
ON THE SELMER GROUPS OF ABELIAN VARIETIES OVER
FUNCTION FIELDS OF CHARACTERISTIC p > 0

TADASHI OCHIAI AND FABIEN TRIHAN

Abstract. In this paper, we study a (p-adic) geometric analogue for abelian varieties
over a function field of characteristic p of the cyclotomic Iwasawa theory and the non-
commutative Iwasawa theory for abelian varieties over a number field initiated by Mazur
and Coates respectively. We will prove some analogue of the principal results obtained in
the case over a number field and we study new phenomena which did not happen in the
case of number field case. We propose also a conjecture (Conjecture 1.6) which might be
considered as a counterpart of the principal conjecture in the case over a number field.
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1. Introduction

Iwasawa theory was first initiated by Iwasawa who studied ideal class groups in the
cyclotomic Zp-extension Kcyc,(p) of a number field K for a fixed prime p, which he regarded
as an analogue of the extension of the coefficient field in the theory of algebraic curves
over a finite field. He formulated the main conjecture for the maximal real subfield K of
the field of p-th roots of unity, predicting the equality of the algebraic p-adic L-function
and the analytic p-adic L-function of Kummer-Leopoldt-Kubota. Iwasawa himself went a
long way towards proving this main conjecture, and complete proofs were given later for
real abelian fields K by Mazur-Wiles [MW] and for all totally real fields K by Wiles [W].

It was Mazur [Mz] who first pointed out a plan of extending the philosophy of the
Iwasawa theory to higher dimensional motives like elliptic curves over number fields in
early 70’s. Since then, the Iwasawa theory was generalized to ordinary motives and it
seems to be extended to Selmer groups of Galois deformation spaces constructed by the
theory of Mazur, Hida, Coleman, etc.

However, there is another direction of generalization called “non-commutative Iwasawa
theory of elliptic curves” initiated by Coates.

Let us recall the classical (cyclotomic) Iwasawa theory for elliptic curves and its non-
abelian generalization by Coates. Let E be an elliptic curve over K. For any algebraic
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extension L/K, the Selmer group Sel(E/L) is defined to be

Sel(E/L) = Ker

[
H1

Gal(L, Ep∞)→
∏

v

H1
Gal(Lv, E(Lv))

]
,

where v runs over all primes of L, Ep∞ is the group of all p-power division points on
E, and H1

Gal means the Galois cohomology. We denote by X(E/L) the Pontrjagin dual
Homcont(Sel(E/L), Qp/Zp) of Sel(E/L). For the cyclotomic Iwasawa theory for elliptic
curves, we consider X(E/Kcyc,(p)) which is a compact Zp[[Γ

(p)]]-module where Γ(p) =
Gal(Kcyc,(p)/K) ∼= Zp. It is not difficult to show that X(E/Kcyc,(p)) is a finitely generated
Zp[[Γ

(p)]]-module (cf. [Mz], [Mn]).

Conjecture 1.1. Suppose that E has good ordinary reduction at every primes of K over
p. Then X(E/Kcyc,(p)) is a torsion Zp[[Γ

(p)]]-module.

Under this conjecture, the algebraic p-adic L-function f alg
E ∈ Zp[[Γ

(p)]] is defined to be
the characteristic polynomial of X(E/Kcyc,(p)) via the structure theorem of finitely gener-
ated Zp[[Γ

(p)]]-modules, which is roughly the product annihilators of the torsion Zp[[Γ
(p)]]-

module X(E/Kcyc,(p)) modulo its maximal pseudo-null Zp[[Γ
(p)]]-submodule. Here is the

Iwasawa Main Conjecture in this case:

Conjecture 1.2 (Mazur). Suppose that E is a base extension to an abelian field K of
elliptic curve defined over Q with good ordinary reduction at p. Assuming the conjecture
1.1, The algebraic p-adic L-function f alg

E is equal to the analytic p-adic L-function f anal
E ∈

Zp[[Γ
(p)]] constructed by Mazur and Swinnerton-Dyer modulo multiplication by a unit of

Zp[[Γ
(p)]].

Remark 1.3. 1. When the elliptic curve E has good supersingular reduction at p, it is
known that X(E/Kcyc,(p)) is not a torsion Zp[[Γ

(p)]]-module.
2. By Euler system method Rubin [R] proves Conjecture 1.1 and Conjecture 1.2 for

elliptic curves over Q with complex multiplication and Kato [K] proves Conjecture

1.1 and the divisibility f alg
E |f anal

E of Conjecture 1.2 for large class of elliptic curves
over Q without complex multiplication.

Recently, Skinner-Urban announces to have shown Conjecture 1.2 for large class of
elliptic curves over Q without complex multiplication assuming the conjecture on the
existence of Galois representations for the modular forms on U(2, 2).

From several reasons, Coates proposed to pursue the analogue of Conjecture 1.2 for
non-commutative p-adic Lie extension L of K. We recall two examples of such p-adic Lie
extension L.

1. Suppose that K contains p-th root of unity ζp. We take L to be a Kummer extension
of Kcyc,(p) = ∪n≥1K(µpn) defined by L = ∪m≥1K

cyc,(p)( pm√
a) for a fixed element

a ∈ K. The Galois extension of L/K has a non-split extension:

0 −→ Zp −→ Gal(L/K) −→ Zp −→ 0.

2. Let E be an elliptic curve over K with no complex multiplication over a number
field K. Let L := K(Ep∞) be the field obtained by adjoining Ep∞ to K. By Weil
pairing, L contains Kcyc,(p). By a result of Serre, Gal(L/K) is identified with an
open subgroup of GL2(Zp) � Aut(Ep∞).
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From now on through the paper, we will denote by Λ(G) the algebra Zp[[G]] for any
profinite group G. For G = Gal(L/K), X(E/L) has a natural structure of a left Λ(G)-
module. The algebra Λ(G) is no more commutative, but have natural notion of “torsion
Λ(G)-module”. A non-commutative generalization of Conjecture 1.1 is known as follows:

Conjecture 1.4. Suppose that E has good ordinary reduction at every primes of K over
p. Assume that L contains Kcyc,(p). Then X(E/L) is a torsion Λ(G)-module.

To have an algebraic p-adic L-function is a necessary and important step for the study
of Iwasawa theory. As in the classical cyclotomic case where G ∼= Zp, we hope that
the algebraic p-adic L-function is associated to X(E/L) once Conjecture 1.4 is true.
However, it is not impossible to associate a characteristic polynomial to a torsion Λ(G)-
module when G is non commutative. After rather negative results showing difficulties of
non-commutative Iwasawa theory, [CFKSV] gave a convincing formalism of the Selmer
group and the algebraic p-adic L-function inspired by the habilitation thesis of Venjakob
at Heidelberg and based on calculation of K-groups of non-commutative Iwasawa algebras
by Kato. Assume that G is a torsion-free p-adic Lie group which has a normal subgroup
H such that G/H ∼= Zp, The important idea is that the p-adic L-function lives in a
K-group K1(Λ(G)S∗)/K1(Λ(G)), where Λ(G)S∗ is the localization of Λ(G) by a certain
multiplicative set S∗. We refer the reader to [CFKSV] for how to choose S∗ and the basic
results related to S∗. We remark that S∗ consists of every non-zero elements in Λ(G)
in the classical case G = Zp and we have K1(Λ(G)S∗)/K1(Λ(G)) ∼= Frac(Λ(G))×/ Λ(G)×

in this case. Since the characteristic power series is taken in a representative element
of Frac(Λ(G))×/ Λ(G)×, it seems to be reasonable that the p-adic L-function should be
constructed in K1(Λ(G)S∗)/K1(Λ(G)). Under the existence of a closed subgroup H with
G/H ∼= Zp, [CFKSV] gives an exact sequence:

K1(Λ(G)) −→ K1(Λ(G)S∗) −→ K0(MH) −→ 0,

where MH is the category of finitely generated Λ(G)-modules X such that X/X(p) is
finitely generated as Λ(H)-module, where X(p) means the maximal p-power torsion sub-
module of X. According to [CFKSV], Λ(G)-modules which belong to MH satisfy all
necessary properties which p-adic L-functions should have, related to the characteristic
power series, the evaluation at characters of G and the Euler-Poincaré characteristic.
Hence, in order to have an algebraic p-adic L-function, we need the following conjecture
stronger than Conjecture 1.4:

Conjecture 1.5. [CFKSV] Assume that E has ordinary reduction at every primes of K
over p. Then, X(E/L)/X(E/L)(p) is a finitely generated Λ(H)-module.

