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1. General overview and the motivation of our project

Let us start from a general overview of our project on a generalization of Iwasawa theory.
To make clear the evolution of Iwasawa theory, it might be useful to understand it through
three generations 1.� �

I. 1st generation (since 60’s). Iwasawa theory for class groups over a Zp-extension
(Zd

p-extension) of a number field F
� �

⇓
� �

II. 2nd generation (since 70’s). Iwasawa theory for ordinary p-adic Galois
representations over a Zp-extension (Zd

p-extension) of a number field F
� �

⇓

1In the article below, we consider only the commutative case where the ring of definition R of Galois
representations is a commutative algebra. However, there is another important way of generalization called
non-commutative Iwasawa theory studied actively by Coates and others. There they try to generalize �p-
extensions which appear in the second generation below to more general p-adic Lie extensions. Certainly,
taking the “fiber product” of our generalization and such a non-commutative theory, one could discuss a
further generalization.
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� �
III. 3rd generation (since 90’s). Iwasawa theory for nearly ordinary p-adic
Galois deformations of Gal(F/F ) defined over a big local ring R

� �

I. The origin of various researches of Iwasawa Theory goes back to Iwasawa’s work on class
groups over Zd

p-extensions. Iwasawa struck a rich vein of gold in the theory of cyclotomic
fields and established various foundational results as well as the formulation of Iwasawa
Main Conjecture for class groups, which was proved later by Mazur-Wiles. This is what
we call the first generation here. Since we have already a lot of good references for Iwasawa
theory of the first generation (see [CS], [L] and [Wa]), we do not discuss anymore about it.

II. Since then, the framework of Iwasawa theory has enlarged to more general objects
other than class groups and to more general situations other than the one obtained by
Zd

p-extension. Compared to the first generation, there are no written book and very few
references on the second and third generations except those which discuss some restricted
subjects. Also, these programs of a generalization of the Iwasawa theory is a motivation
for the case of GL(2) over totally real fields which we discuss here. So, it is also important
to insist on the importance of the subject here. Hence, we will give a rough guide on the
second generation and the third generation of Iwasawa theory 2.

Influenced by this successful theory for class groups, a lot of mathematicians tried to
generalize the framework of the Iwasawa theory to more general Galois representations T
ordinary at p, which we call the 2nd generation. Let O be the ring of integers of a finite
extension of Qp and let Γ be the Galois group of the cyclotomic Zp-extension Q∞ /Q. We
expect to introduce and study:

A. “algebraic ideal for T” in O[[Γ]] which is the characteristic ideal of a Selmer group
(cf. [G89], [G91]).

B. “analytic ideal for T” in O[[Γ]] which is the p-adic L-function for T (cf. [CP89]).
C. the Iwasawa Main Conjecture which predicts the equality:

“algebraic ideal for T” = “analytic ideal for T”.

When T = Zp(1), the theory is nothing but the previous theory for class groups. When
T = TpE is the p-Tate-module of an elliptic curve E which has ordinary reduction at p,
Mazur proposed the Iwasawa Theory for TpE (see [Mz72] for the algebraic theory and
[MTT86] for the analytic theory, for example), which motivated Greenberg, Perrin-Riou
and Kato, etc. to work for conjectural framework for more general T as in the above
A, B and C. For this case of T = TpE, if E has complex multiplication, Iwasawa Main
Conjecture is proved by Rubin. For E without complex multiplication, Kato proves an
inequality

“algebraic ideal for T” ⊃ “analytic ideal for T”

2However, I will not /can not give a complete list of references.
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by using the Euler system of Beilinson-Kato and, under certain conditions, Skinner-Urban
announced 3 an inequality:

“algebraic ideal for T” ⊂ “analytic ideal for T”

assuming the conjectural existence of Galois representations for automorphic forms on
U(2, 2) by using the method of Eisenstein ideal for U(2, 2). Basically, the results of Kato and
Skinner-Urban mentioned above work on p-adic representations Tf associated to general
elliptic modular forms f of weight ≥ 2. For other p-adic representations, there are no
general results except a few cases like Sym2 Tf , which is related to “R = T Theorem”.

III. By taking such evolution of Iwasawa theory into consideration, and also by introducing
a new and important point of view of Galois deformation spaces, Greenberg [G94] proposed
a generalization of the Iwasawa theory. For the setting for this third generation of Iwasawa
theory, we are given the following things:

• R: a Noetherian complete local domain with a finite residue field (for example, R =
O[[X1, · · · ,Xd]] or its finite flat extension).
• T : a free R-module of finite rank on which the absolute Galois group G� acts con-

tinuously unramified outside a finite set of primes Σ ⊃ {p,∞}.
• S: a Zariski dense subset of Speccont(R) = Homcont(R,Qp).

