
NOTES ON NON-COMMUTATIVE IWASAWA THEORY

YOSHITAKA HACHIMORI AND TADASHI OCHIAI

Abstract. We discuss two topics in non-commutative Iwasawa theory.
One is on the ranks of the dual of the Selmer groups over Iwasawa
algebras. Another is a new proof for a result of Ochi-Venjakob.

1. Introduction

Let E be an elliptic curve defined over a number field k of finite degree
and p an odd prime number. Let k∞/k be a Galois extension and denote
the Galois group Gal(k∞/k) by G. We assume that k∞/k is unramified
outside a finite set of primes of k and G is a compact p-adic Lie group. We
are interested in the case when G is non-commutative. We investigate the
Selmer group of E over k∞,

Sel(E/k∞) := ker

(
H1(k∞, E[p∞])→

∏
w

H1(k∞,w, E)[p∞]

)
and its Pontrjagin dual

Sel(E/k∞)∨ := HomZp(Sel(E/k∞), Qp/Zp).

We can endow this group with a natural left action of the Iwasawa algebra

Λ(G) = lim←− UZp[G/U ]

of G. Here, U runs over the set of normal open subgroups of G. It is known
that Sel(E/k∞)∨ is finitely generated over Λ(G).

In this paper, we first give a result on the Λ(G)-rank of Sel(E/k∞)∨ in the
case when G is uniformly powerful and soluble (Theorem 2.3 in §2). Then,
in §3, we will give a new (and simple) proof for a result of Ochi-Venjakob
(cf. [OV1]) on the non-existence of non-trivial pseudo-null submodule of
Sel(E/k∞)∨.

2. Λ(G)-ranks of Selmer groups

Let E/k, p, k∞ and G be as in §1. In this section, we assume always that
G is a pro-p group without p-torsion elements. This assumption assures
that Λ(G) is a Noetherian ring which has no non-zero zero-divisor, and
hence that Λ(G) has a skew field of fraction Q(G). For a finitely generated
left Λ(G)-module M , we define its Λ(G)-rank by

rankΛ(G)M = dimQ(G) Q(G)⊗Λ(G) M.
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We denote by Sss
p the set of primes of k above p where E has potentially

supersingular reduction and put

s(E/k) :=
∑

v∈Sss
p

[kv : Qp].

Let kcyc be the cyclotomic Zp-extension of k. With these notations, we have
the following conjecture.

Conjecture 2.1. If k∞ contains kcyc, then

rankΛ(G)Selp∞(E/k∞)∨ = s(E/k).

Recall the following fact:

Proposition 2.2. (cf. [OV2]) Assume E has good reduction at all primes
above p, and k∞ contains kcyc. Then rankΛ(G)Sel(E/k∞)∨ ≥ s(E/k).

Although this is well known, let us review an outline of the proof briefly.
Let S be a finite set of k which contains all infinite primes, all primes dividing
p, all primes which are ramified in k∞/k and the primes where E/k has bad
reduction. Denote by kS the maximal extension of k unramified outside S.
Note that k∞ ⊂ kS . For a prime v of k, let

Jv(E/k∞) := lim−→ F

⊕
u|v

H1(Fu, E(kv))[p∞].

Here, F runs over all finite subextensions in k∞/k. Then we have an exact
sequence

0→ Sel(E/k∞)→ H1(kS/k∞, E[p∞])
ϕ→
⊕
v∈S

Jv(E/k∞).(2.1)

Proposition 2.2 follows from the following two facts:

rankΛ(G)H
1(kS/k∞, E[p∞])∨ − rankΛ(G)H

2(kS/k∞, E[p∞])∨ = [k : Q]
(2.2)

and

rankΛ(G)Jv(E/k∞)∨ =

{
[kv : Qp] if v|p and v 6∈ Sss

p ,
0 otherwise.