In this paper, we intend to discuss an analogue of the commutative and non-commutative
Iwasawa theory in the case of abelian varieties over a function field F in one variable over
a finite field Fq. Let A/F be an abelian variety. For any algebraic extension K/F , the
Selmer group of E/K in this context is by definition

Sel(A/K) := Ker

[
H1

fl(K, A{p}) −→
∏

v

H1
fl(Kv, A)

]
,(1)

where A{p} denotes the p-divisible group associated to A, H1
fl denotes the flat cohomology

and v runs all primes of K.
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1. Let F∞ := FFq, for an algebraic closure Fq of Fq. The Galois group F∞/F is

isomorphic to Ẑ. We will define F
(p)
∞ to be F

(p)
∞ = FF

(p)
q , where F

(p)
q is the unique

subfield of Fq such that Gal(F
(p)
q /Fq) is isomorphic to Zp.

2. Let F sep be a fixed separable closure of F . It is known that the maximal pro-p
quotient of Gal(F sep/F ) is a free pro-p group of infinite rank. Hence any topologically
finitely generated pro-p group G is realized as a Galois group Gal(L/F ) of certain
Galois extension.

Now we will state below our result in this paper. We denote by X(A/L) the Pontrjagin
dual of Sel(A/L), which has a natural structure of left Λ(G)-module. We define Y (A/L)
to be X(A/L)/X(A/L)(p), which is again a left Λ(G)-module.
We propose the following conjecture:

Conjecture 1.6. Let A be an abelian variety over F with arbitrary reduction. Let L be

a Galois extension of F containing F
(p)
∞ whose Galois group G = Gal(L/F ) is a finitely

generated torsion-free pro-p group. We have the following conjecture.

1. When L is equal to F
(p)
∞ , X(A/L) is a finitely generated torsion Λ(G)-module.

2. When L is an extension containing F
(p)
∞ such that Gal(L/F ) is a p-adic Lie extension,

Y (A/L) is a finitely generated Λ(H)-module where H = Gal(L/F
(p)
∞ ).

Our main results over F
(p)
∞ are as follows:

Theorem 1.7. Let A be an abelian variety with arbitrary reduction. Then, X(A/F
(p)
∞ ) is

a finitely generated torsion Λ(G)-module for G = Gal(F
(p)
∞ /F ).

Theorem 1.7 will be proved in §3. We insist that the independence of the reduction

of A for X(A/F
(p)
∞ ) to be torsion over Λ(G) is a different phenomenon when we compare

our situation to that of the case of abelian varieties over the cyclotomic tower Kcyc,(p) of
a number field K (cf. Conjecture 1.1).

For a torsion Λ(G)-module M with G ∼= Zp, we denote by µ(M) the length of M(p) over
Λ(G)(p), where ( )(p) means the localization at the height-one prime ideal (p). The invari-
ant µ(M) is called the µ-invariant of M and µ(M) is an important numerical invariant of
M . It is known that µ(X(A/Kcyc,(p))) is strongly dependent of the mod-p representation

of A. As the following result shows, the the µ-invariant µ(X(A/F
(p)
∞ )) for an abelian

variety A over a function field F seems to be strongly influenced by the reduction type of
A.

Theorem 1.8. 1. Assume that there exists a finite separable extension F ′ of F which
satisfies one of the following conditions:

(OF) A×F F ′ is isomorphic to an ordinary abelian variety defined over a finite field.
(SF) A×F F ′ is isomorphic to a supersingular abelian variety defined over a finite
field and the proper smooth curve CF ′ which is the model of F ′ has invertible Hasse-
Witt matrix.

Then, we have µ(X(A/F
(p)
∞ )) = 0.

2. Let A be an isotrivial abelian variety having everywhere supersingular reduction. We

have µ(X(A/F
(p)
∞ )) = 0 if and only if there exists a finite extension F ′/F such that

4



the Hasse-Witt matrix for F ′ is invertible and that A ×F F ′ is isomorphic to an
abelian variety defined over a finite field.

Theorem 1.8 will be proved in §3. The following results give an evidence for Conjecture
1.6.

Theorem 1.9. Let L be a Galois extension of F containing F
(p)
∞ whose Galois group

G = Gal(L/F ) is a p-adic Lie group with no non-trivial torsion elements. Let A be an

abelian variety over F . We denote by H the Galois group Gal(L/F
(p)
∞ ). Let us assume

the following conditions:

1. L/F
(p)
∞ is ramified at only finitely many primes of F

(p)
∞ , say S.

2. A has good reduction outside S. For each prime v ∈ S, A has ordinary reduction
(not necessarily good ordinary reduction).

3. We have µ(X(A/F
(p)
∞ )) = 0.

Then, X(A/L) is a finitely generated Λ(H)-module.

Theorem 1.9 will be proved in §4.

Corollary 1.10. Assume that there exists a finite separable extension F ′ satisfying the
condition (OF). Then, X(A/L) is a finitely generated Λ(H)-module.

In this paper, we decided not to prove our result in full generality. However, in proving
our results, the necessary hypothesis on the reduction of the abelian variety was rather
general as compared to the cases of abelian varieties over number fields. Thus, Main
Conjecture (Conjecture 1.6) was stated under more general condition than the one we
imagined at the beginning of our work. In subsequent papers, we will generalize our
results by removing some of hypothesis assumed in our theorems and we would like to
make further research which is expected from the philosophy of the Iwasawa theory.

Acknowledgements. The first author would like to thank Yoshitaka Hachimori for
useful discussion on non-commutative generalization of Iwasawa theory. The second au-
thor would like to thank Kazuya Kato for introducing him to the theory of Iwasawa and
Takeshi Saito and the University of Tokyo for their hospitality. The authors are grateful
to Kato for pointing out technical mistakes in the first draft of the paper. They are also
grateful to anonymous refrees for pointing out historical mistakes and technical mistakes
in §2.

2. General abelian varieties over the base F
(p)
∞

In this section, we will prove Theorem 1.7. First, we will need the following lemma:

Lemma 2.1. Let F ′/F be a finite Galois extension. We denote by A′ the extension

A′ = A ×F F ′. If X(A′/F ′,(p)
∞ ) is a finitely generated torsion Λ(G′)-module for G′ =

Gal(F ′,(p)
∞ /F ′), X(A/F

(p)
∞ ) is a finitely generated torsion Λ(G)-module for G = Gal(F

(p)
∞ /F ).
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Proof. Suppose that X(A′/F ′,(p)
∞ ) is a finitely generated torsion Λ(G′)-module. Then we

have J = Gal(F ′/F (p)
∞ ∩ F ′) ∼= Gal(F ′,(p)

∞ /F
(p)
∞ ).

F ′,(p)
∞

G′

���
���

���
��

J

F ′

J

F
(p)
∞

G′

���
���

���
�

F ′ ∩ F
(p)
∞

F

G

������������������

(2)

Recall that X(A/F
(p)
∞ ) and X(A′/F ′,(p)

∞ ) are quotients of the modules H1
fl(F

(p)
∞ , A{p})∨

and H1
fl(F ′,(p)

∞ , A{p})∨ respectively by the definition given in (1). Hence the cokernel of

the natural Λ(G′)-linear map X(A′/F ′,(p)
∞ )J −→ X(A/F

(p)
∞ ) is a quotient of the Pontrjagin

dual of a finite group H1(J, A{p}(F ′,(p)
∞ )) ∼= Ker[H1

fl(F
(p)
∞ , A{p}) −→ H1

fl(F ′,(p)
∞ , A{p})J ].

Hence the Λ(G)-module X(A/F
(p)
∞ ) is a torsion Λ(G′)-module via natural identification

of G′ as an open subgroup of G. Hence it is also torsion over Λ(G).

By the semi-stable reduction theorem for abelian varieties, an abelian variety A over F
has everywhere semi-stable reduction after the base field extension A×F F ′ by a certain
finite Galois extension F ′/F . Hence, by Lemma 2.1, we may (and we will) assume the
following condition (SS) from now on through this section for the proof of Theorem 1.7:

(SS) A/F has everywhere semi-stable reduction.

Let CF∞ be a proper smooth geometrically connected curve over Fq which is the model
of the function field F∞ = FFq. We denote by U the dense open subset of CF∞ such that
A ×F F∞ has good reduction on U and we denote by Z the complement CF∞ \ U . Let
A be the Néron model of A×F F∞ over CF∞. We associate the Lie algebra Lie(A) to A,
which is a sheaf of algebras on CF∞.