As in [G94], we assume the following three conditions for (R,T , S).� �
(Geom) For any κ ∈ S, a usual p-adic representation Vκ := (T ⊗R κ(R)) ⊗�p Qp is

the p-adic etale realization of a certain pure motive Mκ over Q.
(Pan) There exists a Dp-stable filtration

0 −→ F+T −→ T −→ T /F+T −→ 0

of free R-modules such that all Hodge-Tate weights of F+Vκ := (F+T ⊗R
κ(R))⊗�p Qp are positive and that all Hodge-Tate weights of Vκ/F+Vκ are non-
positive at every κ ∈ S.

(Crit) At each κ ∈ S, the motive Mκ is critical in the sense of Deligne-Shimura (cf.
[De79]).

(NV) There is a κ ∈ S such that the Hasse-Weil L-function L(Mκ, s) does not vanish
at s = 0.

� �
We will propose three important conjectures for this setting of Iwasawa Theory of the
third generation. The conjectures stated below are in some sense the modification and
improvement of the conjectures stated in the section 4 of the article [G94]. However, as is
explained in the introduction, after careful study via examples, we refine the conjectures.
After stating the conjectures, we will come back again to historical notes around these
conjectures. Let A be the discrete abelian group T ⊗R RPD where RPD is the Pontrjagin

3At the moment, they publish no article for the proof nor the one which explains the statement of precise
results.
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dual of R. Firstly, according to Greenberg, we define the Selmer group by

SelA = Ker

⎡⎣H1(Q,A) −→ H1(Ip,A/F+A)×
∏
l�p

H1(Il,A)

⎤⎦ .(1)

The Pontrjagin dual SelPD
A of SelA is a compact R-module. It is not difficult to see that

SelPD
A is further a finitely generated R-module. The first conjecture is as follows:

Conjecture A . SelPD
A is a torsion R-module.

The following conjecture concerns the existence of the analytic p-adic L-function.

Conjecture B . There is an analytic p-adic L-function Lp,T ∈ R⊗̂O�p which has the
following interpolation property for every κ ∈ S:

κ(Lp,T )
Cκ,p

= Pκ ·Qκ ·
L(Mκ, 0)
Cκ,∞

,(2)

where

• Pκ =
∏

i

(
1− 1

pαi

)
×
∏
j

(1− βj) where αi runs through the eigenvalues of the frobe-

nius ϕ on Dcrys(F+Vκ) and βj runs through the eigenvalues of ϕ on the image of
Dcrys(Vκ) in Dcrys(Vκ/F+Vκ).
• Qκ = (

∏
i

α−1
i )∗ where ∗ is a non-negative integer determined by Mκ.

• Cκ,p ∈ Cp (resp. Cκ,∞ ∈ C) is a p-adic period (resp. complex period) defined by
using the determinant of the comparison isomorphism of p-adic Hodge theory (resp.
Hodge theory over C) proved by Faltings, Niziol and Tsuji 4:

HBetti(Mκ)+ ⊗� BHT −→
(
HdR(Mκ)/Fil0HdR(Mκ)

)
⊗� BHT(

resp. HBetti(Mκ)+ ⊗� C
∼−→
(
HdR(Mκ)/Fil0HdR(Mκ)

)
⊗� C

)
where HBetti(Mκ) and HdR(Mκ) are the Betti realization and the de Rham realization
of the pure motive Mκ.

Remark 1.1. 1. Note that the terms like Gauss sums are hidden in the complex period
in Conjecture B.

2. There is no canonical choice for a complex period Cκ,∞ and a p-adic period Cκ,p. In
fact, Cκ,∞ and Cκ,p for each motive Mκ depend on the choice of bases of HBetti(Mκ)+

and Fil0HdR(Mκ) over some number fields. However, if we change these basis, both
Cκ,∞ and Cκ,p are multiplied by the determinant of the matrix of this base change.
Hence, the interpolation property (2) is well-defined.

Assuming Conjecture A, SelPD
A is a finitely generated torsion R-module. If we denote by

(R⊗̂O�p )nor the integral closure of R⊗̂O�p in its fraction field, we denote by char(SelPD
A ) ⊂

(R⊗̂O�p )nor the characteristic ideal of the torsion R⊗̂O�p -module SelPD
A ⊗R (R⊗̂O�p )nor.

4The p-adic comparison map below restricted to +-part is expected to remain isomorphic after changing
the embedding � ↪→ �. The complex comparison map below restricted to +-part remains isomorphic by
the assumption (Crit).
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Conjecture C . Let A∗ be Homcont(T ,Qp(1)/Zp(1)). We have the equality of ideals in
(R⊗̂O�p )nor:

eA · char(SelPD
A )char(H0(Q,A)PD)−1char(H0(Q,A∗)PD)−1 = (Lp,T ), 5

where eA is given as follows (see also the remark below) 6:

eA =

{
char((A/F+A)Dp)PD if A/F+A is unramified at p,
0 otherwise.