(2.3)

Here, ∗∨ denotes the Pontrjagin dual. See [HV] Proposition 7.4 for a proof
of (2.2). For (2.3), we first see that

Jv(E/k∞)∨ ∼= Λ(G)⊗̂Λ(Gv)(H
1(k∞,w, E(kv))[p∞])∨

and hence rankΛ(G)Jv(E/k∞)∨ = rankΛ(Gv)(H1(k∞,w, E(kv))[p∞])∨. Here,
w is a prime above v and Gv = Gal(k∞,w/kv). Note that dimGv ≥ 1 for all
v and that if v|p then v is deeply ramified in k∞/k, since k∞ ⊃ kcyc. For
v - p, we have rankΛ(Gv)(H1(k∞,w, E(kv))[p∞])∨ = 0 (cf. [OV1] Theorem
4.1). For v|p,

H1(k∞,w, E(kv))[p∞] ∼= H1(k∞,w, Ẽv[p∞])
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([CG] Proposition 4.3, 4.8). Here, Ẽv denotes the reduction of E modulo v.
From this, we have H1(k∞,w, E(kv))[p∞] = 0 for v ∈ Sss

p . For v 6∈ Sss
p , we

have
2∑

i=0

(−1)irankΛ(Gv)H
i(k∞,w, Ẽv[p∞])∨ = −[kv : Qp]

by the same method as the proof for [HV] Proposition 7.4. Since dimGv ≥ 1,
we have rankΛ(Gv)H

i(k∞,w, Ẽv[p∞])∨ = 0 for i = 0 and 2 and hence we have
(2.3).

Now we state our result. We need the following three assumptions:

(A1) k∞ contains kcyc.
(A2) G is uniformly powerful (see [DdMS] for the definition).
(A3) G is soluble.

Note G is pro-p with no torsion elements by the assumption (A2). Put
Γ := Gal(kcyc/k) and denote by Λ(Γ) the Iwasawa algebra of Γ.

Theorem 2.3. Let E/k be an elliptic curve which has good reduction at all
primes above p. Assume that k∞/k and G satisfy the above assumptions
(A1),(A2) and (A3). Then, we have rankΛ(G)Selp∞(E/k∞)∨ = s(E/k) if
rankΛ(Γ)Selp∞(E/kcyc)∨ = s(E/k).

Remark 2.4. In the case when Gal(k∞/kcyc) ∼= Zp, Theorem 2.3 is proven
in [HV]. The condition rankΛ(Γ)Selp∞(E/kcyc)∨ = s(E/k) is known to be
true if E is defined over Q and k/Q is an abelian extension by Kato, Rubin
and Rohrlich.

Let us give a proof of the Theorem. By Proposition 2.2, it is enough to
show the other inequality. Put H := Gal(k∞/kcyc). Then G satisfies the
following condition:

(A4) G contains a closed normal subgroup H satisfying Γ = G/H ∼= Zp.

It is shown by a standard argument in Iwasawa theory combined with [Hr]
Lemma 2.5.1 that the kernel and cokernel of the natural restriction map

Selp∞(E/kcyc)→ Selp∞(E/k∞)H

are cofinitely generated Zp-modules (cf. [HV] Theorem 3.1). This implies
that rankΛ(Γ)(Selp∞(E/k∞)∨)H = rankΛ(Γ)Selp∞(E/kcyc)∨. Here, MH de-
notes the H-coinvariant of M for a Λ(H)-module M . Thus, it is enough to
show the following Lemma:

Lemma 2.5. Let G be a group satisfying (A2), (A3) and (A4). For a finitely
generated Λ(G)-module M , we have rankΛ(G)M ≤ rankΛ(Γ)MH .

The proof of this lemma is heavily depends on the results in [BH]. First
we show:

Lemma 2.6 (Balister-Howson [BH]). Assume the same assumptions on G
as Lemma 2.5. If MH is Λ(Γ)-torsion then M is Λ(G)-torsion.

Proof. This fact is not explicitly stated but almost the whole of the proof
can be found in [BH]. We review the proof briefly. We prove the assertion
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by the induction on the dimension of G. There is nothing to prove when
dimG = 1 since H = {1} and G = Γ. Let dim G > 1 and suppose the lemma
holds for any G′ satisfying dimG′ < dimG and the assumptions (A2), (A3)
and (A4). We claim that there exists a closed normal subgroup N of G
satisfying
(i) N ∼= Zr

p for some r > 0,
(ii) G/N is uniformly powerful and soluble where dimG/N < dimG, and
(iii) N ⊂ H.
Here, an important point is that N can satisfy (iii). This is the only fact
which is not explicitly written in [BH]. If this claim holds, G/N is uniformly
powerful and soluble with a subgroup H/N satisfying (G/N)/(H/N) ∼= Γ.
This means that G/N satisfies dim G/N < dimG and the assumptions (A2),
(A3) and (A4). Thus we have MN is Λ(G/N)-torsion if (MN )H/N = MH

is Λ(Γ)-torsion. By tracing the proof of the last Theorem in [BH] almost
words by words, we can prove the following fact: If MN is Λ(G/N)-torsion
then M is Λ(G)-torsion. This proves the Lemma.