In [K-T], syntomic cohomology for abelian varieties has been studied for application
to the Birch and Swinnerton-Dyer conjecture of abelian varieties over function fields. In
this section, we will reduce our main result to Theorem 2.6 for general Dieudonné crystals
using tools studied in [K-T] and give a proof of Theorem 2.6.

We shall summarize necessary results and definition for later use in this section. From
now on, we denote the Witt algebra W (Fq) by W if there is no confusion. Let us denote

by C�
F∞ the log scheme associated to a divisor Z on CF∞. We refer the reader to [K-T] for

detailed explanation. Let D be a Dieudonné crystal on C�
F∞/W . If Z is empty, then D

is a classical Dieudonné crystal corresponding to a p-divisible group G/CF∞. Recall the
following theorem from [K-T]:

Theorem 2.2. Let D be a Dieudonné crystal on C�
F∞. Let i be the canonical morphism of

topos of [BBM] from the topos of sheaves on (CF∞)ét to the crystalline topos (C�
F∞/W )crys.

There exists an OCF∞ -module Lie(D) locally free of finite rank and a surjective map of

sheaves D → i∗(Lie(D)) in (C�
F∞/W )crys.
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Proof. The proof of [K-T, §5.3], remains still valid if we replace a base scheme over Fq by
a scheme over Fq.

Let us summarize necessary results and definitions related to the above theorem.

1. We denote by D0 the kernel of D −→ i∗(Lie(D)) in (C�
F∞/W )crys and we denote

the canonical injection by 1 : D0 −→ D. By applying the canonical projection u∗
from the crystalline topos (C�

F∞/W )crys to the topos of sheaves on (CF∞)ét, we get a
distinguished triangle:

Ru∗D0 1−→ Ru∗D −→ Lie(D).

We can twist this triangle by the divisor Z to get a triangle:

Ru∗D0(−Z)
1−→ Ru∗D(−Z) −→ Lie(D)(−Z).(3)

where D(−Z) is the twist of the Dieudonné crystal D defined in [K-T, §5.11].
2. We denote the i-th cohomology associated to Ru∗D0 (resp. Ru∗D) by the symbol

H i
crys(C

�
F∞/W, D0(−Z)) (resp. H i

crys(C
�
F∞/W, D(−Z))) and by H i

crys(C
�
F∞/W, D0(−Z)⊗

Qp/Zp) (resp. H i
crys(C

�
F∞/W, D(−Z) ⊗ Qp/Zp)) the i-th cohomology associated to

Ru∗D0⊗�Qp/Zp (resp. Ru∗D⊗�Qp/Zp) by abuse of notation. We have the following
lemma:

Lemma 2.3.

(a) The canonical map H i
crys(C

�
F∞/W, D0(−Z))

1−→ H i
crys(C

�
F∞/W, D(−Z)) has a

kernel and a cokernel killed by p.
(b) H i

crys(C
�
F∞/W, D0(−Z)) and H i

crys(C
�
F∞/W, D(−Z)) are finitely generated W -

modules with the same rank.

Proof. By taking the cohomology of the triangle (3), we have the exact sequence:

H i−1
fl (CF∞, Lie(D)(−Z)) −→ H i

crys(C
�
F∞/W, D0(−Z))

1−→ H i
crys(C

�
F∞/W, D(−Z)) −→ H i

fl(CF∞, Lie(D)(−Z)).

Since Hj
fl(CF∞, Lie(D)(−Z)) is a finite dimensional vector space over Fq for every j,

this completes the proof of the first assertion. The second assertion follows from the
first one and the fact that crystalline cohomologies over a proper log smooth base
scheme with finite locally free coefficients are of finite dimension by Tsuji [T].

3. As in [K-T, §5.8], we can construct a Frobenius operator

ϕ : Ru∗D0(−Z) −→ Ru∗D(−Z),

which induces a σ-linear homomorphism

ϕi : H i
crys(C

�
F∞/W, D0(−Z)) −→ H i

crys(C
�
F∞/W, D(−Z))

for each i by σ-linearity of the composed map F ◦ ι : D → D, where ι : D → σ∗D
is the map sending x→ 1⊗ x.

4. We denote SD the mapping fiber of the map

1− ϕ : Ru∗D0(−Z) −→ Ru∗D(−Z).
7



This complex is an object in the derived category of complexes of sheaves over
(CF∞)ét and we have a distinguished triangle:

SD −→ Ru∗D0(−Z)
1−ϕ−→ Ru∗D(−Z).(4)

We denote by H i
syn(CF∞,SD) the i-th cohomology group of RΓ(CF∞,SD) and by

H i
syn(CF∞,SD ⊗ Qp/Zp) the i-th cohomology group of RΓ(CF∞,SD) ⊗��p

Qp/Zp by
abuse of notation.

5. Finally, let X(D/F∞) denote the Pontrjagin dual of H i
syn(CF∞,SD ⊗Qp/Zp) and let

Y (D/F∞) = X(D/F∞)/X(D/F∞)(p).

In this paper, we are concerned with the two following crucial examples of Dieudonné
crystals:

Example 2.4. 1. Let A/F be an abelian variety satisfying the condition (SS). We
denote U the dense open subset of CF∞ such that A/F has good reduction on U and
Z := CF∞ \ U . Let A be the Néron model of A×F F∞ over CF∞. It has been shown
in [K-T, §4.9] that the classical Dieudonné crystal D(A/U) extends to a Dieudonné

crystal D(A) over C�
F∞/W .

2. For any p-divisible group G over CF∞, we can associate the classical Dieudonné
crystal D(G) which is a crystal over CF∞/W .

In the rest of this section, we are going to deduce “finiteness theorems” over F
(p)
∞ from

“finiteness theorems” over F∞ introduced above. We denote by Γ (resp. Γ(p), Γ(p′)) the

Galois group Gal(F∞/F ) (resp. Gal(F
(p)
∞ /F ), Gal(F∞/F

(p)
∞ )). Note that the group Γ

(resp. Γ(p), Γ(p′)) is isomorphic to Ẑ (resp. Zp,
∏
l �=p

Zl). Note that W = W (Fq) is naturally

endowed with a structure of Λ(Γ) = Zp[[Γ]]-module. In fact W (Fqn) is naturally a Λ(Γ)-
module through the action via a unique quotient Γn of Γ isomorphic to Z/(n). Hence
lim−→ nW (Fqn) is also a Λ(Γ)-module. Since W is the p-adic completion of lim−→ nW (Fqn), we

see that W is a Λ(Γ)-module. By crystalline base change theorem, We have:

H i
crys(C

�
F∞/W, E) ∼= H i

crys(C
�
F /W (Fq), E)⊗W (�q ) W

for E = D0(−Z) or E = D(−Z). Hence H i
crys(C

�
F∞/W, E) is naturally endowed with a

structure of Λ(Γ)-module. Since the triangle (4) is also naturally obtained as the p-adic
completion of the inductive limit of the similar triangles over W (Fqn), we also show that
the syntomic cohomology is endowed with a structure of Λ(Γ)-module and the long exact
sequence induced from the triangle (4) is Λ(Γ)-linear.

Though the Iwasawa algebra Λ(Γ) is neither integral nor Noetherian, the algebra Λ(Γ(p))
is an integral Noetherian domain. Thus, we recall the following fundamental facts without
proof:

Lemma 2.5. Let M ′ −→ M −→ M ′′ be an exact sequence of Λ(Γ(p))-modules. Then, if
two of these three modules are torsion of finite type over Λ(Γ(p)), the other one is also
torsion of finite type over Λ(Γ(p)). In other words, the category of finite type torsion
Λ(Γ(p))-modules are stable under taking a submodule, a quotient and an extension in the
category of Λ(Γ(p))-modules.

We use the following proposition for the proof of Theorem 1.7 at the end of this section:
8



Proposition 2.6. Let D be a Dieudonné crystal over C�
F∞/W . Then X(D/F∞)Γ(p′) is a

finitely generated torsion Λ(Γ(p))-module.