Remarks on Conjectures A, B, C. Firstly, all such conjectures are greatly influenced
by the paper [G94] which motivated my research. However, the conjectures are modified
at several points.

1. Firstly, the p-adic L-function is considered as an element of R in [G94], but, in our
Conjecture B, we expect it as an element of R⊗̂O�p . If we try to find a p-adic
L-function in R, we will need to introduce some ambiguous choices caused by non-
canonical choice of periods. (For example, [Ki94] and [GS93] needed to fix a basis of
“Module of Λ-adic modular symbols” to define their p-adic error terms which appear
in the interpolation property of their p-adic L-function in R.) It seems better to
extend the algebra to R⊗̂O� p and use the interpolation property with “real” p-adic
periods defined by the p-adic Hodge theory. We recall that the general framework
was first studied in [Pa91] and later further investigated by [H96]. We will discuss at
another occasion, on the detail of a further refinement of Conjecture B, especially on
some ambiguous points on the terms Pκ and Qκ in previous references.

2. By a careful study through certain examples obtained by specializing Hida defor-
mations (see §7 especially around Corollary 7.10 of [Oc06a]), we find a case where
Conjecture C does not hold without modification factor eA. The necessity of such
factor was not found in the article [G94] and it is one of our refinements of previous
conjectures.

For the known cases of conjectures A, B and C, we recall that the case where the Galois
module T is of rank one over R falls down to the 1st generation, in which case R is
isomorphic to the cyclotomic Iwasawa algebra O[[Γ]] and T is “the cyclotomic deformation”
of a p-adic representation of rank one associated to a Dirichlet character. (Conjecture A
is a theorem of Iwasawa, Conjecture B has also been done by Kubota-Leopoldt, Iwasawa,
Coleman etc. Conjecture C in this case is proved by Mazur-Wiles.) Hence, the first new
example for the Iwasawa theory of the third generation appears when T is of rank two over
R.

For the rank two case, the most universal R is the so called Hida’s nearly ordinary
Hecke algebra which is often isomorphic to O[[X]][[Γ]] with universal Galois representation

5When the residual representation of T is irreducible, the factors char(H0(�,A)PD) and
char(H0(�,A∗)PD) are trivial.

6For those who are familiar with trivial zero conjecture as proposed by [MTT86] and solved in [GS93],
we remark that eA, though it might appear to be a modification related to the trivial zero, has no relation
to the trivial zero phenomena and is a modification which was not known before. In fact, Greenberg’s
Selmer group SelA matches well with the trivial zero phenomena and we need not modify char(SelPD

A ) with
the trivial zero factor.
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T ∼= O[[X]][[Γ]]⊕2. Further, conjecturally, every ordinary geometric p-adic representation
of rank-two is obtained as a specialization of such a nearly ordinary deformation T (and
R) 7. For each k ≥ 2, by specializing the variable X to (1 + p)k−2 − 1, T is specialized
to a rank two Galois module over O[[Γ]] which is the cyclotomic deformation of a certain
ordinary cusp form fk of weight k. Hida’s nearly ordinary deformation T is the first test
case of the Iwasawa theory of the third generation and our main new results presented later
treat the analogue for Gal(F/F ) in place of Gal(Q/Q). For the results known for F = Q,
we will come back to them in §3 after formulating the detail of the setting in §2 and before
stating the results for general totally real fields in §4. We believe that to explain the case
for F = Q is important to state the current state of research for general F ’s.

Finally, we remark that few results are known for Galois representation of rank > 2.
Exceptionally, for the rank three representation called adjoint type, which is a family of
Sym2Tf where elliptic modular forms f vary, some results are known (cf. [HTU97]) 8.

2. Notation and the Hida theory of Hilbert modular forms

Here is the list of our notation which is fixed throughout the article:
F : a totally real number field with degree d = [F : Q],
rF : the ring of integers of F ,
IF = {ι1, · · · , ιd}: the set of embeddings ι : F ↪→ R,
p: an odd prime number relatively prime to the discriminant DF ,
O: a finite flat extension of Zp which contains all conjugates of rF .
We will always fix a complex embedding Q ↪→ C and a p-adic embedding Q ↪→ Qp.
We also introduce:
r̂F := rF ⊗�Zp,

Z := ((r̂F )× × (r̂F )×)
/
r×F , where r×F is the p-adic closure of the group of units r×F embed-

ded diagonally into (r̂F )× × (r̂F )×. We have an isomorphism(
(r̂F )× × (r̂F )×

)/
r×F
∼= (r̂F )× ×

(
(r̂F )×

/
r×F

)
(3)

induced by
(r̂F )× × (r̂F )× ∼−→ (r̂F )× × (r̂F )×, (a, b) �→ (ab−1, a).

