
THE COLEMAN MAP FOR HIDA FAMILIES OF GSp4
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Abstract. In this paper, we construct a Coleman map for ordinary Hida deformations
associated to the symplectic group GSp4, which interpolates the dual exponential maps
when arithmetic specializations of this family vary. The main result (Theorem 3.2) will
play an important role in our forthcoming work ([LO]) discussing a conjecture on the
existence of an Euler system which would give rise via our map to a three variable p-adic
L-function.
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1. Introduction

Let p be an odd prime number and let T be a p-adic family of Galois representations
of the absolute Galois group GF = Gal(F/F ) of a number field F . That is, T is a free
module of finite rank over a complete local Noetherian ring R with finite residue field of
characteristic p which has an R-linear continuous action of GF . As is indicated in [Gr]
and [O4], we believe that we can develop the Iwasawa theory for such families of Galois
representations T satisfying several reasonable conditions.

In the spirit of Iwasawa theory, our interest is in constructing and studying p-adic ana-
lytic L-functions Lan

p (T ) for T and in proving the Iwasawa main conjecture which relates
the principal ideal (Lan

p (T )) to the characteristic ideal of the Pontryagin dual of the Selmer
group for T .

Iwasawa Main Conjecture is proved by Mazur-Wiles [MW] for T which are the cyclotomic
deformations of ideal class groups of abelian extensions of Q. Iwasawa Main Conjecture for
T which are obtained as the cyclotomic deformations of modular forms has progressed a lot
by Kato [Ka] and Skinner-Urban. For these cyclotomic deformations, R is the cyclotomic
Iwasawa algebra O[[Gal(Q∞/Q)]] where O is the ring of integers of a finite extension of

The second author was partially supported by Grant-in-Aid for Young Scientists (B), No.20740013,
Japan Society for the Promotion of Science.
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Qp and Q∞ is the cyclotomic Zp-extension of Q. The deformation T is defined to be
T ⊗O O[[Gal(Q∞/Q)]](χ̃) where T is a continuous representation of GQ of finite rank over
O and O[[Gal(Q∞/Q)]](χ̃) is a free O[[Gal(Q∞/Q)]]-module of rank one on which GQ acts
via χ̃ : GQ � Gal(Q∞/Q) ↪→ O[[Gal(Q∞/Q)]]×.

If T is any deformation of rank equal to or greater than two over R, then T is not
necessarily obtained as the cyclotomic deformation of a continuous representation T of GQ
of finite rank over O. However, among such general non-cyclotomic deformations T , there
are very few examples where we establish some positive results on the Iwasawa theory for
T . The first example of T where successful results on the Iwasawa theory are obtained
is the case of Hida deformation for GL2/Q where R is a local component of Hida’s nearly
ordinary Hecke algebra and T is the universal Galois representation, which is a finitely
generated and generically of rank two R-module on which GQ-acts continuously. We do
not recall the definition and the construction of R and T . However, the basic properties
are summarized as follows.

(i) The ring R is a local domain of Krull dimension three with finite residue field
of characteristic p which is finite flat over a power series algebra of two variables
Zp[[X,Y ]].

(ii) The module T is equipped with continuous GQ-action and T is a free module of
rank two over R under some technical conditions.

(iii) Recall that HomZp(R,Qp) is regarded as a finite cover of HomZp(Zp[[X,Y ]],Qp)

which is isomorphic to an open p-adic ball in Z⊕2
p . There is a dense discrete subset

S of HomZp(R,Qp) which consists of arithmetic specializations such that, for any

λ ∈ HomZp(R,Qp), the specialization Vλ := T ⊗R Qp is a Tate twist of a Galois
representation associated to a certain ordinary cuspform fλ of some weight ≥ 2.

In this case, there are the ideal of algebraic p-adic L-function (Lalg
p (T )) ⊂ R and the

ideal of analytic p-adic L-function (Lan
p (T )) ⊂ R. The ideal (Lalg

p (T )) ⊂ R is defined to
be the characteristic ideal of the Pontryagin dual of the Selmer group for T . The ideal
(Lan

p (T )) is the principal ideal generated by the element whose specialization λ(Lan
p (T ))

interpolates the special values L(Vλ, 0) of the Hasse-Weil L-function L(Vλ, s) modified with
certain factors like complex periods, p-adic periods, Gauss sums, Euler factors etc at every
arithmetic specialization λ ∈ S.

By the two-variable Iwasawa Main Conjecture, we expect the equality

(Lalg
p (T )) = (Lan

p (T )).

The result we obtained in [O1], [O2] and [O3] is the half of expected equality:

(1) (Lalg
p (T )) ⊃ (Lan

p (T ))

under some technical conditions. Our long-term project for GSp4/Q is to pursue the ana-
logue of this study for GL2/Q. In order to sketch our study in the case of GSp4/Q, we

have to review briefly the main ingredients of the proof of (1) in the case of GL2/Q. As we

will see later, for each p-adic representation W of GQp , we have a subspace H1
f (Qp,W ) of
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H1(Qp,W ) called the finite part and we also have an important map

exp∗ :
H1(Qp,W )

H1
f (Qp,W )

−→ Fil0DdR(W )

called the dual exponential map where DdR is a functor defined by Fontaine. Let us denote
by T the Kummer dual HomR(T ,R)⊗Zp Zp(1). We denote also by V λ the Kummer dual

HomQp
(Vλ,Qp)⊗Zp Zp(1). Note that V λ is nothing but the specialization of T at λ.

(A) We show that the dual exponential maps for λ ∈ S are interpolated. That is,

(i) There is a finitely generatedR-moduleH1
/f (Qp, T ) which interpolates

H1(Qp,Tλ)

H1
f (Qp,Tλ)

for λ ∈ S.
(ii) There is a free R-module D of rank one such that D ⊗R λ(R) ⊗Zp Qp is

canonically isomorphic to Fil0DdR(V λ) for every λ ∈ S.
(iii) There is an R-linear map Ξ : H1

/f (Qp, T ) −→ D interpolating the dual ex-

ponential maps in the sense that, for every λ ∈ S, we have the following
commutative diagram:

H1
/f (Qp, T )

Ξ−−−−→ Dy y
H1(Qp, V λ)

H1
f (Qp, V λ)

−−−−→ Fil0DdR(V λ),

where the bottom map is equal to the dual exponential map modified by a
Euler-like factor and a Gamma factor at λ.

(B) We establish a generalized Euler system theory for such a deformation. That is, if
Z ∈ H1

/f (Qp, T ) is not an R-torsion element and if Z is a part of a certain norm

compatible system satisfying well-known Euler system condition, the characteristic
ideal of H1

/f (Qp, T )/ZR is contained in the characteristic ideal of the Pontryagin

dual of the Selmer group for T .
(C) There exists an element Zopt ∈ H1

/f (Qp, T ) which is extended to a part of Euler

system. That is, there is an Euler system {Z(r) ∈ H1(Q(ζr), T )}r for square-free
natural numbers r such that the image of Z(1) via

H1(Q, T )→ H1(Qp, T ) � H1
/f (Qp, T )

is equal to Zopt. Further, for any specialization λ : R −→ Qp such that V λ is

associated to a j-th Tate twist of a modular form f , the image of Zopt
λ ∈ H1(Qp, V λ)

via the dual exponential map:

exp∗ :
H1(Qp, V λ)

H1
f (Qp, V λ)

−→ Fil0DdR(V λ) ∼= Qp

is equal to the special value L(fλ, j) divided by an optimal complex period, where
the last isomorphism is obtained by (the dual of) the modular form fλ which is
regarded as an element of Fil0DdR(V λ). ([Ka], [O3])
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The ingredient (A) will provide us an equality

(2) charR

(
H1

/f (Qp, T )
/
ZoptR

)
= (Lan

p (T )).

The ingredient (B) will provide us an inequality

(3) (Lalg
p (T )) ⊃ charR

(
H1

/f (Qp, T )
/
ZoptR

)
.

We obtain the inequality (1) by combining these two equations.

In our project, we are interested in extending this work to Hida deformations associated
to GSp4/Q. Roughly speaking, in this case, R is of Krull dimension 4 (of three variable)
and T is generically of rank 4 over R. Among three main ingredients, we devote ourselves
to the part (A) of the above plan. Since both the Krull dimension of the deformation
ring R and the rank of the Galois representation T are larger than the case of GL2/Q, the
interpolation of the dual exponential maps is more difficult in the case of GSp4/Q.

We do not discuss the ingredients (B) and (C). However, the ingredient (B) will be done
by the same principle as [O2]. The ingredient (C) to construct an Euler system will be
more difficult. The first named author has established partial results to construct elements
related to L-value [Le]. However, it is still far from the best possible result we want. In
any case, this work is the first step towards for our project and we plan to proceed on
other ingredients (B) and (C) with help of our insight obtained through this work. In a
forthcoming paper [LO], we will discuss a more detailed framework of the theory. The plan
of the paper is as follows:

Plan: In Section 2, we recall basic facts on Hida families of GSp4. We will fix the
notations and list basic assumptions which we suppose in the article. In Section 3, we will
state the main theorems of the article. In Section 4, we recall the translation of classical
Coleman power series into the language of Galois cohomology (Prop. 4.2) and we give a
variant of Prop. 4.2 (Prop. 4.3). In Section 5, we give some technical calculations related
to comparisons between local conditions and treatments on inverse limits and duals. In
Section 6, we combine all results obtained in earlier sections to prove the essential part of
our main theorem.

Since the strategy for the proof of our Main Theorem is complicated and involves a lot
of statements, we would like to visualize the relations between several key propositions
and theorems below. First, our main results are Theorem 3.1 (freeness) and Theorem 3.2
(construction of the Coleman map). Theorem 3.1 is proved in Section 5. For Theorem 3.2
which is the most essential result, the steps for the proof are organized as follows:

Thm. 6.4

↗ ↘
Prop. 4.2 → Prop. 4.3 Thm. 6.1→ Thm. 3.2

↘ ↗

Thm. 6.10
4



Notation: throughout the article, we fix an odd prime number p. We will also fix the
complex embedding Q ↪→ C and the p-adic embedding Q ↪→ Qp of the algebraic closure

Q of the rationals Q. By this, we will identify the decomposition group of the absolute
Galois group GQ of Q with GQp . For a commutative ring R, we denote by R× the group of

invertible elements in R. When a character ρ : G −→ R× of a group G is given, we denote
by R(ρ) the free R-module of rank one with the action of G via ρ.

Acknowledgment:
A large part of this work has been done while the first named author was financed by
a ”JSPS post-doctoral fellowship for foreign researchers” at Osaka University. The first
named author would like to thank the JSPS and Osaka University for providing excellent
working conditions and warm hospitality.