Recall that the following exact sequence:

· · · −→ H1
syn(CF∞,SD)⊗Qp

α−→ H1
syn(CF∞,SD ⊗Qp/Zp)

β−→ H2
syn(CF∞,SD)

γ−→ H2
syn(CF∞,SD)⊗Qp −→ · · ·

induces a short exact sequence

0 −→ Im(α) −→ H1
syn(CF∞,SD ⊗Qp/Zp) −→ Im(β) −→ 0.(5)

By taking the Pontrjagin dual of (5), we have

0 −→ Im(β)∨ −→ X(D/F∞) −→ Im(α)∨ −→ 0.(6)

Now, note that taking the Γ(p′)-coinvariant of a module over Λ(Γ) ∼= Λ(Γ(p))⊗̂�p Λ(Γ(p′)) ∼=
Λ(Γ(p))[[Γ(p′)]] is equal to taking the base extension of the module by ⊗Λ(Γ) Λ(Γ(p)). Since

taking the Γ(p′)-coinvariant is a left exact functor, the sequence (5) gives us the following:

(Im(β)∨)Γ(p′) −→ X(D/F∞)Γ(p′) −→ (Im(α)∨)Γ(p′) −→ 0,(7)

where the modules and the morphisms are naturally defined over Λ(Γ(p)). Thanks to
Lemma 2.5 and the short exact sequence (7), it is enough to prove that (Im(α)∨)Γ(p′) and
(Im(β)∨)Γ(p′) are torsion Λ(Γ(p))-modules of finite type in order to prove Proposition 2.6.
Thus, Proposition 2.6 follows from Corollary 2.9 and Lemma 2.10 which will be shown
below.

Lemma 2.7. H1
syn(CF∞,SD)⊗Qp is a finite dimensional Qp-vector space.

Proof. The long exact sequence

· · · −→ H i
syn(CF∞,SD)⊗Qp −→ H i

crys(C
�
F∞/W, D0(−Z)))⊗Qp

1−ϕi−→ H i
crys(C

�
F∞/W, D(−Z))⊗Qp −→ · · ·

can be rewritten

· · · −→ H i
syn(CF∞,SD)⊗Qp −→ H i

crys(C
�
F∞/W, D(−Z))⊗Qp

1−ϕi−→ H i
crys(C

�
F∞/W, D(−Z))⊗Qp −→ · · ·

thanks to Lemma 2.3.
We deduce from this long exact sequence the following short exact sequence:

0 −→ Coker(1− ϕ0)→ H1
syn(CF∞,SD)⊗Qp −→ Ker(1− ϕ1) −→ 0.

Since H i
crys(C

�
F∞/W, D(−Z)) ⊗ Qp is a finite dimensional P0-vector space, with P0 =

Frac(W ), the assertion results from the following classical result of which we omit the
proof:

Lemma 2.8. Let V be a finite dimensional P0-vector space endowed with a σ-linear op-
erator ϕ : V −→ V . Then 1− ϕ is a surjective map whose kernel is a finite dimensional
Qp-vector space.

9



Corollary 2.9. The Pontrjagin dual Im(α)∨ of Im(α) is a free Zp-module whose rank is
equal to dim�p (H1

syn(CF∞,SD) ⊗ Qp). In particular, (Im(α)∨)Γ(p′) is a finitely generated

torsion Λ(Γ(p))-module.

Proof of Corollary 2.9. By definition of the syntomic complex we have a long exact se-
quence

· · · −→ H i
syn(CF∞,SD ⊗Qp/Zp) −→ H i

crys(C
�
F∞/W, D0(−Z)⊗Qp/Zp)

1−ϕi−→ H i
crys(C

�
F∞/W, D(−Z)⊗Qp/Zp) −→ · · ·

where the middle and right handside modules are torsion. In particular, H1
syn(CF∞,SD ⊗

Qp/Zp) is a torsion Zp-module. Thus, Im(α) is a torsion Zp-module which is a quo-
tient of H1

syn(CF∞,SD) ⊗ Qp. We deduce from 2.7, that Im(α) is cofree of finite rank

n ≤ dim�p (H1
syn(CF∞,SD) ⊗ Qp). But since H1

syn(CF∞,SD) is an extension of a sub-

module of H1
crys(C

�
F∞/W, D0(−Z)) by a quotient of H0

crys(C
�
F∞/W, D(−Z)), Ker(α) con-

tains no non-zero p-divisible elements. This proves that the corank of Im(α) is equal to
dim�p (H1

syn(CF∞,SD)⊗Qp).

We now study the term Im(β) :

Lemma 2.10. (Im(β)∨)Γ(p′) is a finitely generated torsion Λ(Γ(p))-module.

Proof of Lemma 2.10. Note that we have an isomorphism Im(β) � Ker (γ). The kernel
of the map γ : H2

syn(CF∞,SD) −→ H2
syn(CF∞,SD) ⊗ Qp is H2

syn(CF∞,SD)(p). Recall that
we have a short exact sequence:

0 −→ Coker(1− ϕ1) −→ H2
syn(CF∞,SD) −→ Ker(1− ϕ2) −→ 0,

By taking p-power torsion part of this sequence, we have

0 −→ Coker(1− ϕ1)(p) −→ Im(β) −→ Ker(1− ϕ2)(p).(8)

Taking the Pontrjagin duals and then taking the Γ(p′)-coinvariants of the modules, we
have the following:

(Ker(1− ϕ2)(p)∨)Γ(p′) −→ (Im(β)∨)Γ(p′) −→ (Coker(1− ϕ1)(p)∨)Γ(p′) −→ 0,(9)

where the modules and the morphisms are defined over Λ(Γ(p)) as discussed around (7).
By the sequence (9) and Lemma 2.5, it is enough to show that (Coker(1 − ϕ1)(p)∨)Γ(p′)

and (Ker(1− ϕ2)(p)∨)Γ(p′) are finitely generated torsion Λ(Γ(p))-modules.
By the triangle (4), Coker(1 − ϕ1) (resp. Ker(1 − ϕ2)) is a quotient (resp. sub-

module) of H1
crys(C

�
F∞/W, D(−Z)) (resp. H2

crys(C
�
F∞/W, D0(−Z))). By Lemma 2.3, both

H i
crys(C

�
F∞/W, D0(−Z)) and H i

crys(C
�
F∞/W, D(−Z)) are finitely generated W (Fq)-modules.

Hence, they are of the form W (Fq)
⊕r0⊕⊕r

i=1 Wni
(Fq), where the ni ≥ 1 are not necessar-

ily distinct. Now, we will terminate the proof admitting the following claim, which will
be shown below:

Claim 2.11. 1. Let M be a Λ(Γ)-module such that M ∼= ⊕r
i=1Wni

(Fq), where the ni ≥ 1
are not necessarily distinct. Then
(a) For any Λ(Γ)-linear quotient N of M , (N∨)Γ(p′) is a finitely generated torsion

Λ(Γ(p))-module.
10



(b) For any Λ(Γ)-submodule N ′ of M , (N ′∨)Γ(p′) is a finitely generated torsion Λ(Γ(p))-
module.

2. For any Λ(Γ)-linear quotient S of the Λ(Γ)-module W (Fq), S(p) is equal to S[pt] for
a sufficiently large integer t.

For Ker(1− ϕ2)(p)∨, we have the sequence:

H2
crys(C

�
F∞/W, D0(−Z))(p)∨ −→ Ker(1− ϕ2)(p)∨ −→ 0.

Taking the Γ(p′)-coinvariant, we have:

(H2
crys(C

�
F∞/W, D0(−Z))(p)∨)Γ(p′) −→ (Ker(1− ϕ2)(p)∨)Γ(p′) −→ 0.

Since (H2
crys(C

�
F∞/W, D0(−Z))(p)∨)Γ(p′) is a finitely generated torsion Λ(Γ(p))-module by

Claim 2.11.1, (Ker(1 − ϕ2)(p)∨)Γ(p′) is a finitely generated torsion Λ(Γ(p))-module by
Lemma 2.5. For Coker(1− ϕ1)(p)∨, we start from the following exact sequence of Λ(Γ)-
modules:

0 −→ Im(1− ϕ1) −→ H1
crys(C

�
F∞/W, D(−Z)) −→ Coker(1− ϕ1) −→ 0.