We show the claim mentioned above. If G is abelian, we may take N = H.
Thus, we assume G is not abelian. Set D(0)(G) := G and D(n+1)(G) :=
[D(n)(G), D(n)(G)]. Then D(m+1)(G) = 0 but D(m)(G) 6= 0 for some m ≥ 1
since G is soluble and non-abelian. Let

N := {g ∈ G | gpk ∈ D(m)(G) for some k}.
Then the proof of (3) of the first Proposition in §4 of [BH] shows N satisfies
(i) and (ii). (iii) is shown as follows: Note that D(m)(G) ⊂ D(1)(G) ⊂ H.
Take an element g in N . Then gpk

is contained in D(m)(G), hence in H. This
means that the image of g in G/H is p-torsion. But G/H is p-torsionfree,
the image of g in G/H should be zero, i.e. g ∈ H. Hence N ⊂ H. �

We return to the proof of Lemma 2.5. Assume r = rankΛ(G)M >
rankΛ(Γ)MH = s. Take s elements x1, x2, · · · , xs in MH which generates
Q(Γ)⊗Λ(Γ) MH . Take their lifts y1, y2, · · · , ys in M . Then we have the exact
sequence

Λ(G)⊕s →M → C → 0
by sending ei to yi where {e1, e2, · · · es} is the canonical basis of Λ(G)⊕s.
Then we can see that rankΛ(G)C ≥ r−s > 0 but that rankΛ(Γ)CH = 0. This
contradicts to Lemma 2.6 and proves Lemma 2.5.

Remark 2.7. We stress that Lemma 2.6 (hence Lemma 2.5) does not hold
in general if G is not soluble. See the arguments in [BH].

3. Non-existence of pseudo-null submodules

Let E/k, p, k∞ and G be again as in §1. In this section, we need not
to assume that G = Gal(k∞/k) is pro-p. We assume only that G has no
p-torsion elements. This assures that Λ(G) is a left and right Noetherian
Auslander regular ring with the global dimension dimG + 1. (cf. [V] The-
orem 3.26). For a left (or right) Λ(G)-module M and an integer i ≥ 0, we
put Ei(M) := Exti

Λ(G)(M, Λ(G)). If M is a left (resp. right) Λ(G)-module,
then Ei(M) has a natural structure of a right (resp. left) Λ(G)-module.
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Definition 3.1. A left Λ(G)-module M is pseudo-null if E0(M) = E1(M) =
0.

Note that for general rings, we use a different definition from this (cf.
[CSS]), but the above definition is equivalent to that if the ring is Auslander
regular (cf. [CSS] Lemma 2.4, [V] Proposition 3.5). The following properties
are known:

(1) Any Λ(G)-module M has a unique maximal pseudo-null submodule M ′

([V]). Any pseudo-null submodule M ′′ of M is contained in M ′.

(2) Any submodules and quotient modules of a pseudo-null module are
pseudo-null.

(3) For an exact sequence

0→M1 →M2 →M3 → 0,

M2 is pseudo-null if so are M1 and M3.

The condition E0(M) = HomΛ(G)(M, Λ(G)) = 0 is equivalent to the
condition that M is Λ(G)-torsion, i.e., every element m in M is killed by
some element in Λ(G) which is not a zero-divisor. For such Λ(G)-torsionness,
it is well known that the similar properties as (1), (2) and (3) above hold.
(Replace “pseudo-null” with “Λ(G)-torsion”.)

For a prime v of k, denote by Ẽv the modulo v reduction of E. By fixing
a prime w of k∞ over v, we put Gv = Gal(k∞,w/kv) ⊂ G and let κ∞,w be
the residue field of k∞,w. Now we state a theorem of Ochi and Venjakob.
We assume p is an odd prime. We assume the following five assumptions (i)
to (v):

(i) dim(Gv) ≥ 2 for any bad prime v of E,

(ii) all primes above p are deeply ramified in k∞/k,

(iii) dim(Gv) > 2 or dim(Gv) = 2 and ]Ẽv(κ∞,w)[p∞] < ∞ for any prime
v|p of k which has good ordinary reduction,

(iv) the Weak Leopoldt’s conjecture H2(kS/k∞, E[p∞]) = 0 holds,
(v) the map ϕ in (2.1) is surjective.