2. Review of Hida families of GSp(4)

Let us define GSp4/Z by:

GSp4/Z = {g ∈ GL4/Z | ∃ ν(g) ∈ Gm, tgJg = ν(g)J},

where J =


1

1
−1

−1

, with derived group Sp4/Z = ker ν. Then GSp4/Z is a

reductive group over Z. We denote by T the maximal torus of GSp4/Z and by B the

standard Borel. We have

T =

diag(α1, α2, α
−1
2 ν, α−1

1 ν) =


α1 0 0 0
0 α2 0 0
0 0 α−1

2 ν 0
0 0 0 α−1

1 ν

 , (α1, α2, ν) ∈ G3
m

 .

Hence we have a canonical isomorphism T ≃ (Gm)1 × (Gm)2 × (Gm)3 where each (Gm)i
is isomorphic to Gm and where (Gm)1 × (Gm)2 is the maximal torus of Sp4/Z. The group

of characters X∗(T) is identified with the subgroup of Z2 ⊕Z consisting of triples (k, k′, t)
such that k + k′ ≡ t mod 2 via

λ(k, k′, t) : diag(α1, α2, α
−1
2 ν, α−1

1 ν) 7→ αk
1α

k′
2 ν

t−k−k′
2 .

Write ρ1 = λ(1,−1, 0) and ρ2 = λ(0, 2, 0). Then the roots of T in GSp4/Z are R =

{±ρ1, ±ρ2, ±(ρ1 + ρ2), ±(2ρ1 + ρ2) } and the positive roots with respect to B are R+ =
{ ρ1, ρ2, ρ1+ρ2, 2ρ1+ρ2 }. Then the dominant weights with respect to B are the λ(k, k′, t)
such that k ≥ k′ ≥ 0.

Let Gi be the p-Sylow subgroup of (Gm)i(Zp) ∼= Z×
p for i = 1, 2, 3. Then G1×G2×G3 is

the p-Sylow subgroup of the maximal torus of GSp4(Zp) such that G1 ×G2 is the p-Sylow
subgroup of the maximal torus of Sp4(Zp) ⊂ GSp4(Zp).
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Note that each Gi has a canonical isomorphism χi : Gi
∼−→ 1+pZp such that g1×g2×g3 ∈

G1 ×G2 ×G3 is identified with elements of the maximal subtorus of GSp4(Zp) via
χ1(g1)

χ2(g2)
χ2(g2)

−1χ3(g3)
χ1(g1)

−1χ3(g3)


Let Λord = Zp[[G1×G2]] and let Λn.ord = Zp[[G1×G2×G3]]. As is well-known, Λord (resp.

Λn.ord) is non-canonically isomorphic to Zp[[X1, X2]] (resp. Zp[[X1, X2, X3]]).

Definition 2.1. For each pair of integers (a1, a2) and for each pair of non-negative integers

(l,m), we denote by I
(a1,a2)
l,m the ideal of height two in Λord generated by{

(gp
l

1 − χ1(g1)
a1pl , gp

m

2 − χ2(g2)
a2pm) | gi ∈ Gi (i = 1, 2)

}
.

Similarly, for each triple of integers (a1, a2, a3) ] and for each triple of non-negative integers

(l,m, n), we denote by I
(a1,a2,a3)
l,m,n the ideal of height three in Λn.ord generated by{

(gp
l

1 − χ1(g1)
a1pl , gp

m

2 − χ2(g2)
a2pm , gp

n

3 − χ3(g3)
a3pn) |gi ∈ Gi (i = 1, 2, 3)

}
.

Definition 2.2. (1) Let (a1, a2) be a pair of integers. κ ∈ Hom(Λord,Qp) is called

an arithmetic specialization of weight (a1, a2) on Λord if Ker(κ) contains I
(a1,a2)
l,m

for some l,m. For an algebra R which is finite and torsion-free over Λord, κ ∈
Hom(R,Qp) is called an arithmetic specialization of weight (a1, a2) on R if κ|Λord

is an arithmetic specialization of weight (a1, a2) on Λord.
(2) Let (a1, a2, a3) be a triple of integers. Similarly, λ ∈ Hom(Λn.ord,Qp) is called an

arithmetic specialization of weight (a1, a2, a3) on Λn.ord if Ker(λ) contains I
(a1,a2,a3)
l,m,n

for some l,m, n. For an algebra R′ which is finite and torsion-free over Λn.ord,
λ ∈ Hom(R′,Qp) is called an arithmetic specialization of weight (a1, a2, a3) on

Rn.ord if λ|Λn.ord is an arithmetic specialization of weight (a1, a2, a3) on Λn.ord.

We call a character of G1 ×G2 (resp. G1 ×G2 ×G3) which is equal to χa1
1 × χa2

2 (resp.
χa1
1 ×χa2

2 ×χa3
3 ) modulo a finite character an arithmetic character of weight (a1, a2) (resp.

(a1, a2, a3)). In fact, there is a natural one-to-one correspondence between arithmetic
characters of weight (a1, a2) (resp. (a1, a2, a3)) and arithmetic specializations of weight
(a1, a2) (resp. (a1, a2, a3)) on Λord (resp. Λn.ord).

Up to now, we are discussing arbitrary algebras R and R′ which are finite and torsion-
free over Λord and Λn.ord respectively. From now on, in place of general R and R′, we take
only Rord and Rn.ord called “a branch” of the (nearly) ordinary Hecke algebra of GSp4 of
tame conductor N which will be defined below.

Let us fix a positive integer N which is prime to p. For each positive integer r, we denote

by U1(Npr) ⊂ Sp4(Ẑ) be a congruence subgroup of level Npr which is defined as follows:

U1(Npr) :=
{
g ∈ Sp4(Ẑ)|g mod Npr ∈ (B ∩ Sp4)(Z/NprZ)

}
.
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For each r, we have a Siegel three fold SNpr over C whose underlying space has an identi-
fication:

SNpr = GSp4(Q)\H(2) ×GSp4(Af )/U1(Npr)

where H(2) is a disjoint union of upper and lower Siegel half planes of genus 2 and Af is
the ring of finite adèles of Q. For each weight (a1, a2) satisfying the condition a1 > a2 > 0
and for any Z algebra A, we have a standard local system La1,a2(A) over SNpr which
is locally free over A for which we refer to [TU, §1.2]. We define the interior cohomol-
ogy H3

! (SNpr ,La1,a2(Z/psZ)) at the middle degree to be the image of the natural map
from the compact support cohomology H3

c (SNpr ,La1,a2(Z/psZ)) to the singular cohomol-
ogy H3(SNpr ,La1,a2(Z/psZ)). For each prime number l, the double coset:

U1(Npr)


1

1
l

l

U1(Npr), U1(Npr)


1

l
l

l2

U1(Npr), U1(Npr)


l

l
l

l

U1(Npr),

induces Zp-linear endomorphisms on the cohomology H3
! (SNpr ,La1,a2(Z/psZ)), which will

be denoted by Tl, T
′
l and T ′′

l respectively. By a standard argument on the Zp-linear en-

domorphism of Z/psZ-modules, e = lim
n→∞

(TpT
′
p)

n! defines a well-defined Zp-linear end-

morphism on H3
! (SNpr ,La1,a2(Z/psZ)). We will denote e(H3

! (SNpr ,La1,a2(Z/psZ))) by

H3
! (SNpr ,La1,a2(Z/psZ))ord.
The Pontrjagin dual M

(a1,a2)
N =

(
lim−→r,s

H3
! (SNpr ,La1,a2(Z/psZ))ord

)∨
of the injective

limit lim−→r,s
H3

! (SNpr ,La1,a2(Z/psZ))ord is naturally regarded as Λord-module and is known

to be finitely generated over Λord. We denote by Hord
N the sub-algebra of EndΛord(M

(a1,a2)
N )

generated by Tl, T
′
l , T

′′
l for primes l - Np as well as the endomorphism induced by the cosets

U1(Npr)


xp

xp
x−1
p

x−1
p

U1(Npr) with xp ∈ Z×
p embedded in the p-component of

Ẑ× =
∏

l:primes

Z×
l in an obvious way. We call Hord

N the ordinary Hecke algebra for GSp4 of

tame conductor N . Note that the module M
(a1,a2)
N and M

(a′1,a
′
2)

N are isomorphic as Λord-

module when we take another (a′1, a
′
2) with a′1 > a′2 > 0. Thus, Hord

N which a priori depends
on (a1, a2) is isomorphic to each other when we change the auxiliary weight (a1, a2) (cf.
[TU, Thm. 6.1]).

Since we identify Λord as Zp[[X1, X2]], Λ
ord-algebra Hord

N is also finite and torsion-free
over Zp[[X1, X2]]. We have only finitely many ideals of height zero in HN and we call the

algebra Rord
I := Hord

N /I a branch of Hord
N (corresponding to the ideal I of height zero). Note

that each branch Rord
I is a local domain which is finite and torsion-free over Zp[[X1, X2]].

From now on, when we do not have to specify the ideal I of Hord
N , we denote a branch of

Hord
N by Rord.
Similarly, we define the nearly ordinary Hecke algebra of GSp4 of tame conductor N to

be Hord
N ⊗̂ZpZp[[G3]] and denote it by Hn.ord

N . By the same way as above, a branch Rn.ord of
7



Hn.ord
N is defined and each branch Rn.ord is a local domain which is finite and torsion-free

over Zp[[X1, X2, X3]].

A branch Rord of Hord
N gives us a branch Rn.ord = Rord⊗̂ZpZp[[G3]] of Hn.ord

N and a

branch Rn.ord of Hn.ord
N gives us a branch Rord = Rn.ord⊗Hn.ord

N
Hord

N of Hord
N . Thus there is

a one-to-one correspondence between the set of branches of Hord
N and the set of branches

of Hn.ord
N .

Definition 2.3. Let Rord be a branch of Hord
N and let Mord be the maximal ideal of Rord.

A module V of rank 4 over F = Rord/Mord with continuous action of the absolute Galois
group GQ is called the residual representation for Rord if the following conditions hold:

(i) The action ρ : GQ −→ AutF(V) over F is semi-simple and unramified outside
Np.
(ii) For every prime l - Np, we have Tr(ρ(Frobl)) ≡ Tl mod Mord.

Thanks to Laumon, Taylor and Weissauer [L], [Tay], [W], the residual representation for
Rord always exists. The residual representation is unique modulo isomorphism thanks to
Chebotarev density theorem.

From now on throughout the article, we will fix a branch Rord of Hord
N and we discuss

the following conditions for a fixed branch Rord of Hord
N :

I. The residual representation ρ : GQ −→ AutF(V) for Rord is absolutely irreducible.
II. Rord is a local domain which is Gorenstein.

Let Γcyc be the Galois group of the cyclotomic Zp-extension Q∞/Q. By the p-adic cyclo-
tomic character χcyc, we have a canonical isomorphism

χcyc : Γcyc
∼−→ 1 + pZp.

For each 1 ≤ i ≤ 3, we denote by χ̃i, the character of GQ:

GQ � Γcyc
∼−→ Gi ↪→ (Λn.ord)×.