By Claim 2.11.2 and by the remark on the structure on H1
crys(C

�
F∞/W, D(−Z)) given be-

fore, there is a sufficiently large s such that Im(1−ϕ1)(p) (resp. H1
crys(C

�
F∞/W, D(−Z))(p),

Coker(1− ϕ1)(p)) is equal to Im(1− ϕ1)[p
s] (resp. H1

crys(C
�
F∞/W, D(−Z))[ps], Coker(1−

ϕ1)[p
s] ). Hence, we have the following sequence:

(Im(1− ϕ1)/(ps)Im(1− ϕ1))
∨ a−→ Coker(1− ϕ1)(p)∨ b−→ H1

crys(C
�
F∞/W,D(−Z))(p)∨(10)

As is explained above, the image of the map b in (10) is of the form N∨ for a Λ(Γ)-linear
quotient N of ⊕r

i=1Wni
(Fq). Since Im(1 − ϕ1)/(ps)Im(1 − ϕ1) is a Λ(Γ)-linear quotient

of H1
crys(C

�
F∞/W, D0(−Z))/(ps)H1

crys(C
�
F∞/W, D0(−Z)), the image of the map a is of the

form N ′∨ for a Λ(Γ)-linear submodule N ′ of ⊕r′
j=1Wn′

j
(Fq). Since Γ(p′) is pro-cyclic group,

the sequence (10) induces the following sequence:

(N ′∨)Γ(p′) −→ (Coker(1− ϕ1)(p)∨)Γ(p′) −→ (N∨)Γ(p′) −→ 0.(11)

Since the modules on the right and the left are finitely generated torsion Λ(Γ(p))-modules
by Claim 2.11.1, (Coker(1−ϕ1)(p)∨)Γ(p′) is a finitely generated torsion Λ(Γ(p))-module by
Lemma 2.5.

To finish the proof of Lemma 2.10, we prove Claim 2.11. Since Wm(Fq) is a successive
extension of W1(Fq) = Fq, it is enough to show the first assertion only for M = W1(Fq) =

Fq. Let U be an open subgroup of Γ, (Fq)
U is a finite extension of Fq. We have a natural

Λ(Γ)-linear isomorphism (Fq)
U ∼= Fq[(Γ/U)∨]. If Γ/U is sufficiently small so that the order

of Γ/U divides q− 1, we can take a basis {x1, · · · , xl} of (Fq)
U over Fq, so that the action

of Γ on (Fq)
U is represented by a diagonal matrix. For each member xi in the above set of

basis, g → (xi)
g/xi gives a character of Γ. Every character of Γ factored by Γ/U is given

this way and for different xi, xj the associated characters are different. This explains the
canonical isomorphism (Fq)

U ∼= Fq[(Γ/U)∨] for these special U ’s. Since they are rather
elementary, we do not give further explanation nor the proof on the above isomorphisms.
By taking an inductive limit of (Fq)

U ∼= Fq[(Γ/U)∨] with respect to open subgroups U of
11



Γ, we have:

M ∼= Fq[(Γ)∨] ∼= (Fp[(Γ)∨])⊕ordp(q).(12)

Hence, it suffices to show the first assertion only for a Λ(Γ)-linear quotient N of Fp[(Γ)∨].
Taking Pontrjagin dual, N∨ is a Λ(Γ)-submodule of (Fp[(Γ)∨])∨ ∼= Fp[[Γ]] ∼= Λ(Γ)/(p).
Hence we have N∨ = I for an ideal I of Fp[[Γ]]. Since Γ(p′)is procyclic, the short exact
sequence:

0 −→ I −→ Fp[[Γ]] −→ Fp[[Γ]]/I −→ 0

induces the following sequence:

(Fp[[Γ]]/I)Γ(p′) −→ (N∨)Γ(p′) −→ (Fp[[Γ]])Γ(p′) −→ (Fp[[Γ]]/I)Γ(p′) −→ 0.(13)

The third term (Fp[[Γ]])Γ(p′) is isomorphic to Fp[[Γ
(p)]] ∼= Λ(Γ(p))/(p). For the first term,

we decompose as Fp[[Γ]]/I ∼= Fp[[Γ
(p)]][[Γ(p′)]]/I ∼= (((Fp[[Γ

(p)]]/I0)
)
[[Γ(p′)]]

)
/I where I0 =

I∩Fp[[Γ
(p)]] and I is the image of I via Fp[[Γ]] ∼= Fp[[Γ

(p)]][[Γ(p′)]] �
(
Fp[[Γ

(p)]]/I0

)
[[Γ(p′)]].

Now, it is easy to see that (R[[Γ(p′)]]/I)Γ(p′)
= R when R is a pro-p algebra invariant under

Γ(p′) and I is the ideal of R[[Γ(p′)]] such that R ∩ I = 0. Hence, the first term of (13)
is isomorphic to Fp[[Γ

(p)]]/I0, which is a finitely generated torsion Λ(Γ(p))-module. Since
Λ(Γ(p)) is noetherian, the assertion (a) is an immediate consequence of the sequence (13).

For the assertion (b), by the same argument as above, it is sufficient to prove when N ′

is a Λ(Γ)-linear submodule of Fp[(Γ)∨]. Then we have a Λ(Γ(p))-linear map Λ(Γ(p))/(p) �
(N ′∨)Γ(p′) . This completes the proof of (b).

By the similar argument as above, we have W (Fq) ∼=
(
lim←− n (Z/(pn)[(Γ)∨])

)⊕ordp(q)

. It

is not difficult to show that only non-trivial Λ(Γ)-linear quotients of lim←− n (Z/(pn)[(Γ)∨])

is either lim←− n (Z/(pn)[(Γ)∨]) itself or Z/(pt)[(Γ)∨] for some t. This suffices for the second

assertion. This completes the proof of Claim 2.11 (and hence completes the proof of
Lemma 2.10).

Before starting the proof of Theorem 1.7, we recall the following result:

Proposition 2.12. 1. Let A/F an abelian variety satisfying the condition (SS). Let

D(A) be the Dieudonné crystal over C�

F
(p)
∞

/W associated to the Néron model A of

A×F F
(p)
∞ . Then we have a monomorphism of Λ(Γ(p))-modules

X(A/F (p)
∞ ) −→ X(D(A)/F (p)

∞ ).

2. Let G be a p-divisible group over C
F

(p)
∞

, then X(D(G)/F (p)
∞ ) is isomorphic to the

Pontrjagin dual of H1
fl(C

F
(p)
∞

,G).
Proof. The first assertion is proved as in [K-T, §2.5, 5.13]. The second assertion is reduced
to [K-T, §5.10].

Proof of Theorem 1.7. By Lemma 2.1, we can assume that A/F has semi-stable reduction.

Note that Gal(F∞/F
(p)
∞ ) is isomorphic to Γ(p′) ∼= ∏

l �=p

Zl. Let F
(p)
q = F

(p)
∞ ∩ Fq. We have the

12



following commutative diagram:

0 −−−→ Ker(1− ϕ
(p)
1 ) −−−→ H1

crys(C
�

F
(p)
∞

/W (F(p)
q ))

1−ϕ
(p)
1−−−−→ H1

crys(C
�

F
(p)
∞

/W (F(p)
q ))′

a

⏐⏐� b

⏐⏐� ⏐⏐�c

0 −−−→ Ker(1− ϕ1)Γ
(p′) −−−→ H1

crys(C
�
F∞/W )Γ

(p′) −−−→
1−ϕ1

H1
crys(C

�
F∞/W )′

Γ(p′)
,

where H1
crys(CF

(p)
∞

/W (F
(p)
q )) (resp. H1

crys(CF
(p)
∞

/W (F
(p)
q ))′) means H1

crys(C
�

F
(p)
∞

/W (F
(p)
q ), D0(−Z)⊗

Qp/Zp) (resp. H1
crys(C

�

F
(p)
∞

/W (F
(p)
q ), D(−Z)⊗Qp/Zp)) and we take the similar definitions

for F∞. We denote by ϕ
(p)
i the frobenius operator over F

(p)
∞ . The vertical maps b and c

in the diagram are isomorphism by crystalline base change theorem. Thus, the map a is
isomorphism. By the triangle (4), we also have the following diagram:

0 −−−→ Coker(1− ϕ
(p)
0 ) −−−→ H1

syn(CF
(p)
∞

,SD ⊗Qp/Zp) −−−→ Ker(1− ϕ
(p)
1 ) −−−→ 0

d

⏐⏐� ⏐⏐� ⏐⏐�a

0 −−−→ Coker(1− ϕ0)Γ
(p′) −−−→ H1

syn(CF∞ ,SD ⊗Qp/Zp)Γ
(p′) −−−→ Ker(1− ϕ1)Γ

(p′)

We have the following claim:

Claim 2.13. The Pontrjagin dual of the cokernel of the map:

1−ϕ
(p)
0 : H0

crys(C
�

F
(p)
∞

/W (F(p)
q ), D0(−Z)⊗Qp/Zp) −→ H0

crys(C
�

F
(p)
∞

/W (F(p)
q ), D(−Z)⊗Qp/Zp)

is a finitely generated torsion Λ(Γ(p))-module.