We will denote the first factor (r̂F )× by G1 and denote the second factor
(
(r̂F )×

/
r×F

)
by

G2 in the right hand side of (3). We remark that, if we assume the Leopoldt conjecture,
the p-Sylow subgroup of G2 is naturally identified with the Galois group of the cyclotomic
Zp-extension of F . If we denote by Ztor the largest finite subgroup of Z, we have:

O[[Z]] ∼= O[Ztor]⊗O O[[Z/Ztor]]

7There should be a minor modification of this statement for residually reducible p-adic representations.
8At the talk at RIMS conference and at another talks, I explained that the Iwasawa Main Conjecture in

the third generation is already proved in [HTU97] thanks to celebrated “R = T theorem”. However, as the
authors of [HTU97] remark in page 11122, they can only show the Iwasawa Main Conjecture by replacing
the analytic p-adic L-function by another function whose relation to the real p-adic L-function is not clear
to them. Hence, Theorem C in the next section might be the only supporting result for Conjecture C in
Iwasawa Theory of the third generation known at the moment.
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The complete group algebra Λ := O[[Z/Ztor]] is non-canonically isomorphic to a power
series algebra O[[X1, · · · ,Xd, Y1, · · · , Y1+δ ]] where δ is the Leopoldt defect for F and p
which is conjectured to be zero by Leopoldt conjecture.

Let us fix an ideal N ⊂ rF which is prime to (p). Hida ([H88], [H89]) constructs an
algebra H� which is finite and torsion-free over Λ and is called the nearly ordinary Hecke
algebra of level Np∞. H� is a semi-local algebra

H� =
∏
Hρ

indexed by the set of mod p Hecke eigen systems ρ of level Np of GL(2)/F . Note that these
ρ are not necessarily the reduction modulo p of a certain ρ. However, according to custom,
we will denote a given mod p representation by ρ even if we have no specific choice of a
lifting ρ.

We denote by Hnew
ρ the quotient of Hρ corresponding to forms which are new at all

primes dividing N. Hnew
ρ is a local Noetherian ring without nilpotent elements which is

finite and torsion-free over Λ. The theory is different between mod p Hecke eigen systems
ρ which are congruent to an Eisenstein series and those which are non-Eisenstein. From
now on, we choose and fix a non-Eisenstein mod p Hecke eigen system ρ and we study the
Iwasawa theory on a standard Galois deformation on Hnew

ρ
9.

In order to introduce the Hida deformation, we recall the basic notion of the arithmetic
points.

Definition 2.1. Let (w1, · · · , wd, j) ∈ Zd × Z. A ring homomorphism

κ : O[[G1 ×G2]] −→ Qp

is called an arithmetic point of weight (w1, · · · , wd, j) if it satisfies the following conditions:
1. κ|G1 coincides with the character:

(r̂F )× = lim←−
n

(rF /pn)× −→ lim←−
n

(Z/pn)× −→ lim←−
n

(O�p /p
n)×, x �→

∏
(xιi)wi ,

modulo a finite character of
(
G1

/
r×F

)
. Here, x is regarded as a projective system

{xn} of elements xn ∈ rF such that xn ≡ xn+1 mod pn.
2. κ|G2 coincides with χjψκ where χ is the cyclotomic character and ψκ is a finite

character of G2.
For an algebra R finite over O[[G1×G2]], a ring homomorphism κ : R −→ Qp is called an
arithmetic point of weight (w1, · · · , wd, j) if κ|O[[G1×G2]] is an arithmetic point of weight
(w1, · · · , wd, j).

Theorem 2.2 (Hida). Suppose that ρ is a non-Eisenstein mod p Hecke eigen system.
Then, there is a free Hnew

ρ -module T new
ρ of rank two on which Galois group GF acts con-

tinuously and T new
ρ satisfies the following properties:

1. For each arithmetic point κ ∈ Speccont(Hnew
ρ ) of weight (w1, · · · , wd, j) ∈ Zd×Z such

that wi ≥ 0 and that wi’s have the same parity for all i, there exists an ordinary

9For the Iwasawa theory for eigen systems which are Eisenstein mod p, we refer to [Oc08] for some
results and problems.
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eigen cuspform fκ of weight (k1, · · · , kd) = (w1, · · · , wd) + (2, · · · , 2) and T new
ρ ⊗Hnew

ρ

κ(Hnew
ρ ) ∼= Tfκ ⊗ κ|G2 where Tfκ is the Galois representation associated to fκ.