Definition 2.4. Let π = π∞ ⊗ πf an irreducible cuspidal automorphic representation of
GSp4(R× Af ) whose archimedean component is a discrete series. We say that π is stable
at infinity if for every discrete series π′

∞ in the discrete series L-packet of π∞ (i.e. the set of
discrete series with the same Harish-Chandra parameter as π∞), π′

∞ ⊗ πf is automorphic,
cuspidal.

The following theorem is due to [TU, Theorem 7.1] and [U] which proves the conjecture
3 which appears in the statement of [TU, Theorem 7.1] as well as [Pi].

Theorem 2.5. Under the assumption I, we have a module Tord with continuous GQ-action
which is free of rank 4 over Rord and which satisfies the following properties:

(1) For any arithmetic specialization κ of weight (a1, a2) such that a1 > a2 > 0, we have
a cuspidal automorphic representation πκ cohomological of weight (a1, a2) such that
Vκ := Tord ⊗Rord κ(Rord) is the Galois representation associated to πκ constructed
by Laumon, Taylor and Weissauer [L], [Tay], [W].

(2) The subset {Ker(κ)} of Spec(Rord) for arithmetic specializations κ on Rord of weight
(a1, a2) with a1 > a2 > 0 such that Vκ is crystalline at p is dense.
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(3) Let us denote by Vord the base extension Tord ⊗Rord Frac(Rord) of Tord, where
Frac(Rord) is the fraction field of Rord. Under the assumption that one of the
specializations πκ is stable at infinity and that πκ is ordinary at p for the Borel
subgroup, the representation on Vord restricted to GQp is conjugate to:

α̃(1)ωb1 ∗ ∗ ∗
0 α̃(2)χ−1χ̃−1

2 ωb2 ∗ ∗
0 0 α̃(3)χ−2χ̃−1

1 ωb3 ∗
0 0 0 α̃(4)χ−3χ̃−1

1 χ̃−1
2 ωb4


where α̃(i) : GQp −→ (Rord)× is an unramified character for i = 1, 2, 3, 4 such that,
for each arithmetic specialization κ of weight a1 > a2 > 0 whose Vκ is crystalline
at p,

{α̃(1)
κ (Frobp), α̃

(2)
κ (Frobp)p

a2+1, α̃(3)
κ (Frobp)p

a1+2, α̃(4)
κ (Frobp)p

a1+a2+3}

are equal to the set of Satake parameters of πκ at p where Frobp means a geo-
metric Frobenius element at p. Here, ω be the Teichmuller character which is
canonically identified with a character of GQ and b1, b2, b3, b4 are integers satisfying
0 ≤ b1, b2, b3, b4 ≤ p− 2.

Remark 2.6. (1) In general, it is not clear if we have a free lattice for the Galois
representation over the fraction field of an algebra likeRord. Thanks to the comment
at the end of §7 of [TU], we have the free Galois representation Tord ∼= (Rord)⊕4

equipped with a continuous Galois action of GQ under our assumption I.
(2) In the above theorem, only specializations with regular weight a1 > a2 > 0 are

controlled because of a technical restriction in the work [TU] to assure certain
vanishing of cohomology. However, the same statements are expected to be true
for non-regular cohomological weights a1 ≥ a2 ≥ 0. In the statement (1), the
existence of a cuspidal automorphic representation πκ (or equivalently a classical
Siegel modular form corresponding to πκ) follows applying [Pi, Cor 1.1] with the
relation (k1, k2) = (a1 + 3, a2 + 3) for his modular weight (k1, k2).

Throughout the article, we suppose another condition as follows:

III. For i = 1, 2, 3, 4, the characters α̃(i) : GQp −→ (Rord)× are non-trivial modulo the

maximal ideal Mn.ord of Rn.ord.

For each a satisfying 1 ≤ a ≤ p − 1, let us define Tn.ord,(a) to be Tord⊗̂ZpZp[[G3]](χ̃3ω
a).

Similarly as above, we denote by Vn.ord the base extension Tn.ord ⊗Rn.ord Frac(Rn.ord) of
Tn.ord.

We have an immediate consequence of the statement (3) of Theorem 2.5 as follows:

Corollary 2.7. The action of GQp on Vn.ord,(a) is conjugate to:
α̃(1)χ̃3ω

b1+a ∗ ∗ ∗
0 α̃(2)χ−1χ̃−1

2 χ̃3ω
b2+a ∗ ∗

0 0 α̃(3)χ−2χ̃−1
1 χ̃3ω

b3+a ∗
0 0 0 α̃(4)χ−3χ̃−1

1 χ̃−1
2 χ̃3ω

b4+a

 .
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In general, we do not know if the filtration given by (2.7) is realized without the base
extension ⊗Rn.ordFrac(Rn.ord). Thus, we consider the following condition:

IV. For a suitable choice of Rord-basis (resp. Rn.ord-basis) of Tord (resp. Tn.ord), the
action of GQp is represented by the equation (3) (resp. the equation (2.7)) without

taking the base extension ⊗Rn.ordFrac(Rord) (resp. ⊗Rn.ordFrac(Rn.ord)).

Remark 2.8. (1) If the condition IV is true for Tord, it is true for Tn.ord since Tn.ord,(a)

is defined to be Tord⊗̂ZpZp[[G3]](χ̃3ω
a).

(2) Let us consider the following condition:
(Reg) All the Jordan-Hölder components of the representation Tord/MordTord ∼=

Tn.ord/Mn.ordTn.ord as GQp-modules are of multiplicity free.
We prove that the condition (Reg) implies the condition IV. In fact, let us denote
the three dimensional Frac(Rord)-vector space (Vord)′ of Vord stable under the action
(3). and we define the one-dimensional quotient (Vord)′′ of Vord to be the quotient
Vord/(Vord)′. Then, we define (Tord)′ (resp. (Tord)′′) to be the kernel (resp. the
image) of the composite Tord ↪→ Vord � (Vord)′′. We thus have the following exact
sequence:

0 −→ (Tord)′ −→ Tord −→ (Tord)′′ −→ 0.

By applying the functor ⊗RordRord/Mord to this sequence, we obtain the exact
sequence as follows:

(Tord)′/Mord(Tord)′ −→ Tord/MordTord −→ (Tord)′′/Mord(Tord)′′ −→ 0.

A priori, we only know that the dimension ofRord/Mord-vector space Tord/MordTord

is 4 thanks to the condition I. However, the condition (Reg) implies that the
module (Tord)′′/Mord(Tord)′′ is of dimension 1 over Rord/Mord, which implies that
(Tord)′′ is a cyclic Rord-module. Since (Tord)′′ is torsion-free over Rord by construc-
tion, (Tord)′′ is free of rank 1 over Rord. Hence (Tord)′ is free of rank 3 over Rord.
By repeating the same argument for (Tord)′, we will complete the proof of (Reg)
⇒ IV.

In the below, we denote by F+Tn.ord,(a) the Rn.ord[GQp ]-submodule of rank two in

Tn.ord,(a) which is an extension ofRn.ord(α̃(2)χ−1χ̃−1
2 χ̃3ω

a) byRn.ord(α̃(1)χ̃3ω
a) and F−Tn.ord,(a)

the quotient Tn.ord,(a)/F+Tn.ord,(a). We denote the Kummer dual HomRn.ord(Tn.ord,(a), Rn.ord)⊗Zp

Zp(1) of Tn.ord,(a) by Tn.ord,(a)
. Similarly Tn.ord,(a)

has a submodule of rank two F+Tn.ord,(a)

given by F+Tn.ord,(a)
= HomRn.ord(F−Tn.ord,(a), Rn.ord) ⊗Zp Zp(1) stable by the action of

GQp and we denote by F−Tn.ord,(a)
the quotient Tn.ord,(a)

/F+Tn.ord,(a)
. Let us define free

Rn.ord-modules of rank one S(a), U(a)
on which GQp acts continuously:

(4) S(a) = Rn.ord((α̃(2))−1χ2χ̃2χ̃
−1
3 ω1−a), U(a)

= Rn.ord((α̃(1))−1χχ̃−1
3 ω1−a).

By definition, we have an exact sequence of Galois modules

(5) 0 −→ S(a) −→ F−Tn.ord,(a) −→ U(a) −→ 0.
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3. Statement of the main theorems

Denote by T
(a1,a2,a3)
l,m,n the module Tn.ord,(a)

/I
(a1,a2,a3)
l,m,n . To avoid a complicated notation,

we will not show the dependence on a in the symbol T
(a1,a2,a3)
l,m,n . By Proposition 5.8 which

will be proved later, the inverse limit lim←−l,m,n

H1(Qp, T
(a1,a2,a3)
l,m,n )

H1
f (Qp, T

(a1,a2,a3)
l,m,n )

is independent of the

choice of (a1, a2, a3) whenever we have a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2. We denote this

limit by H1
/f (Qp,T

n.ord,(a)
).

Theorem 3.1. Let us assume the conditions I, III and IV. Then, for each natural number

a satisfying 1 ≤ a ≤ p− 1, H1
/f (Qp,T

n.ord,(a)
) is free of rank two over Rn.ord.

The proof of this theorem is given in Section 5. For every arithmetic specialization λ of

Rn.ord, we denote by U(a)
λ (resp. S(a)λ ) the p-adic representation U(a)⊗Rn.ord λ(Rn.ord)⊗ZpQp

(resp. S(a) ⊗Rn.ord λ(Rn.ord) ⊗Zp Qp). In order to state the main result of this paper, let

us mention that we will construct two Rn.ord-modules of rank one D
U(a) and DS(a)

(see the

equations (10) and (11)) which interpolate lattices of the filtered modules DdR(U
(a)
λ ) and

DdR(S
(a)
λ ) respectively when λ varies, in the sense that D

U(a)⊗Rn.ordλ(Rn.ord))⊗ZpQp (resp.

D
S(a)
⊗Rn.ord λ(Rn.ord))⊗Zp Qp) is canonically isomorphic to DdR(U

(a)
λ ) (resp. DdR(S

(a)
λ )).

We will see that D
U(a) ⊗Rn.ord DS(a)

interpolates lattices of
∧2Fil0DdR(V

(a)
λ ) when λ runs

over arithmetic specializations of Rn.ord of weight (a1, a2, a3) with a1 ≥ a3 − 2 ≥ a2 > 0

and a1 > a2 where the specializations V
(a)
λ corresponds to motives which are critical in the

sense of Deligne [De].

Theorem 3.2. Assume the conditions I, II, III and IV for the fixed branch Rord of Hodd
N .

Let a be a natural number satisfying 1 ≤ a ≤ p − 1 and put D(a)
= D

U(a) ⊗Rn.ord DS(a)
.

Then, the following statements hold:

(1) For every arithmetic specialization λ on Rn.ord of weight (a1, a2, a3) satisfying a1 ≥
a3−2 ≥ a2 > 0 and a1 > a2, D

(a)⊗Rn.ord λ(Rn.ord)⊗ZpQp is canonically isomorphic

to
∧2Fil0DdR(V

(a)
λ ).