By this claim, the Pontrjagin dual of Coker(1 − ϕ
(p)
0 ) is a finitely generated torsion

Λ(Γ(p))-module. Taking the Pontrjagin dual of the above commutative diagram, we have

a Λ(Γ(p))-linear map X(D(A)/F∞)Γ(p′) −→ X(D(A)/F
(p)
∞ ) whose cokernel is a torsion

Λ(Γ(p))-module of finite type. On the other hand, X(D(A)/F∞)Γ(p′) is a finitely gener-
ated torsion Λ(Γ(p))-module by Proposition 2.6. Finally we will prove Claim 2.13. This
will complete the proof of Theorem 1.7 by Proposition 2.12. We consider the following

commutative diagram whose vertical maps are all 1− ϕ
(p)
i :

H0
crys(Zp) −−−→ H0

crys(Qp) −−−→ H0
crys(Qp/Zp) −−−→ H1

crys(Zp)tor −−−→ 0⏐⏐� ⏐⏐� ⏐⏐�1−ϕ
(p)
0

⏐⏐�
H0

crys(Zp)′ −−−→ H0
crys(Qp)′ −−−→ H0

crys(Qp/Zp)′ −−−→ H1
crys(Zp)′tor −−−→ 0,

(14)

where H i
crys(∗) in the upper line with ∗ = Zp, Qp, Qp/Zp means H i

crys(C
�

F
(p)
∞

/W (F
(p)
q ), D0(−Z)⊗

∗), H i
crys(∗)′ in the lower line means H i

crys(C
�

F
(p)
∞

/W (F
(p)
q ), D(−Z)⊗∗) and ( )tor is the Zp-

torsion part. We can show as in Lemma 2.3 (a) that the map 1 : H0
crys(Qp) −→ H0

crys(Qp)
′

induces a natural isomorphism of finite dimensional W (F
(p)
q ) ⊗ Qp-vector spaces. Since

ϕ
(p)
0 is σ-linear, 1 − ϕ

(p)
0 : H0

crys(Qp) −→ H0
crys(Qp)

′ is surjective (see [EL, Lemma 6.2]
for a similar argument). By the diagram (14) and by the snake lemma, Coker[1 −
ϕ

(p)
0 : H0

crys(Qp/Zp) → H0
crys(Qp/Zp)

′] is isomorphic to Coker[1 − ϕ
(p)
1 : H1

crys(Zp)tor →
H1

crys(Zp)
′
tor]. Thus, Coker[1 − ϕ

(p)
0 : H0

crys(Qp/Zp) → H0
crys(Qp/Zp)

′] is a Λ(Γ(p))-linear
13



quotient of a finitely generated torsion W (F
(p)
q )-module H1

crys(Zp)
′
tor. This completes the

proof of Claim 2.13.

3. µ-invariants of X(A/F
(p)
∞ )

We showed that X(A/F
(p)
∞ ) is a torsion Λ(Γ(p))-module for an abelian variety A over

F . In this section, we will prove that the µ-invariant of X(A/F
(p)
∞ ) is zero under certain

assumptions (Theorem 1.8).
Before giving the proof, we prepare several fundamental facts which will be necessary

in the proof.

Lemma 3.1. Let K be a finitely generated one-variable function field over a field F con-
tained in Fq and let A be an abelian variety over K. Then, the Selmer group Sel(A/K) is
isomorphic to the flat cohomology H1

fl(CK ,A{p}) if A has everywhere good reduction over
K, where A is the model of A over CK. Here, CK denotes the projective smooth curve
which is the model of a function field K.

Let us recall the following claim:

Claim 3.2. Let V be a smooth curve over a finite field Fq and let U ⊂ V be a dense open
subset. For any finite flat group scheme F over OV , we have the following natural exact
sequence:

0 −→ H1
fl(V,F) −→ H1

fl(U,F) −→
⊕

v∈V \U

H1
fl(Kv, F )

H1
fl(Ov,F)

,

where Ov is the completion of OV at the closed point v ∈ V , Kv is the field of fraction of
Ov and F is the generic fiber of F .

Though this claim seems to be known to the experts, we will give a short sketch of
the proof by recalling fundamental facts on flat cohomologies. For fundamental tools and
facts used in the proof, the reader can refer to [Mi2, Chapter III].

Proof of Claim 3.2. Let Z = V \ U be a closed subscheme of V . We have a usual local-
ization sequence:

H1
Z(V, F ) −→ H1

fl(V,F) −→ H1
fl(U,F) −→ H2

Z(V,F),(15)

where H i
Z(V,F) is a flat cohomology with support in Z. By [Mi2, III, §7], we have:⎧⎪⎨⎪⎩

H1
Z(V,F) = 0

H2
Z(V,F) =

⊕
v∈V \U

H2
v (V,F) ∼= ⊕

v∈V \U

H1
fl(Kv, F )

H1
fl(Ov,F)

This completes the proof.

Proof of Lemma 3.1. By Claim 3.2, we have:

0 −→ H1
fl(CK ,A[pm]) −→ H1

fl(CK \ Z,A[pm]) −→ ⊕
v∈Z

H1
fl(Kv, A[pm])

H1
fl(Ov,A[pm])

By taking inductive limit with respect to Z and m, we have:

0 −→ H1
fl(CK ,A{p}) −→ H1

fl(K, A{p}) −→ ⊕
v∈CK

H1
fl(Kv, A{p})

H1
fl(Ov,A{p}) .

14



On the other hand, we easily show that
H1

fl(Kv, A{p})
H1

fl(Ov,A{p})
∼= H1(Kv, A)(p) since H1

fl(Ov,A) ∼=
H1

fl(Fv,Av) = 0 by [L], where Fv is the residue field of Ov and Av is the special fiber of
A at Spec(Fv). This completes the proof of Lemma 3.1 by comparing with the exact
sequence (1) which defines the Selmer group.

By using the following lemma, we reduce the proof of Theorem 1.8 into a simplified
situation .

Lemma 3.3. Let F ′/F be a finite Galois extension. We denote by A′ the extension

A′ = A×F F ′. If µ(X(A′/F ′,(p)
∞ )) = 0, then we have µ(X(A/F

(p)
∞ )) = 0.

Proof. The assertion that µ(X(A/F
(p)
∞ )) = 0 (resp. µ(X(A′/F ′,(p)

∞ )) = 0) is equivalent to

the assertion that X(A/F
(p)
∞ ) (resp. X(A′/F ′,(p)

∞ )) is a finitely generated Zp-module. As

the proof of Lemma 2.1, we have a natural homomorphism X(A′/F ′,(p)
∞ )J −→ X(A/F

(p)
∞ )

whose cokernel is finite (Here, J is Gal(F ′,(p)
∞ /F

(p)
∞ )). Hence we complete the proof.

By Lemma 3.3, we may (and we will) assume that A/F is isomorphic to an ordinary
abelian variety or a supersingular abelian variety defined over a finite field in order to
prove Theorem 1.8. First, we consider the case where the following condition is satisfied
through this section for the proof of Theorem 1.8:

(OF) A/F is isomorphic to an ordinary abelian variety defined over a finite field Fq ⊂ F .

Note that F∞ is a Galois extension of F
(p)
∞ with Galois group Γ(p′) ∼= ∏

l �=p

Zl. As in the

argument of the proof of Theorem 1.7, we have:

H1
fl(C

F
(p)
∞

, A{p})∨ ∼= (H1
fl(CF∞, A{p})∨)Γ(p′).

Thus we have reduced “finiteness” over F
(p)
∞ to Lemma 3.4 (“finiteness” over F∞) below.

Lemma 3.4. Let us assume the condition (OF) for A/F . Then, H1
fl(CF∞, A{p})∨ is a

finitely generated Zp-modules.

Proof. Since A is an abelian variety with good ordinary reduction, the connected part
(resp. étale part) A{p}conn (resp. A{p}ét) of A{p} has rank g = dim(A). Note that a
finite flat group scheme A{p}conn (resp. A{p}ét) over CF∞ is a constant scheme defined
over the base Fp of the curve CF∞. Since A{p}conn (resp. A{p}ét) is isomorphic to (µp∞)g

(resp. (Qp/Zp)
g) over Fp, we have the following exact sequence:

H1
fl(CF∞, (µp∞)g) −→ H1

fl(CF∞, A{p}) −→ H1
fl(CF∞, (Qp/Zp)

g).