2. For each prime ℘ of F dividing p, there is a filtration stable under the decomposition
group D℘:

0 −→ F+
℘ T new

ρ −→ T new
ρ −→ T new

ρ /F+
℘ T new

ρ −→ 0,

where F+
℘ T new

ρ and T /F+
℘ T new

ρ are free of rank one over Hnew
ρ .

We will remark on the relation of the Hida deformation introduced in Theorem 2.2 to
the setting III of §1. Note that Hnew

ρ has an injection:

Hnew
ρ ↪→

∏
i

Ri

where Ri runs through quotients of Hnew
ρ by prime ideals of height 0. The number of such

Ri’s are finite and each Ri is a local domain which is finite over Λ. We call such an Ri a
branch of Hnew

ρ . Note that any arithmetic point κ ∈ S of Hnew
ρ factors through one of Ri.

We put R to be a branch of Hnew
ρ and S to be the set of arithmetic points of R whose

weights (w1, · · · , wd, j) satisfy the inequality:
wmax − wmin

2
≤ j − 1 ≤ wmax + wmin

2
,

where wmax (resp. wmin) is the maximal one (resp. minimal one) among {wi}1≤i≤d. We
define T to be T new

ρ ⊗Hnew
ρ
R.

For this triple (R,T , S), S is Zariski dense in Speccont(R). For the condition (Geom),
motives corresponding to Tf are constructed by [BR93] for large class of Hilbert modular
forms. For F = Q, the condition (Geom) is always true thanks to Scholl. The conditions
(Pan) and (Crit) are true by Theorem 2.2.

3. Known results for the 3rd generation when F = Q

For Conjecture A, we have the following theorem:

Theorem A . ([Oc01], [Oc06a]) Let R be a branch of Hnew
ρ . Suppose that F = Q. Then,

SelPD
A is a torsion R-module.

Outline of Proof. For any arithmetic point κ ∈ S, we have the restriction map:

SelPD
A ⊗R κ(R) −→ SelPD

Afκ⊗κ|G2
,(4)

where SelAfκ⊗κ|G2
is the Selmer group for a single ordinary cuspform fκ defined in the same

way as in the case of the Selmer group SelA for family of ordinary cuspforms. By “the
control theorem of the Selmer group for Hida deformation” proved in [Oc01] and [Oc06a]
which is a generalization of Mazur’s control theorem [Mz72] for the cyclotomic deformation
of elliptic curves, the kernel and the cokernel of (4) are finite except the case when fκ has
weight 2 and it is Steinberg at p. On the other hand, Kato [Ka04] proves that SelPD

Afκ⊗κ|G2

is finite when the special value L(fκ, κ|G2 , 0) is non-zero. Note that L(fκ, κ|G2 , 0) �= 0 when
the weight of the Hecke character κ|G2 is different from the half of the weight of the cusp
form fκ and that the nearly ordinary Hida deformation contains always such κ ∈ S. Thus,
we prove Theorem A by Nakayama’s lemma.
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For Conjecture B on the existence of p-adic L-function, we proved in [Oc06b] that we can
modify Kitagawa’s p-adic L-function (cf. [Ki94]) by a unit of R⊗̂O�p so that the obtained
p-adic L-function satisfies a more canonical interpolation property replacing Kitagawa’s p-
adic periods by p-adic periods defined by the comparison isomorphism of the p-adic Hodge
theory.

Theorem B . ([Oc06b]) Let R be a branch of Hnew
ρ . Assume the following condition:

(SL) The image of the residual representation G� −→ GL2(F) of T contains SL2(F).
Then, the extension of Kitagawa’s p-adic L-function Lp,T ∈ R⊗̂O� p originally constructed
in R satisfies the following interpolation property for each κfκ,χjφ ∈ S associated to a
cusp form fκ of weight w + 2, an integer j and a finite character of Gal(Q∞/Q) with
1 ≤ j ≤ w + 1:

κfκ,χjφ(Lp,T )
Cfκ,p

= (−1)j(j − 1)!U(fκ, j, φ)G(φ−1ω1−j)
L(fκ, φω

1−j , j)
(2π
√
−1)jCfκ,∞

where Cfκ,p ∈ O×
�p

(resp. Cfκ,∞ ∈ C×) is a p-adic period (resp. a complex period) for
fκ introduced in Conjecture B for the motive Mκ = Mfκ and G(φω−j) is the Gauss sum.
Here, U(fκ, j, φ) is defined as follows:

U(fκ, j, φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1− pj−1

ap(fκ)

)
if φ is trivial,(

pj−1

ap(fκ)

)ordpCond(φ)

otherwise.