(2) There exists an Rn.ord-linear isomorphism

Ξ
(a)

:
∧2

H1
/f (Qp,T

n.ord,(a)
) −→ D(a)

11



such that, for every arithmetic specialization λ on Rn.ord of weight (a1, a2, a3) with
a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2, we have the following commutative diagram:∧2H1

/f (Qp,T
n.ord,(a)

)
Ξ
(a)

−−−−→ D(a)

λ

y yλ

∧2H
1(Qp, V

(a)
λ )

H1
f (Qp, V

(a)
λ )

−−−−→
mλ

∧2Fil0DdR(V
(a)
λ ),

where the map mλ is equal to:

a3!(a3 − a2 + 1)!

(
α̃
(1)
λ (Frobp)

pa3

)−s(
1− pa3ϕ(p)

α̃
(1)
λ (Frobp)

)(
1−

ϕ(p)α̃
(1)
λ (Frobp)

pa3+1

)−1

×

(
α̃
(2)
λ (Frobp)

pa3−a2+1

)−s′ (
1− pa3−a2+1ϕ′(p)

α̃
(2)
λ (Frobp)

)(
1−

ϕ′(p)α̃
(2)
λ (Frobp)

pa3−a2+2

)−1

×
∧2

exp∗λ

with the dual exponential map exp∗λ :
H1(Qp, V

(a)
λ )

H1
f (Qp, V

(a)
λ )
−→ Fil0DdR(V λ) and where ϕ

(resp. ϕ′) is the finite order character λ|G3χ
−a3
3 (resp. λ|G′

3
χa2
2 χ−a3

3 ) on G3 (resp.

G′
3 := the image of G2 −→ G2 ×G3, g 7→ g−1 × g) and s (resp. s′) is the p-order

of the conductor of ϕ (resp. ϕ′).

4. The Coleman map for a power of the universal cyclotomic character

In this section, we study the local Galois cohomology and the Coleman map for a power
of the universal cyclotomic character as follows: let G (resp. ∆) be a group which is

equipped with a fixed isomorphism G
∼−→ 1 + pZp (resp. ∆

∼−→ (Z/pZ)×). This allows us
to identify G (resp. ∆) with Γcyc (resp. Gal(Q(ζp)/Q)).

Definition 4.1. (1) LetG be a group with the above fixed identificationG
∼−→ 1+pZp.

Let η be a (Qp)
×-valued character on G. Then we say that η is an arithmetic

character of weight w(η) ∈ Z if there exists an open subgroup U ⊂ G such that η|U
coincides with χ

w(η)
cyc .

(2) For an arithmetic character η of G, we denote by Kη a finite extension of Qp

obtained by adjoining values of η.

Let us consider the universal character

χ̃ : GQp � Γcyc
∼−→ G −→ Zp[[G]]×

ω̃ : GQp � Gal(Q(ζp)/Q)
∼−→ ∆ −→ Zp[∆]×

Perrin-Riou [P2] interpolates the Bloch-Kato exponential maps for crystalline represen-
tations of the Galois group of an absolute unramified complete discrete valuation field of
mixed characteristic in the cyclotomic tower. As a consequence of her work for the trivial
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representation, we have the following proposition proved in [O1] (The corresponding state-
ment Proposition 5.10 in [O1] contains typos, but we see the right statement by comparing
with Proposition 5.7 in [O1]):

Proposition 4.2 ([O1] Proposition 5.10). We have a Zp[[G×∆]]-linear map:

Ξur : Ẑur
p [[G×∆]] −→

H1(Qur
p ,Zp[[G×∆]](χ̃ω̃))

H0(Qur
p ,Zp)

with the following commutative diagram for each arithmetic character η of G with w(η) ≥ 1:

Ẑur
p [[G×∆]]

Ξur

−−−−→
H1(Qur

p ,Zp[[G×∆]](χ̃ω̃))

H0(Qur
p ,Zp)

Spη

y ySpη

Dur
dR(Kη(η)) −−−−→

mη

H1(Qur
p ,Kη(η)).

In the above diagram mη is the map

(−1)w−1(w − 1)!exp

(
σ

pw−1

)−s(
1− pw−1ϕ(p)

σ

)(
1− σϕ(p)

pw

)−1

where ϕ is the finite order character η(χω)−w(η) of G and s is the p-order of the conductor of
ϕ. Further, the Zp[[G×∆]]-linear map Ξur is an injective map whose cokernel is isomorphic
to Zp(ω

−1χ−1).

Proposition 4.3. Let b be an integer and let c be a natural number satisfying (c, p) = 1.
For each integer a with 1 ≤ a ≤ p− 1, we have a Zp[[G]]-linear map:

Ξur,(a,b,c) : Ẑur
p [[G]] −→

H1(Qur
p ,Zp[[G]](ωaχbχ̃c))

H0(Qur
p ,Zp)(ωaχb)

with the following commutative diagram for each arithmetic character η of G with w =
w(η) ≥ 1− b:

Ẑur
p [[G]]

Ξur,(a,b,c)

−−−−−−→
H1(Qur

p ,Zp[[G]](ωaχbχ̃c))

H0(Qur
p ,Zp)(ωaχb)

Spη

y ySpη

Dur
dR(Kη(ω

aχbηc)) −−−−→
mη

H1(Qur
p ,Kη(ω

aχbηc)).

In the above diagram mη is the map

(−1)w+b−1(w + b− 1)!exp

(
σ

pw+b−1

)−s(
1− pw+b−1ϕc(p)

σ

)(
1− σϕc(p)

pw+b

)−1

where ϕ is the finite order character η(χω)−w(η) of G and s is the p-order of the conduc-

tor of ϕ. Further, the Zp[[G]]-linear map Ξur,(a,b,c) is an injective map whose cokernel is

isomorphic to Zp(ω
a−1χb−1).
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Proposition 4.3 is a rather immediate consequence of Proposition 4.2. We will explain
how to deduce Proposition 4.3 from Proposition 4.2. First, we project the whole commu-
tative diagram of Proposition 4.2 to ωa-component with respect to the action of ∆. Then,
we twist the G-action of the map Ξur by the character χb of G. We note that we have
a unique ring automorphism [c] : Zp[[G]] −→ Zp[[G]] which extends the automorphism

G
∼−→ G, g 7→ gc. Finally, we obtain Proposition 4.3 by taking the base change of the

Zp[[G]]-module structure via [c].
The following result is an important corollary of Proposition 4.3.

Corollary 4.4. Let R be a complete local domain which is free of finite rank over Zp[[G]]
and let α̃ : GQp −→ R× be a non-trivial continuous unramified character. Let b be an integer

and let c be a natural numbers satisfying (c, p) = 1. Then, if (R(α̃)⊗Zp[[G]]Zp)
Gal(Qur

p /Qp) is

trivial, the Galois cohomology group H1(Qp, R(α̃ωaχbχ̃c)) is a free R-module of rank one
for each integer a with 1 ≤ a ≤ p− 1.

Proof. By Proposition 4.3, we have

0 −→ Ẑur
p [[G]] −→

H1(Qur
p ,Zp[[G]](ωaχbχ̃c))

H0(Qur
p ,Zp)(ωaχb)

−→ Zp(ω
a−1χb−1) −→ 0.

We apply ⊗Zp[[G]]R(α̃) to the above exact sequence and take the Gal(Qur
p /Qp)-invariant.

Let us recall the following lemma:

Lemma 4.5 ([O1] Lemma 3.3). Let R be a complete local domain which is finite and
torsion-free over Zp[[G]] and let M be a free R-module of finite rank e endowed with an

unramified action of GQp. Then (M⊗̂ZpẐur
p )GQp is a free R-module of rank e.

By the above lemma,
(
Ẑur
p [[G]]⊗Zp[[G]] R(α̃)

)Gal(Qur
p /Qp)

is free of rank one over R. On

the other hand,
(
Zp(ω

a−1χb−1)⊗Zp[[G]] R(α̃)
)Gal(Qur

p /Qp) is trivial by the assumption. Since
the functor of taking the Gal(Qur

p /Qp)-invariant part is left exact, we complete the proof.
�

5. Calculation of local Iwasawa modules

Definition 5.1. For a p-adic representation V of GQp the subspaces H1
f (Qp, V ) and

H1
g (Qp, V ) of H1(Qp, V ) are defined as follows (see [BK, §3]):

H1
f (Qp, V ) = Ker[H1(Qp, V ) −→ H1(Qp, V ⊗Bcrys)]

H1
g (Qp, V ) = Ker[H1(Qp, V ) −→ H1(Qp, V ⊗BdR)]

We have
H1

f (Qp, V ) ⊂ H1
g (Qp, V ) ⊂ H1(Qp, V )

by definition. Let T (resp. A) be a GQp-stable lattice of V (resp. the discrete Galois
module T ⊗Qp/Zp). They fit into the following exact sequence:

0 −→ T
i−→ V

p−→ A −→ 0.
14



This induces the following exact sequence:

H1(Qp, T )
i∗−−−−→ H1(Qp, V )

p∗−−−−→ H1(Qp, A).

We define H1
f (Qp, T ) ⊂ H1(Qp, T ) (resp. H1

f (Qp, A) ⊂ H1(Qp, A)) to be the pull-back

(i∗)
−1H1

f (Qp, V ) (resp. the push-forward p∗H
1
f (Qp, V )).

Definition 5.2. Suppose that V is a p-adic representation of GQp which is admissible in

the sense that V has a GQp-stable subrepresentation F+V ⊂ V such that every Hodge-

Tate weight of F+V ⊗ Cp is positive and every Hodge-Tate weight of (V/F+V ) ⊗ Cp is
non-positive. Then, we introduce the following notations:

(1) We define subspaces H1
Gr(Qp, V ) and H1

Gr′
(Qp, V ) of H1(Qp, V ) as follows:

H1
Gr′(Qp, V ) = Ker[H1(Qp, V ) −→ H1(Qp, V/F

+V )],

H1
Gr(Qp, V ) = Ker[H1(Qp, V ) −→ H1(Qur

p , V/F+V )].

(2) Let A be the discrete Galois representation T ⊗Qp/Zp where T is a GQp-stable lat-

tice of V . As above, we define subspaces H1
Gr(Qp, A) and H1

Gr′
(Qp, A) of H1(Qp, A)

as follows:

H1
Gr′(Qp, A) = Ker[H1(Qp, A) −→ H1(Qp, A/F+A)]

H1
Gr(Qp, A) = Ker[H1(Qp, A) −→ H1(Qur

p , A/F+A)]

By a result of Flach [Fl], we have the following lemma:

Lemma 5.3. Suppose that V is an admissible p-adic representation of GQp. Then, the

subspace H1
g (Qp, V ) is equal to H1

Gr(Qp, V ).

Though Flach [Fl] states the theorem only for ordinary p-adic representations, exactly
the same proof works for admissible representations. Hence we omit the proof of the above
lemma.