Thus we reduce the proof of Lemma 3.4 to the following claim:

Claim 3.5. H1
fl(CF∞, µp∞)∨ and H1

fl(CF∞, Qp/Zp)
∨ are free Zp-modules of finite rank.

Let us prove the claim in the rest of the proof. We first study H1
fl(CF∞, µp∞)∨. For a

scheme V , [Mi1, Proposition 3.7] gives us an equality H1
fl(V,O×

V ) ∼= Pic(V ). On the other
hand, we have an exact sequence:

0 −→ µpn −→ O×
V

×pn−→ O×
V −→ 0
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on the flat site over V . This implies that H1
fl(Spec(R), µpn) = R×/(R×)pn

for a local ring
R. By Lemma 3.2, we have an exact sequence:

0 −→ H1
fl(CF∞, µpn) −→ (F∞)×/(F∞)×)pn −→

⊕
v∈CF∞\Spec(F∞)

(F∞,v)
×/((F∞,v)

×)pn

O×
v /(O×

v )pn ,

where O is the ring of integers of F∞. Note that we have:

(F∞,v)
×/((F∞,v)

×)pn

O×
v /(O×

v )pn
∼= (F∞,v)

×/O×
v(

(F∞,v)×/O×
v

)pn
∼= Z/(pn).

Let us consider the following commutative diagram:

0 −−−→ (F∞)×
×pn−−−→ (F∞)× −−−→ (F∞)×/((F∞)×)pn −−−→ 0

⊕valv

⏐⏐� ⏐⏐�⊕valv

⏐⏐�
0 −−−→ ⊕

v

Z
×pn−−−→ ⊕

v

Z −−−→ ⊕
v

Z/pnZ −−−→ 0,

where v runs the primes of v ∈ CF∞ \Spec(F∞) for the summations in the lower line. The
kernel of the middle vertical map is equal to (Fp)

×. By applying the snake lemma to the
above diagram, we get the following exact sequence

0 −→ (Fp)
×/((Fp)

×)pn −→ H1
fl(CF∞, µpn)→ Cl(F∞)[pn] −→ 0.

Since (Fp)
×/((Fp)

×)pn
is trivial, we have H1

fl(CF∞, µp∞) ∼= Cl(F∞){p}. By [We], we have
an isomorphism

Cl(F∞){p} � JF∞(Fp){p}
where JF∞ is the Jacobian variety associated to CF∞. However, by [Mu], we have
JF∞(Fp){p} � (Qp/Zp)

r for some 0 ≤ r ≤ genus(CF∞).
Next, we study H1

fl(CF∞, Qp/Zp)
∨. Let us recall the following exact sequence:

H i
fl(CF∞, Z/(p)Z) ∼= Ker

[
H i

fl(CF∞,OCF∞ )
x→x−xp−−−−−→ H i

fl(CF∞,OCF∞ )
]
,(16)

where the last map is induced by the Artin-Scherier sequence:

0 −→ Z/(p)Z −→ OCF∞
x→x−xp−−−−−→ OCF∞ −→ 0,

on the flat site over CF∞. Since H i−1
fl (CF∞,OCF∞ ) is isomorphic to H i−1

Zar (CF∞,OCF∞ ), it

is a finite dimensional Fq-vector space. Hence H i
fl(CF∞,OCF∞ )

x→x−xp−−−−−→ H i
fl(CF∞,OCF∞ ) is

surjective for any i. Further, H1
Zar(CF∞,OCF∞ ) is isomorphic to an r-dimensional vector

space over Fq. We have H1
fl(CF∞, Z/(p)Z) ∼= (Z/(p)Z)⊕r by (16). On the other hand,

H2
fl(CF∞, Z/(p)Z) is trivial since H2

fl(CF∞,OCF∞ ) = H2
Zar(CF∞,OCF∞ ) is trivial. This

gives the following exact sequence:

0 −→ H1
fl(CF∞, Z/(p)Z) −→ H1

fl(CF∞, Qp/Zp)
×p−→ H1

fl(CF∞, Qp/Zp) −→ 0

Since H1
fl(CF∞, Qp/Zp)

∨/(p)H1
fl(CF∞, Qp/Zp)

∨ is finite, H1
fl(CF∞, Qp/Zp)

∨ is a finitely gen-
erated Zp-module by Nakayama’s lemma. Further, H1

fl(CF∞, Qp/Zp)
∨ has no non-trivial

p-torsion elements since H1
fl(CF∞, Qp/Zp) is p-divisible. Thus, H1

fl(CF∞, Qp/Zp)
∨ is a free

Zp-module of rank r. This completes the proof of the claim and hence the proof of Lemma
3.4 is completed.
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By a remark given before Lemma 3.4, the proof of Theorem 1.8 has been done in the
ordinary case.

Next, we discuss the supersingular case. By Lemma 3.3, we may assume the case where
the following condition is satisfied:

(SF) A/F is isomorphic to a supersingular abelian variety defined over a finite field
Fq ⊂ F and the proper smooth curve CF which is the model of F has invertible Hasse-
Witt matrix.

The assertion that µ(X(A/F∞)) = 0 is equivalent to the assertion that H1
fl(CF∞, A{p}) is

p-divisible. Now, we consider the following exact sequence:

H1
fl(CF∞, A{p}) ×p−→ H1

fl(CF∞, A{p}) −→ H2
fl(CF∞, A[p]).

Let αp be a finite group scheme defined to be the kernel of the frobenius map F :
Ga −→ Ga. Since A is supersingular, A[p] is isomorphic to α⊕2g

p , it suffices to show

that H2(CF∞, αp) = 0. Now, from the exact sequence

H1
fl(CF∞,OCF∞ )

F−→ H1
fl(CF∞,OCF∞ ) −→ H2

fl(CF∞, αp) −→ 0,

the assertion that H2(CF∞, αp) = 0 is equivalent to the assertion that the map F on
H1

fl(CF∞,OCF∞ ) is surjective. Since the last assertion is equivalent to the assumption that
the Hasse-Witt matrix for CF is invertible, we complete the proof for the first assertion
of Theorem 1.8.

If the Hasse-Witt matrix for CF is not invertible, the kernel of F on H1
fl(CF∞,OCF∞ )

contains a non-trivial Fp-vector space and the Frobenius on H0
fl(CF∞,OCF∞ ) ∼= Fp is

surjective. Thus H1
fl(CF∞, A[p])∨ ∼= X(A/F

(p)
∞ )/(p)X(A/F

(p)
∞ ) has infinite p-rank and

µ(X(A/F
(p)
∞ )) has to be positive if the Hasse-Witt matrix for CF is not invertible. This

completes the proof of Theorem 1.8.

4. A result over a p-adic Lie extension L

In this section, we prove Theorem 1.9. For the proof of Theorem 1.9, we introduce
following new Selmer group:

Definition 4.1. Let A be an abelian variety over F and let S be a finite set of primes
of F . By using the extension 0 −→ A{p}conn −→ A{p} −→ A{p}ét −→ 0 of p-divisible
groups over F , we define the Selmer group over an algebraic extension K over F as
follows:

SelS(A/K) := Ker

[
H1

fl(K, A{p}) −→
∏

v∈SK

H1
fl(Kv, A{p}ét)×

∏
v �∈SK

H1
fl(Kv, A)

]
,(17)

where SK is a set of primes of K lying over the primes in S.

From now on, we fix a g-dimensional abelian variety A over F , which has good reduction
outside a finite set S of primes in F and has ordinary reduction at each prime in S as in
Theorem 1.9. We give the following lemma on comparison between Selmer groups:

Lemma 4.2. Let the assumption be as in Theorem 1.9.

1. For any extension K of F , Sel(A/K) is naturally identified as a subgroup of SelS(A/K).
17



2. For any K contained in F∞, the quotient SelS(A/K)/Sel(A/K) is a cofinitely gen-
erated Zp-module whose corank is less than or equal to g�S.

Proof. For an extension K of F , we denote by BKv the subgroup of H1
fl(Kv, A{p}) given

by

BKv := Ker
[
H1

fl(Kv, A{p}) −→ H1
fl(Kv , A{p}ét)

]
= Im

[
H1

fl(Kv , A{p}conn) −→ H1
fl(Kv, A{p})

]
.