Remark 3.1. There are two-variable p-adic L-functions in R (or in the fraction field
of R) similar to that of [Ki94] by Greenberg-Stevens[GS93] and Ohta (unpublished) by
modular symbol method and by Panchishkin, Fukaya[Fu03] and myself [Oc03] by Rankin-
Selberg method. However, because of subtle but essential problems on the definition of
complex periods as remarked in the introduction of [Oc03], it is not clear that these p-adic
L-functions coincide with the one obtained in Theorem B modulo units of R⊗̂O�p .

In general there is a notion of a Hida deformation with complex multiplication (CM)
which is defined (or characterized) by the behavior of the Fourier coefficients with respect
to the twist by Dirichlet characters or by the size of the image of the Galois representation
for T . For the Iwasawa Main Conjecture (Conjecture C), Hida deformations T with com-
plex multiplication and Hida deformations T without complex multiplication are studied
by completely different approach, while Conjectures A and B are insensitive to such a
difference.

Though Hida deformations with complex multiplication are easier than Hida deforma-
tions without complex multiplication, even the case with complex multiplication is not
completely understood yet 10.

Theorem C . ([Oc03], [Oc05], [Oc06a], [Oc06b] and [OP])

10We remark that the equivalence between Rubin’s theorem on Two-variable Iwasawa Main Conjecture
and our Two-variable Iwasawa Main Conjecture (Conjecture C) in the setting of Hida deformation is not
yet established, which is pointed out in [Oc07] and [OP]
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1. (CM case) Suppose that our Hida deformation T has complex multiplication by
an imaginally quadratic field K. Let us assume that there is an arithmetic point
κ ∈ S such that the Iwasawa µ-invariant of the cyclotomic p-adic L-function for fκ

constructed by Mazur-Tate-Teitelbaum is trivial. Then, Two-variable Iwasawa Main
Conjecture for Z2

p-extension of K proved by Rubin is equivalent to Two-variable
Iwasawa Main Conjecture formulated by Kitagawa’s two-variable p-adic L-function.

2. (non CM case) Suppose the condition (SL) and the following condition:
(Reg) R is a regular local ring.
Then, we have the following inequality 11:

char(SelPD
A ) ⊃ (Lp,T ).12

Outline of Proof. For the proof in the CM case, we refer the reader to the papers [OP] and
[Oc07]. However, we recall that the main issue (which is (d) in the diagram below) is to
show that, our Two-variable p-adic L-function for T is equal to Katz’s Two-variable p-adic
L-function for imaginary quadratic field K under the above assumption. The situation is
summarized in the following diagram:

Char. ideal for certain Galois gp.
(a)

(c)

Katz’s Two-variable p-adic L-funct.

(d)

char(SelPD
A )

(b)
(Lp,T ).

(5)

For non-CM case, we use the Beilinson-Kato Euler system which is extended to Hida
deformations. In order to relate two objects of totally different nature, we need an inter-
mediate object:

char(SelPD
A )

(1)
· · · · · ·intermidiate object

(2)
· · · · · ·(R⊗̂O�p )/(Lp,T ).(6)

In our case, we consider H1
/f (Qp,T ∗(1))/Z as an intermediate object in question, where Z

is a projective limit of linear combinations of Beilinson-Kato element over modular curves
of p-power level, which is defined in [Oc06a]. The element Z is known to be sent to the p-
adic L-function Lp,T via a generalized Perrin-Riou map H1

/f (Qp,T ∗(1)) −→ R constructed
in [Oc03]. Thus, we prove the equality for (2) of the diagram (6).

Beilinson-Kato element Z = Z(1) is a part of system {Z(r) ∈ H1
/f (Qp(ζr),T ∗(1))}r

where r runs through a set of square-free natural numbers and Z(r) satisfies a certain
norm compatible condition. Kolyvagin’s method of Euler system generalized by [Ka99],
[Pe98] and [R] allows us to bound the size of Selmer group associated to the cyclotomic
deformation of a p-adic Galois representation. However, the proof of [Ka99], [Pe98] and [R]
work only for cyclotomic deformations and can not be applied to the analogous statement
for more general Galois deformations like our two-variable Hida deformations. 13 When

11In [Del08, p. 250], Delbourgo gives an erroneous comment that our result on Two-variable Iwasawa
Main Conjecture is incomplete because of delicate problems on periods posed by ourself in [Oc03]. However,
these problems are already solved by ourself in [Oc06b, §6.3].

12Note that the modification factor eA is trivial in this case.
13In fact, the cyclotomic deformation is regarded as a family of H1(�(ζpn), T ∗(1)) for a usual p-adic Ga-

lois representation over a discrete valuation ring where Galois group Gal(�/�(ζpn)) varies. The advantage
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R is an Iwasawa algebra of one-variable, Mazur-Rubin [MR04, Chapter 5] and our result
[Oc05] provide independently a technique to establish the Euler system theory which work
for non-cyclotomic deformations. (The method of [MR04, Chapter 5] and that of [Oc05] are
essentially the same in the case of one-variable.) However, when the number of variables of
R is greater than one, the method for the case of one-variable does not work and we find
no other references. We develop a different method for the proof of these general cases, for
which we refer the reader to [Oc05].