By Proposition 3.8 and Corollary 3.8.4 of [BK], we have the following lemma:

Lemma 5.4. Let V be a p-adic representation of GQp. Then, we have

H1
g (Qp, V )

H1
f (Qp, V )

=
(
Dcrys(V )/(1− φ)Dcrys(V )

)∗
,

where V is the Kummer dual of V and φ is the Frobenius operator acting on Dcrys and
( )∗ means Qp-linear dual.

We consider the specialization of Tn.ord,(a) and Tn.ord,(a)
at each arithmetic specialization

λ on Rn.ord of weight (a1, a2, a3) which satisfies a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2. We

denote by V
(a)
λ (resp. V

(a)
λ ) the p-adic representation which has a lattice isomorphic to the

specialization Tn.ord,(a) ⊗Rn.ord λ(Rn.ord) (resp. Tn.ord,(a) ⊗Rn.ord λ(Rn.ord)).

Lemma 5.5. Let us assume the conditions III and IV. Assume that λ is an arithmetic
specialization on Rn.ord of weight (a1, a2, a3) satisfying a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2.

Then, we have H1
f (Qp, V

(a)
λ ) = H1

g (Qp, V
(a)
λ ) for each integer a with 1 ≤ a ≤ p− 1.
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Proof. By Lemma 5.4, the difference between H1
g and H1

f for V
(a)
λ is bounded by the

φ-coinvariant quotient of Dcrys of the Kummer dual V
(a)
λ . By the condition IV, V

(a)
λ

is a successive extension of one-dimensional representations V 1, . . . , V 4 of GQp for which

Dcrys(V i)/(1− φ)Dcrys(V i) is trivial. This completes the proof. �

Note that under the assumption a1 ≥ a3 − 2 ≥ a2 ≥ 0, the Galois representation V
(a)
λ

(resp. V
(a)
λ ) has an admissible filtration F+V

(a)
λ (resp. F+V

(a)
λ ) which has a lattice iso-

morphic to F+Tn.ord,(a)⊗Rn.ordλ(Rn.ord) (resp. HomRn.ord(Tn.ord,(a)/F+Tn.ord,(a), Rn.ord)⊗Zp

Zp(1)⊗Rn.ord λ(Rn.ord)). Hence we define the local cohomologies H1
Gr and H1

Gr′
.

Lemma 5.6. Let λ be an arithmetic specialization on Rn.ord. Under the assumptions I,

III and IV, we have H1
Gr(Qp, V

(a)
λ ) = H1

Gr′
(Qp, V

(a)
λ ) for each integer a with 1 ≤ a ≤ p−1.

Proof. Let us denote the quotient V
(a)
λ /F+V

(a)
λ by F−V

(a)
λ . We have a commutative dia-

gram with exact lines

0 // H1
Gr(Qp, V

(a)
λ ) //

��

H1(Qp, V
(a)
λ ) // H1(Qp, F

−V
(a)
λ )

��

0 // H1
Gr′

(Qp, V
(a)
λ ) // H1(Qp, V

(a)
λ ) // H1(Qur

p , F−V
(a)
λ ).

By the snake lemma, the injectivity of H1
Gr(Qp, V

(a)
λ ) −→ H1

Gr′
(Qp, V

(a)
λ ) is obvious and

the cokernel of H1
Gr(Qp, V

(a)
λ ) −→ H1

Gr′
(Qp, V

(a)
λ ) is a subquotient of

Ker[H1(Qp, F
−V

(a)
λ ) −→ H1(Qur

p , F−V
(a)
λ )] ∼= H1(Qur

p /Qp, (F
−V

(a)
λ )

GQur
p ).

Note that the representation F−V
(a)
λ has an extension as follows:

(6) 0 −→ S(a)λ −→ F−V
(a)
λ −→ U(a)

λ −→ 0,

where S(a)λ (resp. U(a)
λ ) is the representation of rank one over Frac(λ(Rn.ord)) on which GQp

acts via the character ω−aχa2+2−a3(α
(2)
λ )−1 (resp. ω−aχ1−a3(α

(1)
λ )−1), where (a1, a2, a3) is

the weight of λ and α
(i)
λ is the unramified character obtained by the specialization of α̃(i).

Since the functor ( )
GQur

p is left-exact, we have:

0 −→ (S(a)λ )
GQur

p −→ (F−V
(a)
λ )

GQur
p −→ (U(a)

λ )
GQur

p .

Both (S(a)λ )
GQur

p and (U(a)
λ )

GQur
p are of dimension 1 or 0 over the fraction field of λ(Rn.ord)

and Gal(Qur
p /Qp) acts on them non-trivially by the assumption III. This shows that the

group H1(Qur
p /Qp, (V

(a)
λ /F+V

(a)
λ )

GQur
p ) is trivial and we complete the proof. �

For a finitely generated Rn.ord-module M we denote by M
(a1,a2,a3)
l,m,n the specialization

M/I
(a1,a2,a3)
l,m,n .
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If we denote the discrete representation Tn.ord,(a)/I
(a1,a2,a3)
l,m,n Tn.ord,(a)⊗ZpQp/Zp byA

(a1,a2,a3)
l,m,n

omitting the dependence on the power a, we have

lim−→l,m,nH
1
Gr(Qp, A

(a1,a2,a3)
l,m,n ) = Ker[H1(Qp,A(a)) −→ H1(Qp,A(a)/F+A(a))].

Since it is independent of the choice of (a1, a2, a3) we denote it by H1
Gr(Qp,A(a)). Now we

define

H1
f (Qp,A(a))(a1,a2,a3) = lim−→l,m,nH

1
f (Qp, A

(a1,a2,a3)
l,m,n )

By [BK] Proposition 3.8, the group lim←−l,m,nH
1
/f (Qp, T

(a1,a2,a3)
l,m,n ) is the Pontryagin dual of

H1
f (Qp,A)(a1,a2,a3).

Lemma 5.7. Let us assume the conditions III and IV. For any l,m, n ≥ 0, the group:

(Tn.ord,(a)(−1)GQp
)
(a1,a2,a3)
l,m,n

(
resp. (F+Tn.ord,(a)(−1)GQp

)
(a1,a2,a3)
l,m,n

)
is trivial.

Proof. The proof of the lemma is exactly the same for (Tn.ord,(a)(−1)GQp
)
(a1,a2,a3)
l,m,n and for

(F+Tn.ord,(a)(−1)GQp
)
(a1,a2,a3)
l,m,n . Thus, we only prove it for (F+Tn.ord,(a)(−1)GQp

)
(a1,a2,a3)
l,m,n .

By definition, we have an exact sequence of Galois modules:

0 −→ Rn.ord(α̃(1)χ−1χ̃3ω
a−1) −→ F+Tn.ord,(a)(−1) −→ Rn.ord(α̃(2)χ−2χ̃−1

2 χ̃3ω
a−1) −→ 0

inducing an exact sequence

(7) (Rn.ord(α̃(1)χ−1χ̃3ω
a−1)GQp

)
(a1,a2,a3)
l,m,n −→ (F+Tn.ord,(a)(−1)GQp

)
(a1,a2,a3)
l,m,n

−→ (Rn.ord(α̃(2)χ−2χ̃−1
2 χ̃3ω

a−1)GQp
)
(a1,a2,a3)
l,m,n −→ 0.

The first term (Rn.ord(α̃(1)χ−1χ̃3ω
a−1)GQp

)
(a1,a2,a3)
l,m,n modulo the maximal ideal M of Rn.ord

is (Rn.ord/M)(α̃(1)ωa−1)GQp
, which is trivial by the condition III. By Nakayama’s lemma,

(Rn.ord(α̃(1)χ−1χ̃3ω
a−1)GQp

)
(a1,a2,a3)
l,m,n is also trivial. By the same reason using the condition

III and Nakayama’s lemma, the third term (Rn.ord(α̃(2)χ−2χ̃−1
2 χ̃3ω

a−1)GQp
)
(a1,a2,a3)
l,m,n is also

a trivial Rn.ord-module. We complete the proof by the sequence (7). �

Proposition 5.8. Let (a1, a2, a3) be a triple of integers satisfying a1 ≥ a3 − 2 ≥ a2 > 0

and a1 > a2. Then, under the assumptions III and IV, H1
f (Qp,A(a))(a1,a2,a3) is equal to

H1
Gr(Qp,A(a)) for each integer a with 1 ≤ a ≤ p− 1.

Proof. We have the following commutative diagram with exact lines:

0 // H1
Gr′(Qp, V

(a1,a2,a3)
l,m,n ) //

��

H1(Qp, V
(a1,a2,a3)
l,m,n ) //

��

H1(Qp, F
−V

(a1,a2,a3)
l,m,n )

��

// 0

0 // H1
Gr′(Qp, A

(a1,a2,a3)
l,m,n ) // H1(Qp, A

(a1,a2,a3)
l,m,n ) // H1(Qp, F

−A
(a1,a2,a3)
l,m,n ),
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where we denote V
(a1,a2,a3)
l,m,n /F+V

(a1,a2,a3)
l,m,n (resp. A

(a1,a2,a3)
l,m,n /F+A

(a1,a2,a3)
l,m,n ) by F−V

(a1,a2,a3)
l,m,n

(resp. F−A
(a1,a2,a3)
l,m,n ). Note that H1(Qp, V

(a1,a2,a3)
l,m,n ) −→ H1(Qp, F

−V
(a1,a2,a3)
l,m,n ) is surjective

since we have H2(Qp, F
+V

(a1,a2,a3)
l,m,n ) ≃ H0(Qp, F

−V
(a1,a2,a3)
l,m,n )∗ = 0 by the assumption III

and by the same argument as the proof of Lemma 5.6.

By Lemma 5.3, Lemma 5.5 and Lemma 5.6, the space H1
f (Qp, A

(a1,a2,a3)
l,m,n ) is equal to the

image of the left hand vertical arrow. We have the following exact sequence by applying
the snake lemma to the above commutative diagram:

lim−→l,m,n

H1(Qp, T
(a1,a2,a3)
l,m,n )

H1(Qp, T
(a1,a2,a3)
l,m,n )tor

−→ lim−→l,m,n

H1(Qp, F
−T

(a1,a2,a3)
l,m,n )

H1(Qp, F−T
(a1,a2,a3)
l,m,n )tor

−→
H1

Gr(Qp,A(a))

H1
f (Qp,A(a))(a1,a2,a3)

−→ lim−→l,m,nH
2(Qp, T

(a1,a2,a3)
l,m,n )tor,

where “tor” means the Zp-torsion part. Now we have:

lim−→l,m,nH
2(Qp, T

(a1,a2,a3)
l,m,n ) ≃ lim−→l,m,nH

0(Qp,Hom(T
(a1,a2,a3)
l,m,n ,Qp/Zp(1)))

∨

≃ lim−→l,m,n(Tn.ord,(a)(−1)GQp
)
(a1,a2,a3)
l,m,n .