Theorem 3.2 (cf. [OV1] Theorem 5.5, [HV] Theorem 2.6, [O-y]). As-
sume E has good reduction at all primes of k above p. If we assume the
assumptions (i)–(v) above, then Sel(E/k∞)∨ has no non-trivial pseudo-null
Λ(G)-submodule.

The purpose of this section is to give a different proof of this Theorem
which is much simpler from the original paper. Let S be the set of primes of k
which exactly contains all the infinite primes, the primes above p, the primes
which is ramified in k∞/k and the primes where E/k has bad reduction.
Taking the Pontrjagin dual of the sequence (2.1), we have an exact sequence

0→
⊕
v∈S

Jv(E/k∞)∨ → H1(kS/k∞, E[p∞])∨ → Sel(E/k∞)∨ → 0

because of the condition (v). The following is obtained by Ochi-Venjakob
and used also in the original proof.
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Theorem 3.3 (Ochi-Venjakob). (1) ([OV2] Theorem 4.6). Under the as-
sumption (iv), H1(kS/k∞, E[p∞])∨ has no non-trivial pseudo-null submod-
ule.
(2) ([OV2] Lemma 5.4, [HV] Proposition 2.3). Under the assumptions (i),
(ii) and (iii),

⊕
v∈S Jv(E/k∞)∨ is a reflexive module.

Here, a Λ(G)-module M is said to be reflexive if, the natural map M →
E0E0(M) is an isomorphism. Note that a reflexive module has no Λ(G)-
torsion submodule since E0(N) has no Λ(G)-torsion for any module N . The
following is also by Ochi-Venjakob.

Proposition 3.4 (cf. [OV1] Lemma 3.1, Proposition 3.3). For a finitely
generated left Λ(G)-module M , W = E0E0(M) is a reflexive module. The
kernel of the natural map M → W is the maximal Λ(G)-torsion submodule
of M and the cokernel is pseudo-null.

So the proof of the theorem is done if we show the following Proposition,
which is a new part of the proof:

Proposition 3.5. Let 0 → U → V → M → 0 be an exact sequence of
Λ(G)-modules. Assume that U is reflexive and V is a module which has no
non-trivial pseudo-null submodule. Then, M has no nontrivial pseudo-null
Λ(G)-submodule.

Proof. Take any pseudo-null submodule N of M . Let V ′ be the inverse
image of N in V . Then

0→ U → V ′ → N → 0

is exact. Since U is reflexive, it has no Λ(G)-torsion submodule (see Propo-
sition 3.4). This implies that the maximal Λ(G)-torsion submodule of V ′

must be pseudo-null because N is pseudo-null. But since V has no pseudo-
null submodules, it should be 0. Proposition 3.4 tells us that there exist a
reflexive module W and an injection V ′ →W whose cokernel is pseudo-null.
Therefore the the cokernel N ′ of the map U → W which obtained by the
composition is again pseudo-null. If we show that the map U → W is an
isomorphism, we see that N is forced to be 0, which proves the proposition.
Now we consider the sequence

0→ U →W → N ′ → 0.

We have the long exact sequence

0→ E0(N ′)→ E0(W )→ E0(U)→ E1(N ′)

Since N ′ is pseudo-null, we have that E0(N ′) = E1(N ′) = 0 and E0(W ) →
E0(U) is an isomorphism. Hence E0E0(U) → E0E0(W ) is also an isomor-
phism. But since both U and V are reflexive, this map is nothing other than
the original map U → W . Therefore the map is an isomorphism, which is
what we want. �

This proof simplifies the latter half of the proof of Theorem 5.2 in [OV1]
(after Lemma 5.6 of thar paper). The theorem has been proved by showing
that EiEi(Sel(E/K∞)∨) = 0 for all i ≥ 2, which is an equivalent conditon
for the non-existence of pseudo-null submodules in the all previously known
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proofs. We modify the proof of the Lemma in p. 123 of [Gr] and adapt it
to the new definition of pseudo-null modules (see also [O-t] Lemma 8.7).
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