
Lemma 3.3. Hence we deduce that Coker(loc1

A)∨ is a pseudo-null R-module.

By a similar argument using the Poitou-Tate sequence, we obtain the following proposition:

Lemma 3.4. Let us assume the conditions (T �), (F�) and (F�) for each v ∈ Σ\{∞, p}
on T . Then, H2(GΣ,A) and Loc2

A are trivial.

Proof. We have H2(Dp,F−A)∨ ∼= ((F−T (−1))∗)Dp and H2(Dv,A)∨ ∼= (T (−1)∗)Dv by
the local Tate duality. Hence (Loc2

A)∨ is trivial by the assumptions (F�) and (F�) for
each v ∈ Σ \ {∞, p}. This proves the second assertion.

Recall that Xi
Σ(A) is defined by the following exact sequence for each i:

0 −→Xi
Σ(A) −→ H i(GΣ,A) −→

⊕
v∈Σ\{∞}

H i(Dv,A).(12)

For i = 2, H2(Dp,A) is the Pontrjagin dual of (T ∗(1))Dp by the local Tate duality. Since
(T ∗(1))Dp is zero by the assumption (F�), the left terms in (12) is trivial. The group
X2(A) is the Pontrjagin dual of lim←−

n

X1(A∗(1)[Mn]) by the global duality theorem, where

M is the maximal ideal of R. On the other hand, lim←−
n

X1(A∗(1)[Mn]) is isomorphic to

HomR(X1(A∗(1))∨,R) (see [O1, Lemma 5.4] and its proof for the general result on such
isomorphism exchanging the inverse limit, the Pontrjagin dual and the linear dual). Since
X1(A∗(1))∨ is a torsionR-module by the (T �), X2(A) is trivial. Since the first term and
the third term of the equation (12) for i = 2 is zero, this proves that H2(GΣ,A) = 0.

Lemma 3.5. Assume the conditions (T �), (F�), (F�) and (F�) for each v ∈ Σ\{∞, p}.
We have the following equality for every height-one prime p of R:

lengthR�
((SelT )∨)� − lengthR�

((SelT ′)∨)�

=
∑

1≤i≤2

(−1)ilengthR�
(Hi(GΣ, C)∨)� −

∑
1≤i≤2

(−1)ilengthR�
((Loci

C)
∨)�

Proof. The R-modules (Loc2
A)∨ and H2(GΣ,A)∨ are trivial by Lemma 3.4. The R-

module H0(GΣ,A)∨ (resp. (Loc0
A)∨) is a pseudo-null R-module by (F�) (resp. (F�)
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and (F�) for each v ∈ Σ \ {∞, p}). Thus, we have the following commutative diagram
for each height-one prime p of R:

0 ←−−− (H1(C)∨)� ←−−− (H1(A)∨)� ←−−− (H1(A′)∨)� ←−−− (H2(C)∨))� ←−−− 0�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
0 ←−−− ((Loc1

C)
∨)� ←−−− ((Loc1

A)∨)� ←−−− ((Loc1
A′)∨)� ←−−− ((Loc2

C)
∨)� ←−−− 0,

(13)

where H i(M) means H i(GΣ,M) and the vertical maps are the Pontrjagin duals of loci.
This implies the following equation:

(14) lengthR�
(Ker(loc1

C)
∨)� − lengthR�

(Ker(loc1
A)∨)�

+ lengthR�
(Ker(loc1

A′)∨)� − lengthR�
(Ker(loc2

C)
∨)�

= lengthR�
(Coker(loc1

C)
∨)� − lengthR�

(Coker(loc1
A)∨)�

+ lengthR�
(Coker(loc1

A′)∨)� − lengthR�
(Coker(loc2

C)
∨)�

On the other hand, we easily prove the following equality:

(15) lengthR�
(Ker(loci

C)
∨)� − lengthR�

(Coker(loci
C)

∨)�

= lengthR�
(Hi(GΣ, C)∨)� − lengthR�

((Loci
C)

∨)�

Thus, we complete the proof of the lemma by combining (14), (15) and Proposition
3.2.

Let us return to the proof of our main theorem.

Proof of Theorem 1.6. Let us note that

lengthR�
(C)∨ = lengthR�

(T /T ′) (resp. lengthR�
(F+C)∨ = lengthR�

(F+T /F+T ′)).
(16)

On the other hand, we have the following equality by our Euler-Poincare characteristic
formula (Theorem 2.1) and Lemma 3.5 :

lengthR�
((SelT )∨)� − lengthR�

((SelT ′)∨)�

= lengthR�
((F−C)∨)� −

(
lengthR�

(C∨)� − lengthR�
((CG�)∨)�

)
= lengthR�

((CG�)∨)� − lengthR�
((F+C)∨)�.

This completes the proof.