We remark that we have the following immediate corollary to Theorem C using control
theorem for Hida deformation (cf. [Oc06a, Corollary 7.5]):

Corollary 3.2. ([Oc06a]) Assume the conditions (SL) and (Reg) for our T . Then, we
have the following:

1. If the cyclotomic Iwasawa Main conjecture holds for a single cuspform f0 in the Hida
family T , the following equality of Two-variable Iwasawa Main Conjecture is true:

char(SelPD
A ) = (Lp,T ).

2. If the cyclotomic Iwasawa Main conjecture holds for a single cuspform f0 in the Hida
family T , the cyclotomic Iwasawa Main conjecture holds for every cuspforms f in the
Hida family T .

Note that [EPW06] also obtains the second statement of the above corollary. The
difference is that [EPW06] essentially requires to assume µ = 0 conjecture for f0, but
in our case we assume no assumption on the µ-invariant.

4. Results over general totally real fields F

Iwasawa Theory for nearly ordinary Hida deformations for F = Q, though it is not
completely solved yet, seems well-understood through the works introduced in the previous
section. We are also interested in generalizing some of results to general totally real fields
F . Deformation spaces of such generalizations have a much bigger dimension as is explained
in §2 and each index of multi-weight of Hilbert modular forms can move separately. Hence
studying such a generalization seems important and interesting.

On the other hand, there are essential difficulties when we pass from Q to general F .
We recall two of the biggest difficulties:

1. Firstly, Beilinson-Kato elements play an important role for our results for F =
Q. However, there are essential difficulties on an analogous construction of these
Beilinson-Kato elements for general totally real fields.

2. Secondly, Hida theory over totally real fields is much more complicated than Hida
theory over Q. Over Q, the nearly ordinary deformation (which is of two variables)
is nothing but the composite of the ordinary deformation (which is of one variable)
and the cyclotomic deformation (which is of one variable). However, over a totally

of this case is that the coefficient ring of Galois cohomology is always a DVR, for which [Ka99], [Pe98] and
[R] can use the Chebotarev density theorem to choose carefully a sequence of square-free numbers r related
to the order of torsion elements in the Galois cohomology. For more general deformations which are not
cyclotomic, the base ring R is not a DVR anymore and the Chebotarev density theorem can not count the
structure of R.

11



real field F of degree d (assuming the Leopoldt conjecture for simplicity), the nearly
ordinary deformation (which is of d + 1 variables) is greater than the composite of
the ordinary deformation (which is of one variable) and the cyclotomic deformation
(which is of one variable), which makes the study of the nearly ordinary deformation
more difficult for general F . We remark that the difference above is also related to
the existence of global units of F .

From now, we will review our results and idea in relation with such difficulties.
For Conjecture A, we have a conditional result which is a joint work with Olivier Fouquet.

As we discussed in the case of F = Q, establishing Control theorem of Selmer group is an
important step to prove Conjecture A.

Theorem 4.1 (Fouquet-Ochiai). Suppose that R is regular. Let κ be an arithmetic point
of R. The kernel and the cokernel of

SelPD
A ⊗R κ(R) −→ SelPD

Afκ⊗κ|G2

are finite except the case where the weight of fκ is (2, · · · , 2) and fκ is locally of Steinberg
type at one of the primes over p.

Now, using Control theorem above, we expect to generalize our Theorem A of the pre-
vious section to Hilbert modular Hida family of general totally real fields. One of the
problems for this goal is that it seems difficult to construct the analogue of Beilinson-Kato
Euler system for various geometric reasons. On the other hand, Euler system of Heegner
points which also existed in the elliptic modular cases are generalized to the Hilbert modu-
lar cases. Unfortunately, Euler system of Heegner points exists only on the central critical
arithmetic points κ where the weight of the Hecke character κ|G2 is equal to the half of the
weight of the cusp form fκ.

Corollary 4.2. Suppose that there exists an arithmetic point κ such that
1. fκ is of weight (2, · · · , 2).
2. L(fκ, 1) �= 0.

Then, Conjecture A is true.

The proof goes in the same way as the proof of Theorem A in the previous section. For
general totally real fields F , we find a κ satisfying the above conditions only when the sign
of the functional equation for modular forms in our Hida family is +1.

In order to state our result on Conjecture B, we introduce the following conditions:
(�) ρ is congruent to a cusp form of weight (w1, · · · , wd) + (2, · · · , 2) whose conductor is

prime to p and which satisfies the following inequality:∑
1≤i≤d

(wi + 1) < p− 1.