Then it follows from Lemma 5.7 that lim−→l,m,n(T
n.ord,(a)
GQp

(−1))(a1,a2,a3)l,m,n = 0. On the other

hand, the group

lim−→l,m,nCoker

 H1(Qp, T
(a1,a2,a3)
l,m,n )

H1(Qp, T
(a1,a2,a3)
l,m,n )tor

−→
H1(Qp, F

−T
(a1,a2,a3)
l,m,n )

H1(Qp, F−T
(a1,a2,a3)
l,m,n )tor


is a quotient of

lim−→l,m,nCoker
[
H1(Qp, T

(a1,a2,a3)
l,m,n ) −→ H1(Qp, F

−T
(a1,a2,a3)
l,m,n )

]
which is a subgroup of lim−→l,m,nH

2(Qp, F
+T

(a1,a2,a3)
l,m,n ). By the same argument as above, we

prove lim−→l,m,nH
2(Qp, F

+T
(a1,a2,a3)
l,m,n ) = 0. This completes the proof. �

Since lim←−l,m,nH
1
/f (Qp, T

(a1,a2,a3)
l,m,n ) is the Pontryagin dual of H1

f (Qp,A(a))(a1,a2,a3), Propo-

sition 5.8 implies the following fact:

Corollary 5.9. Let a be an integer with 1 ≤ a ≤ p − 1 and let (a1, a2, a3) be a triple

of integers satisfying a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2. We denote by T
(a1,a2,a3)
l,m,n the

representation HomZp

(
Tn.ord,(a)/I

(a1,a2,a3)
l,m,n Tn.ord,(a),Zp(1)

)
. Then, the following statements

hold:

(1) We have an isomorphism H1
/f (Qp,T

n.ord,(a)
) ∼= H1(Qp, F

−Tn.ord,(a)
) for each inte-

ger a with 1 ≤ a ≤ p− 1.

(2) The group lim←−l,m,nH
1
/f (Qp, T

(a1,a2,a3)
l,m,n ) is independent of the choice of (a1, a2, a3).
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Proposition 5.10. Let a be an integer with 1 ≤ a ≤ p − 1 and let (a1, a2, a3) be a triple

of integers satisfying a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2 Then, lim←−l,m,nH
1
/f (Qp, T

(a1,a2,a3)
l,m,n )

is a free Rn.ord-module of rank two.

Proof. By Proposition 5.8, we have to calculate the Pontryagin dual of H1
Gr(Qp,A(a)). By

definition, we have the following exact sequence:

H0(Qp, F
−A(a)) −→ H1(Qp, F

+A(a)) −→ H1
Gr(Qp,A(a)) −→ 0.

As H0(Qp, F
−A(a)) is a torsion Rn.ord-module it suffices to show that the Pontryagin dual

H1(Qp, F
−Tn.ord,(a)

) of H1(Qp, F
+A(a)) is free of rank two over Rn.ord. Taking the Galois

cohomology of (5), we have:

H0(Qp,U
(a)

) −→ H1(Qp,S
(a)

) −→ H1(Qp, F
−Tn.ord,(a)

) −→ H1(Qp,U
(a)

) −→ H2(Qp,S
(a)

)

Since the action of GQp on U(a)
is non-trivial, we have H0(Qp,U

(a)
) = 0. By the local Tate

duality and by the assumption II saying that Rn.ord is Gorenstein, we have

H2(Qp,S
(a)

) ∼= H0(Qp,HomRn.ord(S(a), Rn.ord)(1)) = 0.

Hence, the above exact sequence becomes

(8) 0 −→ H1(Qp,S
(a)

) −→ H1(Qp, F
−Tn.ord,(a)

) −→ H1(Qp,U
(a)

) −→ 0.

Hence it is enough to show that the left hand term and the right hand term are free Rn.ord-

modules of rank one. By applying Corollary 4.4, H1(Qp,S
(a)

) and H1(Qp,U
(a)

) are both

free of rank one over Rn.ord. This completes the proof of the proposition. �

We have the following lemma:

Lemma 5.11. Under the assumptions I, III and IV, we have

H2(Qp,T
n.ord,(a)

) = H2(Qp, F
−Tn.ord,(a)

) = 0.

Proof. Since the proof of H2(Qp,T
n.ord,(a)

) and the proof of H2(Qp, F
−Tn.ord,(a)

) consist of

the same argument, we will prove the lemma for H2(Qp,T
n.ord,(a)

). By using the Tate local

duality, we have H2(Qp,T
n.ord,(a)

) ∼= (Tn.ord,(a)(−1))GQp
. We complete the proof, since

(Tn.ord,(a)(−1))GQp
is trivial by Lemma 5.7. �

6. Proof of the main result

The main result of this section which will be the main step for the main result of the
paper (Theorem 3.1) is as follows (see the end of §1 for the visual plan of the proof).

Theorem 6.1. Let the assumptions and the notations be as in Theorem 3.2 and put D(a)
=

D
U(a) ⊗Rn.ord DS(a)

by using the modules D
U(a) and D

S(a)
which will be introduced at (10)

and (12) respectively. Then, the following statements hold.
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(1) For every arithmetic specialization λ on Rn.ord of weight (a1, a2, a3) with a1 ≥
a3−2 ≥ a2 > 0 and a1 > a2, D

(a)⊗Rn.ord λ(Rn.ord)⊗ZpQp is canonically isomorphic

to
∧2DdR(F

−V
(a)
λ ).

(2) We have an Rn.ord-linear isomorphism

Ξ
(a)
− :

∧2
H1(Qp, F

−Tn.ord,(a)
) −→ D(a)

such that, for every arithmetic specialization λ on Rn.ord of weight (a1, a2, a3) with
a1 ≥ a3−2 ≥ a2 ≥ 0 and a1 > a2 > 0, we have the following commutative diagram:∧2H1(Qp, F

−Tn.ord,(a)
)

Ξ
(a)
−−−−−→ D(a)

λ

y yλ∧2H1(Qp, F
−V

(a)
λ ) −−−−→

mλ

∧2DdR(F
−V

(a)
λ ),

where the map mλ is equal to:

a3!(a3 − a2 + 1)!

(
α̃
(1)
λ (Frobp)

pa3

)−s(
1− pa3ϕ(p)

α̃
(1)
λ (Frobp)

)(
1−

ϕ(p)α̃
(1)
λ (Frobp)

pa3+1

)−1

×

(
α̃
(2)
λ (Frobp)

pa3−a2+1

)−s′ (
1− pa3−a2+1ϕ′(p)

α̃
(2)
λ (Frobp)

)(
1−

ϕ′(p)α̃
(2)
λ (Frobp)

pa3−a2+2

)−1

×
∧2

exp∗λ

with the dual exponential map exp∗λ : H1(Qp, F
−V

(a)
λ ) −→ DdR(F

−V λ) and where

ϕ (resp. ϕ′) is the finite order character λ|G3χ
−a3
3 (resp. λ|G′

3
χa2
2 χ−a3

3 ) on G3 (resp.

G′
3 := the image of G2 −→ G2 ×G3, g 7→ g−1 × g) and s (resp. s′) is the p-order

of the conductor of ϕ (resp. ϕ′).

We will prove this theorem at the end of this section.

Proposition 6.2. Let λ be an arithmetic specialization of weight (a1, a2, a3) satisfying
a1 ≥ a3 − 2 ≥ a2 ≥ 0 and a1 > a2. Then the filtered module DdR(F

+Vλ) is canonically

isomorphic to DdR(Vλ)/Fil
0DdR(Vλ) and the filtered module DdR(F

−V
(a)
λ ) is canonically

isomorphic to Fil0DdR(V
(a)
λ ).

Proof. By Corollary 2.7, the action of the inetia subgroup of GQp to the specialization of

Tn.ord,(a) at λ has a decreasing filtration represented by:
χa3
cycϕ1 ∗ ∗ ∗
0 χ−a2+a3−1

cyc ϕ2 ∗ ∗
0 0 χ−a1+a3−2

cyc ϕ3 ∗
0 0 0 χ−a1−a2+a3−3

cyc ϕ4

 .

where ϕ1, ϕ2, ϕ3, ϕ4 are finite characters of GQp which depend on λ. Hence, there exists
a finite extension K of Qp such that Vλ is an ordinary representation of GK (recall that
an ordinary representation is defined to be a p-adic representation of a p-adic field whose
restriction to the inertia subgroup has a filtration with i-th graded piece having the inertia
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action through i-th power of the cyclotomic character). By a result of Perrin-Riou [P3],
an ordinary representation is semi-stable in the sense of Fontaine. In particular Vλ is a
de Rham representation of GK . Since a potentially de Rham representation is a de Rham
representation (see [Bu]) the Galois representation Vλ is a de Rham representation of GQp .

Let us prove that Fil0DdR(F
+Vλ) = (F+Vλ ⊗Qp B

+
dR)

GQp = 0. We have an exact sequence
of GK-modules:

0 −−−−→ Kλ(α
(1)χa3) −−−−→ F+Vλ −−−−→ Kλ(α

(2)χa3−a2−1) −−−−→ 0

where α(i) is the specialization of α̃(i) by λ and Kλ = Frac(λ(Rn.ord)) is the field of def-

inition of Vλ. Since the action of the inertia subgroup of GK on both Kλ(α
(1)χa3) and

Kλ(α
(2)χa3−a2−1) is given by a strictly positive power of the cyclotomic character, we have

(Kλ(α
(1)χa3)⊗Qp B

+
dR)

GQp = (Kλ(α
(2)χa3−a2−1)⊗Qp B

+
dR)

GQp = 0

thanks to the result of Tate [Ta] (3.3) Thm. 2. Hence (F+Vλ⊗Qp B
+
dR)

GQp = 0, so we have
a Kλ-linear injection

DdR(F
+Vλ) −→ DdR(Vλ)/Fil

0DdR(Vλ).

Furthermore, we have dimKλ
DdR(Vλ) = 4 since Vλ is a de Rham representation and we

have dimKλ
DdR(F

+Vλ) = 2 since a sub-representation of a de Rham representation is
also a de Rham representation. By observing the Hodge-Tate weights under the condition
a1 ≥ a3 − 2 ≥ a2 > 0 and a1 > a2, we see that dimKλ

Fil0DdR(Vλ) = 2. Hence the above

injection is an isomorphism. The assertion about DdR(F
−V

(a)
λ ) is proved in the same

way. �

Let us show that Theorem 3.2 is deduced from the theorem above:

Proof of Theorem 6.1 ⇒ Theorem 3.2. By Proposition 6.2, Fil0DdR(V
(a)
λ ) is canonically

isomorphic to DdR(F
−V

(a)
λ ). Further, by the condition III, the kernel H1

f (Qp, V
(a)
λ ) of

the dual exponential map exp∗ : H1(Qp, V
(a)
λ ) −→ Fil0DdR(V

(a)
λ ) coincides with the image

of H1(Qp, F
+V

(a)
λ ) −→ H1(Qp, V

(a)
λ ). Again, by the condition III, H2(Qp, F

+V
(a)
λ ) is

trivial, which implies that the cokernel of H1(Qp, F
+V

(a)
λ ) −→ H1(Qp, V

(a)
λ ) is naturally

isomorphic to H1(Qp, F
−V

(a)
λ ). Thus, we have the natural commutative diagram:

H1
/f (Qp, V

(a)
λ )

exp∗−−−−→ Fil0DdR(V
(a)
λ )∥∥∥ ∥∥∥

H1(Qp, F
−V

(a)
λ ) −−−−→

exp∗
DdR(F

−V
(a)
λ ).