4. Two-variable Iwasawa Main conjecture for Hida deformations

In this section, we will study the Iwasawa Main Conjecture for two-variable nearly
ordinary deformations associated to Hida’s ordinary Λ-adic forms. For general facts on
Hida theory, we refer to papers [H1], [Wi] and a book [H2] by Hida, but we refer also to our
previous papers [O2] and [O3] for the notations. Let TN = lim←− r≥1H

1
ét(X1(Npr)

�
, Zp)ord,

where X1(Npr)� is a projective modular curve over Q with level structure Γ1(Npr) and
( )ord means taking the unit-root subspace with respect to Up-operator. Recall that

14



TN is free of finite rank over Λ = Zp[[Γ′]] where Γ′ ∼= 1 + pZp is the group of diamond
operators acting on the tower of modular curves {X1(Npr)}r≥1. We denote by hord

N

Hida’s ordinary Hecke algebra, which is a subalgebra of EndΛ(Sord
N ) with Sord

N the space
of whole ordinary Λ-adic cusp forms of tame conductor N . The algebra hord

N naturally
acts on TN . Let F be a Λ-adic eigen newform of tame conductor N and let IF be the
subalgebra of the algebraic closure of Frac(Λ) generated by all Fourier coefficients of F .
We define the canonical ordinary Galois representation TF associated to F as follows:

TF = Hom�F(Hom�F(TN [λF ], IF ), IF ),

where TN [λF ] is defined to be the IF -submodule (TN ⊗�p[[Γ′]] IF )[λF ] cut out by the
condition that l-Hecke operator in hord

N acts by l-th Fourier coefficient of F for almost
all l. We have the following properties:

1. The module TF is a reflexive IF -module since TF is the double IF -linear dual of
the IF -module TN ⊗hord

N

IF .
2. The module VF := TF ⊗�F KF is a KF -vector space of rank two, where KF =

Frac(IF ).
3. The module TF is equipped with continuous G�-action.
4. TF is also equipped with a natural G�-equivariant IF -linear homomorphism TN⊗hord

N

IF −→ TF .

We define the canonical nearly ordinary Galois representation TF associated to F to be
TF = TF ⊗̂�pZp[[Γ]](χ̃). The action of G� on TF is the natural diagonal one. Thus, we
have a lattice of the nearly ordinary representation ρF : G� −→ GL2(KF ) associated to
F , where KF = Frac(IF [[Γ]]).

Let VF be the underlying KF -vector space of ρF . As is well-known, two lattices of
VF is not unique modulo IF [[Γ]]-isomorphism when the residual representation for F is
reducible (cf. [MW] for residual representation). A lattice of VF is not necessarily free
over IF [[Γ]] and a free lattice of VF is not necessarily isomorphic to TF . Since it is not
difficult to see, we introduce the following facts on lattices on VF without any proof:

Lemma 4.1. 1. For any lattice T over IF [[Γ]], we define T ∗∗ to be the double IF [[Γ]]-
linear dual as follows:

T ∗∗ = Hom�F[[Γ]](Hom�F[[Γ]](T , IF [[Γ]]), IF [[Γ]]).

Then the natural IF [[Γ]]-linear homomorphism T −→ T ∗∗ is injective. Further,
if IF [[Γ]] is integrally closed in KF , the cokernel of T −→ T ∗∗ is a pseudo-null
IF [[Γ]]-module.

2. Let T be a lattice of VF defined to be the cyclotomic deformation T = T⊗̂�pZp[[Γ]](χ̃)
where T be a lattice of VF . Then, T ∗∗ defined above is isomorphic to T∗∗⊗̂�pZp[[Γ]](χ̃)
where T∗∗ is the IF -linear double dual Hom�F(Hom�F(T, IF ), IF ) of T.

3. If T is a reflexive lattice over IF and if IF is a regular local ring, then T (resp.
T = T⊗̂�pZp[[Γ]](χ̃)) is a free lattice over IF (resp. IF [[Γ]]). Especially, the lattice
TF (resp. TF ) constructed above is free over IF (resp. IF [[Γ]]) when IF is a regular
local ring.
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Now we introduce the algebraic p-adic L-function for a lattice T under certain as-
sumption.

Definition 4.2. Let T be a lattice of VF and let T = T⊗̂�pZp[[Γ]](χ̃). We assume that
IF is a regular local ring (hence IF [[Γ]] is also a regular local ring). Recall that VF has a
unique Dp-stable one-dimensional subspace V+

F such that the quotient V−
F = VF/V+

F is an
unramified representation of Dp. This induces a Dp-stable IF -submodule F+T = T∩V+

F
on T and hence induces Dp-stable IF -submodule F+A of A = T ⊗�F[[Γ]] (IF [[Γ]])∨. We
define the Selmer group SelT ⊂ H1(Q,A) as in Definition 1.2. It is known that (SelT )∨ is
a finitely generated torsion IF [[Γ]]-module. We define Lalg

p (T ) ∈ IF [[Γ]] to be a generator
of the characteristic ideal of (SelT )∨, which is defined modulo multiplication by a unit of
IF [[Γ]].