Recall that A(Kv)⊗Qp/Zp is regarded as a subgroup of H1
fl(Kv, A{p}) and the kernel of

H1
fl(Kv, A{p}) −→ H1

fl(Kv, A) is equal to A(Kv) ⊗ Qp/Zp. By comparing the definition
of Sel(A/K) and SelS(A/K) ((1) and (17), respectively), Sel(A/K) is a subgroup of
SelS(A/K) if and only if A(Kv)⊗Qp/Zp is contained in BKv for every v ∈ S. We denote
by Av the Neron model on the ring of integers of Kv associated to the abelian variety

A/Kv. Let Âv be the formal completion of Av along the zero section of the special fiber

of Av. Since A has ordinary reduction at v, Âv[p
n] is a finite flat group scheme which is

étale locally isomorphic to a finite flat group scheme (µpn)g�S over Ov whose generic fiber
is isomorphic to the connected part A[pn]conn of the finite flat group scheme A[pn] over
Kv. We have the following diagram:

0 −−−→ Âv(Ov)⊗�Qp/Zp
δ−−−→ lim−→ nH1

fl(Kv, Âv[p
n])

ε−−−→ H1
fl(Kv, Âv)

α

⏐⏐� ⏐⏐�β

⏐⏐�γ

0 −−−→ A(Kv)⊗�Qp/Zp −−−→ H1
fl(Kv, A{p}) −−−→ H1

fl(Kv, A).

(18)

Since Av(Ov) = A(Kv), we have an exact sequence:

0 −→ Âv(Ov) −→ A(Kv) −→ Av(Fv),

where Fv is the residue field of Kv and Av is Av ×Spec(Ov) Spec(Fv). Since Av(Fv) is a

direct limit of finite groups, we have Av(Fv) ⊗ Qp/Zp = 0. This implies the following
assertion:

The map α in the diagram (18) must be surjective.(19)

Consequently, A(Kv)⊗Qp/Zp is a subgroup of BKv for every v ∈ S. This completes the
proof of the first assertion of the lemma.

Next, we prove the second assertion. Suppose that K is contained in F∞. Consider the
following diagram:

0 −−−→ Sel(A/K) −−−→ H1
fl(K,A{p}) −−−→ ∏

v

H1
fl(Kv, A{p})

A(Kv)⊗Qp/Zp⏐⏐� ⏐⏐� ⏐⏐�
0 −−−→ SelS(A/K) −−−→ H1

fl(K,A{p}) −−−→ ∏
v∈S

H1
fl(Kv , A{p})

BKv

× ∏
v �∈S

H1
fl(Kv , A{p})

A(Kv)⊗Qp/Zp
,

(20)
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Thus, SelS(A/K)/Sel(A/K) is a subquotient of
∏
v∈S

BKv

A(Kv)⊗Qp/Zp

by the snake lemma.

Since
BKv

A(Kv)⊗Qp/Zp
is a quotient of

CKv := Coker
[
Âv(Ov)⊗�Qp/Zp

δ−→ lim−→ nH1
fl(Kv, Âv[p

n])
]
,(21)

it suffices to show that
∏
v∈S

CKv is cofinitely generated of corank less than or equal to g�S

over Zp. Let Kur
v be the maximal unramified extension of Kv. By the Hochshild-Serre

spectral sequence, we have the following exact sequence.

(22) 0 −→ lim−→ nH1(Γ, Âv[p
n](Our

v )) −→ lim−→ nH1
fl(Kv, Âv[p

n]) −→ H1
fl(Kur

v , Âv[p
n])Γ

−→ lim−→ nH2(Γ, Âv[p
n](Our

v )) −→ 0

where Γ = Gal(Kur
v /Kv). By the assumption that A is ordinary at v ∈ S, Âv(Our

v )
is isomorphic to (U1

Kur
v

)g, where U1
Kur

v
⊂ O×

Kur
v

is the group of principal units. Since

Âv[p
n](Our

v ) = 0, (22) implies the following isomorphism:

lim−→ nH1
fl(Kv, Âv[p

n]) ∼= lim−→ nH1
fl(Kur

v , Âv[p
n])Γ.(23)

Since (Âv(Our
v ))Γ = Âv(Ov), we have the following commutative diagram:

0 −−−→ Âv(Ov)
×p−−−→ Âv(Ov) −−−→ Âv(Ov)⊗�Z/pnZ −−−→ 0∥∥∥ ∥∥∥ ⏐⏐�

0 −−−→ (Âv(Our
v ))Γ ×p−−−→ (Âv(Our

v ))Γ −−−→ (Âv(Our
v )⊗�Z/pnZ)Γ −−−→ 0.

The surjectivity of the last map in the lower line of the diagram follows from the fact that

H1(Γ, Âv(Our
v )) is trivial. Hence, we have Âv(Ov) ⊗� Z/pnZ ∼= (Âv(Our

v ) ⊗� Z/pnZ)Γ.
Thus, by taking the inductive limit with respect to n, we have:

Âv(Ov)⊗�Qp/Zp
∼= (Âv(Our

v )⊗�Qp/Zp)
Γ(24)

We have

Coker
[
Âv(Our

v )⊗�Qp/Zp
δ−→ lim−→ nH

1
fl(Kur

v , Âv[p
n])
]

∼= Coker
[
(U1

Kur
v
⊗�Qp/Zp)

g −→ H1
fl(Kur

v , (µpn)g)
]

∼= Coker
[
(U1

Kur
v
⊗�Qp/Zp)

g −→ ((Kur
v )× ⊗�Qp/Zp)

g
] ∼= (Qp/Zp)

g

(25)

By (21), (23), (24) and (25), CKv is a subgroup of (Qp/Zp)
g for each v ∈ S. This completes

the proof of the lemma.

We have the following lemma:

Lemma 4.3. Under the same assumption as that of Theorem 1.9, the group XS(A/L)H
∼=

(SelS(A/L)H)∨ is a finitely generated Zp-module.
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Proof. Let S be a finite set of primes in F
(p)
∞ where the extension L/F

(p)
∞ is ramified. Since

A has good reduction outside S and since L/F
(p)
∞ is unramified outside S, we have the

following commutative diagram:

0 −−−→ SelS(A/F
(p)
∞ ) −−−→ H1

fl(C
F

(p)
∞
\ S,A{p}) −−−→ ∏

v∈S
H1

fl(F (p)
∞,v, A{p}ét)

a

⏐⏐� b

⏐⏐� ⏐⏐�c

0 −−−→ SelS(A/L)H −−−→
(

lim−→
K

H1
fl(CK \ SK , A{p})

)H

−−−→
( ∏

w∈SL

H1
fl(Lw, A{p}ét)

)H

,

where K runs a finite extension of F
(p)
∞ contained in L and SK is the set of primes of K

lying over S. By the Hochshild-Serre spectral sequence, we have the following exact exact
sequence:

H1(H, A{p}(L)) −→ H1
fl(C

F
(p)
∞
\ S, A{p})

b−→
⎛⎝ lim−→

F
(p)
∞ ⊂K⊂L

H1
fl(CK \ SK , A{p})

⎞⎠H

−→ H2(H, A{p}(L)).

Since H is a p-adic Lie group and A{p}(L) is an abelian group which is cofinite type
over Zp, H i(H, A{p}(L))∨ is finitely generated over Zp for every i. In the same way,
the Pontrjagin dual of Ker(c) ∼= ∏

v∈S
F

(p)∞

∏
w|v

H1(Hw, A{p}ét(Lw)) is a finitely generated

Zp-module, where Hw ⊂ H is the decomposition subgroup at w of L. The module

X(A/F
(p)
∞ ) = Sel(A/F

(p)
∞ )∨ is finitely generated over Zp by the assumption of Theorem

1.9. By Lemma 4.2, XS(A/F
(p)
∞ ) = SelS(A/F

(p)
∞ )∨ is also a finitely generated Zp-module.

This completes the proof of Lemma.

Now, we will complete the proof of Theorem 1.9 by using the following result of Balister
and Howson:

Lemma 4.4. [B-H, Corollary in §3] Let H be a p-adic Lie group and X a compact Λ(H)-
module. Let XH denote the H-coinvariant quotient of X. If XH is a Zp-module of finite
type, then X is a Λ(H)-module of finite type.

In fact, since X(A/L)H is a quotient of XS(A/L)H , X(A/L)H is a finitely generated
Zp-module. Hence X(A/L) is a Λ(H)-module of finite type by using the above lemma.
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