(��) By abuse of notation, let us denote also by ρ the mod p Galois representation of
GF associated to the mod p Hecke eigen system ρ. The representation ⊗

τ∈JF

ρ(τ−1 · τ) of

the absolute Galois group G
�F

is irreducible of order divisible by p, where F̃ denotes the
Galois closure of F in Q.
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The following result for the existence of the p-adic L-function is the analogue of Kita-
gawa’s result [Ki94] over Q, with which we solved Conjecture B under certain conditions
(cf. Theorem B):

Theorem 4.3 (Dimitrov-Ochiai [DO]). Suppose that ρ satisfies (�) and (��). Let us fix a
basis of Module of Λ-adic modular symbols 14 over certain d-variable Hecke algebra. Then,
there exists a p-adic analytic L-function Lp,T ∈ R satisfying the following interpolation
property:
For every arithmetic point κfκ,χjφ of R corresponding to fκ of weight k = (w1, · · · , wd) +
(2, · · · , 2), a finite character φ of the p-Sylow subgroup of Cl+F (p∞) and an integer j satis-
fying the condition:

wmax − wmin

2
+ 1 ≤ j ≤ wmax +wmin

2
+ 1,(7)

we have the following interpolation property:

κfκ,χjφ(Lp,T )
Ωε

fκ,p

= (−1)dj
∗
Γfκ(j) ×

∏
� |p
U�(fκ, j, φ) ×G(φ−1ω−j∗)

L(fκ, φω
−j∗ , j)

(2π
√
−1)dj∗Cε

fκ,∞
,

where j∗ = j −
(
wmax − wmin

2
+ 1
)

, Ωε
fκ,p ∈ Zp

× is a p-adic error term, Γfκ(s) is the

Γ-factor for fκ and U�(fκ, j, φ) is defined as follows:

U�(fκ, j, φ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1−

NF/�(p)j
∗

a�(fκ)

)
if p � |Cond(φ),(

NF/�(p)j
∗

a�(fκ)

)ord�Cond(φ)

if p |Cond(φ).

Our method of proof is based on the interpolation of the higher dimensional modular
symbols on Hilbert modular variety, which is the analogue of classical modular symbol on
modular curves (see [Od82] and [Mn76] for the references on modular symbols on Hilbert
modular variety).

Remark 4.4. 1. The p-adic error term Ωε
f,p depends on the choice of bases ofHBetti(Mf )+

and Fil0HdR(Mf ) as well as fixed basis of Module of Λ-adic modular symbols. How-
ever, a pair (Ωε

f,p, C
ε
f,∞) has the same kind of cancelation property as in Remark 1.1.

Hence the interpolation given in Theorem 4.3 is well-defined independently of the
choice of bases of HBetti(Mf )+ and Fil0HdR(Mf ).

2. The p-adic L-function Lp,T ∈ R depends on a fixed basis of “Module of Λ-adic
modular symbols”. However, if we change this basis, Lp,T ∈ R is multiplied only by
a unit of R.

3. We expect to improve this p-adic L-function into the p-adic L-function with “real”
p-adic periods as in Theorem B in the case of elliptic modular Hida deformation.

We will also remark on the proof and other known results:
14Since the definition of Module of Λ-adic modular symbols is not essential to understand the result, we

omit the definition here.
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Remark 4.5. 1. We recall the following known results:
(a) For the one-variable (cyclotomic) p-adic L-function of Hilbert modular forms,

Manin [Mn76] (resp. Dabrowski [Da94]) constructs it by the method of higher
dimensional modular symbols on Hilbert modular variety (resp. by the Rankin-
Selberg method).

(b) Mok [Mo07] constructs a two-variable p-adic L-function on the two-variable quo-
tient of R which represents the ordinary family of Hilbert modular forms of
parallel weight (of one variable) and its cyclotomic deformation (of one variable).
The construction of [Mo07] is done by Rankin-Selberg method using a family of
Eisenstein series.

2. The idea which enables us to treat the whole nearly ordinary deformation (of d+1 vari-
ables) not only on the subspace of two variables is the use of the Hida deformation of

the level structure ZK11(pm) which contains the center Z =
{(

a 0
0 a

)∣∣∣∣ a ∈ (rF ⊗ Zp)×
}

.

3. The two assumptions (�) and (��) are used to show the vanishing of the torsion part
of (certain part of) the Betti cohomology Hd(Y11(Npm),L(w, v;O)) and the vanishing
of (certain part of) H i(Y11(Npm),L(w, v;O)) (i �= d) where Y11(Npm) is the Hilbert
modular variety of dimension d with level K11(Npm) and L(w, v;O) is the local system
on Y11(Npm) corresponding to

⊗
τ∈JF

Symwτ ⊗ detvτ . Such a vanishing theorem was
shown in [Di05].
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