By the same reason, we identify H1
/f (Qp,T

n.ord,(a)
) and H1(Qp, F

−Tn.ord,(a)
). We define

Ξ
(a)

to be the following composite map:∧2
H1

/f (Qp,T
n.ord,(a)

)
∼−→
∧2

H1(Qp, F
−Tn.ord,(a)

)
Ξ
(a)
−−→ D(a)

.
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Then the map Ξ
(a)

satisfies the desired interpolation property and this completes the
proof. �

Let U(a)
= Rn.ord((α̃(1))−1χχ̃−1

3 ω1−a) be an Rn.ord[GQp ]-module defined at (4). Let

U(a) = Rn.ord(α̃(1)χ̃3ω
a) be the Rn.ord-linear Kummer dual of U(a)

. Let us define

(9) DU(a) =
(
(Rord(α̃(1))⊗̂ZpẐur

p )GQp ⊗̂ZpZp[[G3]]
)
⊗Zp Dcrys(Zp(1))

ωa
,

(10) D
U(a) =

(
(Rord((α̃(1))−1)⊗̂ZpẐur

p )GQp ⊗̂ZpZp[[G3]]
ι
)
⊗Zp Dcrys(Zp)

ω1−a
,

where Dcrys(Zp(1))
ωa

(resp. Dcrys(Zp)
ω1−a

) is the canonical lattice of Dcrys,Qp(ζp)(Qp(1))
ωa

(resp. Dcrys,Qp(ζp)(Qp)
ω1−a

).

By [O1, Lemma 3.3] and by the fact that the action on U(a) is given by universal
cyclotomic character on the group G3 modulo some unramified character, we have the
lemma as follows:

Lemma 6.3. The Rn.ord-module DU(a) (resp. D
U(a)) is free of rank one for each integer a

with 1 ≤ a ≤ p − 1. Further, for any arithmetic specialization λ of Rn.ord, DU(a) ⊗Rn.ord

λ(Rn.ord)⊗ZpQp (resp. D
U(a)⊗Rn.ordλ(Rn.ord)⊗ZpQp) is naturally identified with DdR(U

(a)
λ )

(resp. DdR(U
(a)
λ )).

The following theorem is one of the two theorems used to prove Theorem 6.1, the main
theorem of this section.

Theorem 6.4. Assume the conditions III and IV. Then, for each integer with 1 ≤ a ≤
p− 1, there exists an Rn.ord-linear isomorphism

Ξ
U(a) : H1(Qp,U

(a)
) −→ D

U(a)

such that, for every arithmetic specialization λ of weight (a1, a2, a3) with a3 ≥ 0, we have
the following commutative diagram:

H1(Qp,U
(a)

)
Ξ
U(a)−−−−→ D

U(a)

λ

y yλ

H1(Qp,U
(a)
λ ) −−−−→

mλ

DdR(U
(a)
λ ),

where the map mλ is equal to:

(−1)a3a3!

(
α̃
(1)
λ (Frobp)

pa3

)−s(
1− pa3ϕ(p)

α̃
(1)
λ (Frobp)

)
× exp∗

and ϕ is the finite order character λ|G3χ
−a3
3 of G3 and s is the p-order of the conductor of

ϕ.

Theorem 6.4 is reduced to Proposition 6.5 as follows.
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Proposition 6.5. Assume the conditions III and IV. Then, for each integer with 1 ≤ a ≤
p− 1, we have an Rn.ord-linear isomorphism

ΞU(a) : DU(a) −−−−→ H1(Qp,U(a))

such that, for every arithmetic specialization λ of weight (a1, a2, a3) with a3 ≥ 0, we have
the following commutative diagram:

DU(a)

ΞU(a)−−−−→ H1(Qp,U(a))y y
DdR(U

(a)
λ ) −−−−→

mλ

H1(Qp,U
(a)
λ )

where the map mλ is equal to:

(−1)a3a3!

(
α̃
(1)
λ (Frobp)

pa3

)−s(
1− pa3ϕ(p)

α̃
(1)
λ (Frobp)

)
× exp

and ϕ is the finite order character λ|G3χ
−a3
3 of G3 and s is the p-order of the conductor of

ϕ.

We will prove Proposition 6.5 later in this section. Before giving the proof of the impli-
cation Prop. 6.5 ⇒ Thm. 6.4, we prepare the following lemma.

Lemma 6.6. Assume the condition II. Let I
(a1,a2,a3)
l,m,n,u be the height four ideal (I

(a1,a2,a3)
l,m,n , pu)

of Rn.ord. Let S be a cofinitely generated Rn.ord-module and let S∨ be the Pontryagin dual
of S. Then there exists an isomorphism

lim←−l,m,n,uS[I
(a1,a2,a3)
l,m,n,u ] ≃ HomRn.ord(S∨, Rn.ord).

Proof. For the proof of this lemma, it suffices to give the following isomorphisms for each
l,m, n, u ≥ 0:

S[I
(a1,a2,a3)
l,m,n,u ] = HomZ/puZ(S

∨/I
(a1,a2,a3)
l,m,n,u ,Z/puZ)

≃ HomRn.ord
l,m,n,u

(S∨/I
(a1,a2,a3)
l,m,n,u , Rn.ord

l,m,n,u).

Since HomRn.ord
l,m,n,u

(S∨/I
(a1,a2,a3)
l,m,n,u , Rn.ord

l,m,n,u) is isomorphic to HomRn.ord(S∨, Rn.ord)⊗Rn.ordRn.ord
l,m,n,u

the lemma is proved by taking the projective limit with respect to l,m, n, u once we have
the above identities. The first equality is nothing but the definition of the Pontryagin dual.
In fact, since S is equal to (S∨)∨, we have

S[I
(a1,a2,a3)
l,m,n,u ] = HomZp(S

∨,Qp/Zp)[I
(a1,a2,a3)
l,m,n,u ] = HomZ/puZ(S

∨/I
(a1,a2,a3)
l,m,n,u ,Z/puZ).

The last isomorphism is due to the fact that Rn.ord
l,m,n,u is a zero dimensional Gorenstein ring

thanks to the assumption II. For the fundamental properties of zero dimensional Gorenstein
rings and the modules over such, we refer the reader to [E]. �

Let us prove Theorem 6.4 assuming Proposition 6.5.
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Proof of Proposition 6.5 ⇒ Theorem 6.4. LetAU(a) be U(a)⊗Rn.ord(Rn.ord)∨ where (Rn.ord)∨

is the Pontryagin dual of Rn.ord.
We have the following map:

H1(Qp,U(a))
∼−−−−→ lim←−l,m,n,uH

1(Qp,U(a)/I
(a1,a2,a3)
l,m,n,u )

∼−−−−→ lim←−l,m,n,uH
1(Qp,AU(a) [I

(a1,a2,a3)
l,m,n,u ])

∼−−−−→ lim←−l,m,n,uH
1(Qp,AU(a))[I

(a1,a2,a3)
l,m,n,u ]

∼−−−−→ HomRn.ord(H1(Qp,U
(a)

), Rn.ord)

Note that, the first map is nothing but the definition and the second map is obtained by the
assumption II. In fact, Rn.ord is regular, hence Gorenstein, and we have an isomorphism
Rn.ord

l,m,n,u ≃ HomZ/puZ(R
n.ord
l,m,n,u,Z/puZ) as an Rn.ord-module. The third map is defined nat-

urally but the fact that this map is an isomorphism is due to the assumption III. The last

isomorphism is due to Lemma 6.6 and the fact that H1(Qp,U
(a)

) is the Pontryagin dual of
H1(Qp,AU(a)).

We define an Rn.ord-linear map as follows:

H1(Qp,U(a))
∼−−−−→ HomRn.ord(H1(Qp,U

(a)
), Rn.ord)

∼−−−−→ HomRn.ord(DU(a) , Rn.ord)

where the first map is the one obtained above and the second map is the Rn.ord-linear
dual of Ξ

U(a) given by Proposition 6.5. We define the Rn.ord-linear map ΞU(a) to be the

composite map:

H1(Qp,U(a)) −→ HomRn.ord(DU(a) , Rn.ord) ∼= DU(a) .

�

From now on, for a moment, we prepare for the proof of Proposition 6.5.
By taking the formal tensor product ⊗̂ZpR

ord(α̃(1)) of the map obtained in Proposition
4.3, we obtain the following proposition:

Proposition 6.7. We have an Rn.ord-linear homomorphism:

Ξur
U(a) : DU(a)⊗̂ZpẐur

p −→
H1(Qur

p ,U(a))

H0(Qur
p , Rord(α̃(1)ωa))

such that we have the following commutative diagram for every arithmetic character λ of
weight (a1, a2, a3) satisfying a3 ≥ 0:

DU(a)⊗̂ZpẐur
p

Ξur

U(a)−−−−→
H1(Qur

p ,U(a))

H0(Qur
p , Rord(α̃(1)ωa))y y

Dur
dR(U

(a)
λ )

mλ−−−−→ H1(Qur
p ,U(a)

λ ),
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where mλ is the map

(−1)a3a3!exp ◦
(

σ

pa3

)−s(
1− pa3ϕ(p)

σ

)(
1− ϕ(p)σ

pa3+1

)−1

,

and ϕ is the finite order character λ|G3χ
−a3
3 of G3 and s is the p-order of the conductor of

ϕ.

Proof. In fact,
H1(Qur

p ,U(a))

H0(Qur
p , Rord(α̃(1)ωa))

is isomorphic to
H1(Qur

p ,Zp[[G3]](χ̃3ω
a))

H0(Qur
p ,Zp(ωa))

⊗̂ZpR
ord(α̃(1))

since Rord(α̃(1)) is an unramified representation of GQp . We define the desired map Ξur
U(a)

to be Ξur,(0,0,1) ⊗ 1. The map Ξur
U(a) is an Rn.ord-linear homomorphism because Ξur,(0,0,1) is

a Zp[[G3]]-linear homomorphism and Rord is isomorphic to Rord⊗̂ZpZp[[G3]]. The commu-
tativity of the diagram follows from that of Proposition 4.3 since the arithmetic specializa-
tion λ of Rn.ord decomposes as λ = κ⊗̂η with an arithmetic specialization κ of Rord and
an arithmetic character η of Zp[[G3]]. Similarly, the Rn.ord-module U(a) is decomposed as

U(a) = Uord⊗̂Zp[[G3]](χ̃3ω
a) where Uord is a free Rord-module of rank one on which GQp

acts via the unramified character α̃(1). As a consequence, we have U(a)
λ = Uord

κ ⊗Kη(ηω
a)

where Kη is the finite extension of Qp generated by the image of η. Since the exponen-

tial map for U(a)
λ is the connecting homomorphism of the cohomology of GQur

p
-modules

associated to the short exact sequence:

0 −−−−→ U(a)
λ −−−−→ (Bf=1

crys ⊕B+
dR)⊗Qp U

(a)
λ −−−−→ BdR ⊗Qp U

(a)
λ −−−−→ 0.