We introduce the following lemma without any proof:

Lemma 4.3. Let T be a lattice of VF and let T = T⊗̂�pZp[[Γ]](χ̃). We assume that IF
is a regular local ring.

1. We have length�F[[Γ]]
�
((SelT )∨)� = length�F[[Γ]]

�
((SelT ∗∗)∨)� for every height-one

prime p of IF [[Γ]].
2. We have Lalg

p (T ) = Lalg
p (T ∗∗) and T ∗∗ is a free lattice.

This lemma tells us that it suffices to treat only free lattices. Now, we state a corollary
of Theorem 1.6 in the setting of Hida deformation.

Corollary 4.4. Let F be a Λ-adic newform with reducible residual representation. As-
sume that IF is isomorphic to O[[X]] for a discrete valuation ring O finite flat over Zp.
Let T and T ′ free IF [[Γ]]-lattices isogenious to TF . Then we have

length(�F[[Γ]])�((SelT )∨)� − length(�F[[Γ]])�((SelT ′)∨)�

= length(�F[[Γ]])�((T /T ′)G�)� − length(�F[[Γ]])�((F
+T /F+T ′))�

for every height-one prime p of IF [[Γ]].

We finish the paper by the following question.

Question 4.5. 1. How much lattices exist for a given F (for a given VF )?
2. Can we find and calculate examples of certain ordinary Λ-adic eigen cuspform F

with reducible residual representation where we can calculate the difference between
(Lalg

p (T )) and (Lalg
p (T ′)) when T and T ′ vary in the set of lattices over IF [[Γ]]

associated to F?

All such questions naturally arise as continuation of the work in this paper and are
related to a work by Emerton, Pollack and Weston [EPW] on the variation of Iwasawa
λ-invariants in Hida families (Note that our Question 4.5 2 is related to the variation
of Iwasawa µ-invariants). In this paper, we do not give an explicit example for explicit
F ’s. Further results on residually reducible Hida deformations will be discussed in a joint
project [OP] with Robert Pollack.
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117-290, 2004.

[I] H. Imai, A remark on the rational points of Abelian varieties with values in cyclotomic �p- exten-
sions, Proc. Japan Acad. 51, 12-16, 1975.

[Ki] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, p-adic monodromy
and the Birch and Swinnerton-Dyer conjecture, 81–110, Contemp. Math., 165, Amer. Math. Soc.,
Providence, RI, 1994.

[Mz] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math.
18, 183–266, 1972.

[MTT] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-
Dyer, Invent. Math. 84, no. 1, 1–48, 1986.

[Mi] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, 1. Academic Press, 1986.
[MW] B. Mazur, A. Wiles, On p-adic analytic families of Galois representations, Compositio Math. 59,

no. 2, 231–264, 1986.
[NP] J. Nekovar, A. Plater, On the parity of ranks of Selmer groups, Asian Jour. Math. 4 No. 2, 437–498,

2000.
[NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren der Mathe-

matischen Wissenschaften, 323, Springer-Verlag, Berlin, 2000.
[O1] T. Ochiai, A generalization of the Coleman map for Hida deformations, the American Jour. of

Mathematics, 125, 849-892, 2003.
[O2] T. Ochiai, Euler system for Galois deformation, Annales de l’Institut Fourier vol 55, 113-146,

2005.
[O3] T. Ochiai, On the two-variable Iwasawa Main Conjecture, Compositio Mathematica, vol 142,

1157–1200, 2006.
[OP] T. Ochiai, R. Pollack, work in progress on the Iwasawa theory for residually reducible Hida families.
[P] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Algebraic number theory, Adv.

Stud. Pure Math., 17, 347–358, 1989.
[R1] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math.

103, 25-68, 1991.

17



[Sc] P. Schneider, The mu-invariant of isogenies, J. Indian Math. Soc. 52, 159-170, 1987.
[St] G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math.

98, No.1, 75–106, 1989.
[V] V. Vatsal, Multiplicative subgroups of J0(N) and applications to elliptic curves, J. Inst. Math.

Jussieu 4, No. 2, 281-316, 2005.
[Wi] A. Wiles, On λ-adic representations associated to modular forms, Invent. Math. 94, 529–573, 1988.

Department of Mathematics, Osaka University, 1-16, Machikaneyama, Toyonaka, Osaka,

Japan, 560-0043.

E-mail address: ochiai@math.sci.osaka-u.ac.jp

18