We have the following commutative diagram

H1(Qur
p ,Kη(ηω

a))⊗ Uord
κ

exp⊗1←−−−− Dur
dR(Kη(ηω

a))⊗ Uord
κ∥∥∥ ∥∥∥

H1(Qur
p ,U(a)

λ )
exp←−−−− Dur

dR(U
(a)
λ )

where the map exp on the upper line is the exponential map for the GQur
p
-module Kη(ηω

a)

and the map exp on the lower line is the exponential map for the GQur
p
-module U(a)

λ . Hence
we obtain the desired commutative diagram. �

Lemma 6.8. Let a be an integer with 1 ≤ a ≤ p−1 and let λ be an arithmetic specialization
of Rn.ord of weight (a1, a2, a3) satisfying a1 ≥ a3 − 2 ≥ a2 ≥ 0. The following statements
hold:

(1) The Gal(Qur
p /Qp)-invariant part of D

ur
dR(U

(a)
λ ) is equal to DdR(U

(a)
λ ).

(2) The operator σ on Dur
dR(U

(a)
λ ) induces the multiplication by the Satake parameter

α
(1)
p on the Gal(Qur

p /Qp)-invariant part DdR(U
(a)
λ ).

(3) The restriction map H1(Qp,U
(a)
λ ) −→ H1(Qur

p ,U(a)
λ )Gal(Qur

p /Qp) is an isomor-
phism.
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Proof. The assertion (1) is nothing but the definition of Dur
dR(U

(a)
λ ) and DdR(U

(a)
λ ). Let us

prove the statement (2). We recall that U(a) is decomposed as U(a)
= Uord⊗̂ZpZp[[G3]](χ̃3ω

a)

where Uord is a representation of rank one over Rord on which GQp acts via α̃(1). We have

the decomposition U(a)
λ = Uord

κ ⊗Qp Kη(ηω
a) corresponding to the decomposition λ = κ⊗̂η

where κ is an arithmetic specialization of Rord and η is a character of Zp[[G3]], where

Kη is the extension of Qp generated by the image of η. Since we have Dur
dR(U

(a)
λ ) ≃

Dur
dR(Uord

κ )⊗DdR(K(ηωa)) and Dur
dR(Uord

κ )Gal(Qur
p /Qp) = DdR(Uord

κ ), it suffices to show that

the arithmetic Frobenius σ on Dur
dR(Uord

κ ) induces the multiplication by α
(1)
p on DdR(Uord

κ ).

Since Uord
κ is an unramified representation ofGQp ,D

ur
dR(Uord

κ ) is isomorphic to Uord
κ ⊗Q̂ur

p and

the operator σ onDur
dR(Uord

κ ) is identified with 1⊗σ on Uord
κ ⊗Q̂ur

p , which is equal to σ−1⊗1 =

Frobp⊗ 1 on the invariant part DdR(Uord
κ ) = (Uord

κ ⊗ Q̂ur
p )σ⊗σ. This completes the proof of

(2). For the proof of (3), the restriction map H1(Qp,U
(a)
λ ) −→ H1(Qur

p ,U(a)
λ )Gal(Qur

p /Qp) is
surjective since Gal(Qur

p /Qp) has cohomological dimension one. The kernel of the restric-

tion map is equal to H1(Qur
p /Qp, (U

(a)
λ )

GQur
p ), which is zero since (U(a)

λ )
GQur

p = 0. �

Proof of Proposition 6.5. Recall that, by definition, the Gal(Qur
p /Qp)-invariant part of the

module Ẑur
p [[G]]⊗̂ZpR

ord(α̃(1)ωa) is DU(a)⊗̂ZpẐur
p [[G]] . By Proposition 4.3 and Corollary

4.4, we have an exact sequence:

0 −→ DU(a)⊗̂ZpẐur
p [[G]] −→

(
H1(Qur

p ,U(a))

H0(Qur
p , Rord(α̃(1)ωa))

)
−→ Rord(α̃(1)ωa−1χ−1) −→ 0.

Taking Gal(Qur
p /Qp)-invariant part of the above sequence, we obtain an isomorphism ΞU(a) :

DU(a)
∼−→ H1(Qp,U(a)). For each λ we have the following commutative diagram:

H1(Qur
p ,U(a)

λ )GQp
exp←−−−− Dur

dR(U
(a)
λ )GQp∥∥∥ ∥∥∥

H1(Qp,U
(a)
λ )

exp←−−−− DdR(U
(a)
λ )

where the map exp in the upper (resp. lower) line is the Bloch-Kato exponential map of

U(a)
λ as a GQur

p
-module (resp. GQp-module). The equalities in the diagram are obtained

by Lemma 6.8. The commutativity of the diagram is due to the fact that the exponential
map of Uλ as a GQur

p
-module (resp. GQp-module) is the connecting homomorphism for the

Galois cohomology of the short exact sequence:

0 −−−−→ U(a)
λ −−−−→ (Bf=1

crys ⊕B+
dR)⊗Qp U

(a)
λ −−−−→ BdR ⊗Qp U

(a)
λ −−−−→ 0,

of GQur
p
-modules (resp. GQp-modules). Hence we have the required commutative diagram.

�

Let S(a) = Rn.ord((α̃(2))−1χ2χ̃2χ̃
−1
3 ω1−a) be an an Rn.ord[GQp ]-module defined at (4).

Let S(a) = Rn.ord(α̃(2)χ−1χ̃−1
2 χ̃3ω

a) be the Rn.ord-linear Kummer dual of S(a). We will

define similarly the module DS(a) which will interpolate lattices of DdR(S
(a)
λ ) when λ varies.
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However, since the action of GQp on S(a) is more complicated than that of U, we will first
need a careful change of coordinate to find a similar statement. Let us define G′

i for
i = 1, 2, 3 as follows:

G′
1 = G1

G′
2 = the image of G2−→G2 ×G3, g 7→ g × g

G′
3 = the image of G2−→G2 ×G3, g 7→ g−1 × g

where, we canonically identify G1, G2 and G3 to 1+ pZp via characters χ̃1, χ̃2 and χ̃3. We

also identify G′
2 and G′

3 via the canonical character χ̃′
2 : G′

2
∼−→ 1 + pZp and χ̃′

3 : G′
3

∼−→
1 + pZp, by which we define arithmetic characters on G′

2 and G′
3. Since p ̸= 2, this map

gives an isomorphism between G1 × G2 × G3 and G′
1 × G′

2 × G′
3. In order to make clear

the situation where we consider the new coordinate, we will denote the same ring Rn.ord

by (Rn.ord)′.

By using the new coordinate, we have S(a) = (Rn.ord)′((α̃(2))−1χ2(χ̃′
3)

−1ω1−a) and S(a) =
(Rn.ord)′(α̃(2)χ−1χ̃′

3ω
a). Then, we define

(11) DS(a) :=
(
(Rn.ord)′(α̃(2))⊗̂ZpẐur

p

)GQp ⊗Zp Dcrys(Zp(−1))ω
a

(12) D
S(a)

:= Hom(Rn.ord)′(DS(a) , (R
n.ord)′)

whereDcrys(Zp(2))
ωa

is the canonical lattice of ωa-partDcrys(Qp(−1))ω
a
ofDcrys,Q(ζp)(Qp(−1)).

As before, by [O1, Lemma 3.3], the (Rn.ord)′-modules DS(a) and DS(a)
are free of rank one.

Lemma 6.9. For any arithmetic specialization λ of (Rn.ord)′, DS(a)⊗(Rn.ord)′λ((R
n.ord)′)⊗Zp

Qp (resp. D
S(a)
⊗(Rn.ord)′ λ((R

n.ord)′) ⊗Zp Qp) is naturally identified with DdR(S
(a)
λ ) (resp.

DdR(S
(a)
λ )).

After the change of coordinate above, the proof of the following theorem is done exactly
in the same way than the one of Theorem 6.4 and relies principally on Proposition 4.3 so
we give us the right to omit it.

Theorem 6.10. Assume the conditions III and IV. Then, for each integer with 1 ≤ a ≤
p− 1, we have an (Rn.ord)′-linear isomorphism

Ξ
(a)

S(a)
: H1(Qp,S

(a)
) −→ D

S(a)

such that, for every arithmetic specialization λ of weight (a′1, a
′
2, a

′
3) with a′3 ≥ −1, we have

the following commutative diagram:

H1(Qp,S
(a)

)
Ξ
S(a)−−−−→ D

S(a)y y
H1(Qp,S

(a)
λ ) −−−−→

mλ

DdR(S
(a)
λ )
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where the map mλ is equal to:

(−1)a′3−1(a′3 + 1)!

(
α̃
(1)
λ (Frobp)

pa
′
3+1

)−s(
1− pa

′
3+1ϕ′(p)

α̃
(1)
λ (Frobp)

)
× exp∗

and ϕ′ is the finite order character λ|G′
3
(χ′

3)
−a′3 of G′

3 and s is the p-order of the conductor

of ϕ′.

Finally, we finish the proof of Theorem 6.1 combining the results obtained in this section.

Proof of Theorem 6.1. By the definition of the S(a) and U(a)
given in (4) and by the exact

sequence (8) of the previous section, we will reduce the problem to similar results for

interpolation on S(a) and U(a)
. Recall that we have the exact sequence (8) which induces

a canonical isomorphism∧2
H1(Qp, F

−Tn.ord,(a)
) ≃ H1(Qp,S

(a)
)⊗Rn.ord H1(Qp,U

(a)
).

By taking the Galois cohomology of the sequence (6), we have the following exact sequence
for every arithmetic specialization λ:

0 −−−−→ DdR(S
(a)
λ ) −−−−→ DdR(F

−V
(a)
λ ) −−−−→ DdR(U

(a)
λ ) −−−−→ H1(Qp,S

(a)
λ ⊗BdR).

However, since S(a)λ , F−V
(a)
λ and U(a)

λ are de Rham representations of GQp , we have

dimDdR(S
(a)
λ ) = dimDdR(U

(a)
λ ) = 1 and dimDdR(F

−V
(a)
λ ) = 2 so that the third map in the

exact sequence is surjective, which induces a canonical isomorphism
∧2DdR(F

−V
(a)
λ ) =

DdR(S
(a)
λ )⊗DdR(U

(a)
λ ). Thus, Theorem 6.1 is reduced to construction of the Coleman map

for S(a) and U(a)
. We complete the proof if we note that a specialization at weight a′3 with

respect to the second coordinate corresponds to a specialization at weight a3 − a2 with
respect to the original coordinate. �
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