NOTES ON NON-COMMUTATIVE IWASAWA THEORY

YOSHITAKA HACHIMORI AND TADASHI OCHIAI

ABSTRACT. We discuss two topics in non-commutative Iwasawa theory.
One is on the ranks of the dual of the Selmer groups over Iwasawa
algebras. Another is a new proof for a result of Ochi-Venjakob.

1. INTRODUCTION

Let E be an elliptic curve defined over a number field k of finite degree
and p an odd prime number. Let ks /k be a Galois extension and denote
the Galois group Gal(ks/k) by G. We assume that ko, /k is unramified
outside a finite set of primes of k and G is a compact p-adic Lie group. We
are interested in the case when G is non-commutative. We investigate the
Selmer group of F over ko,

Sel(E/kso) := ker (Hl(koo, E[p™]) — H H' (kso, E) [p°°]>

and its Pontrjagin dual
Sel(E/ko)" := Homg, (Sel(E koo ), Qp/Zy).
We can endow this group with a natural left action of the Iwasawa algebra
A(G) = lim 0 Z,[G/U]

of G. Here, U runs over the set of normal open subgroups of G. It is known
that Sel(E/koo)Y is finitely generated over A(G).

In this paper, we first give a result on the A(G)-rank of Sel(F/ky )" in the
case when G is uniformly powerful and soluble (Theorem 2.3 in §2). Then,
in §3, we will give a new (and simple) proof for a result of Ochi-Venjakob
(cf. [OV1]) on the non-existence of non-trivial pseudo-null submodule of

Sel(E/kso)".
2. A(G)-RANKS OF SELMER GROUPS

Let E/k, p, koo and G be as in §1. In this section, we assume always that
G is a pro-p group without p-torsion elements. This assumption assures
that A(G) is a Noetherian ring which has no non-zero zero-divisor, and
hence that A(G) has a skew field of fraction Q(G). For a finitely generated
left A(G)-module M, we define its A(G)-rank by

ranky )M = dimg gy Q(G) @x(q) M.
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We denote by S}7 the set of primes of k above p where E has potentially
supersingular reduction and put

s(B/k) = [k : Q.

vESH

Let kcyc be the cyclotomic Z,-extension of k. With these notations, we have
the following conjecture.

Conjecture 2.1. If ko contains keyc, then
rank () Selpe (E ko) = s(E/k).
Recall the following fact:

Proposition 2.2. (¢f. [OV2]) Assume E has good reduction at all primes
above p, and koo contains keye. Then rankycySel(E/kso)" > s(E/k).

Although this is well known, let us review an outline of the proof briefly.
Let S be a finite set of k which contains all infinite primes, all primes dividing
p, all primes which are ramified in k. /k and the primes where E/k has bad
reduction. Denote by kg the maximal extension of k& unramified outside S.
Note that ko C kg. For a prime v of k, let

Jo(B/ks) :=1lim p ) H' (Fu, E(ky))[p™)]-
ulv
Here, F runs over all finite subextensions in ks /k. Then we have an exact
sequence
(2.1) 0= Sel(E/koo) — H' (ks /koo, E[p™]) 5 € Ju(E/kso)
veS

Proposition 2.2 follows from the following two facts:

(2.2)

ranky () H' (ks /koo, E[p™])" — ranky ) H? (ks /koo, E[p™])" = [k : Q]
and
(kv : Qp] ifvlpand v & S,

0 otherwise.

(2.3) 1rankA(G)Jv(E/k:oo)v = {

Here, %V denotes the Pontrjagin dual. See [HV] Proposition 7.4 for a proof
of (2.2). For (2.3), we first see that

Jo(E/kso)” = MG)®(a,) (H (Koo, B (k) [p™])"

and hence rank(g)Jy(E/koo)¥ = rankyq, ) (H' (ksow, E(ky))[p™])". Here,
w is a prime above v and G, = Gal(koow/ky). Note that dim G, > 1 for all
v and that if v|p then v is deeply ramified in ko /k, since koo D keye. For
v { p, we have ranky (g, )(H (ksow; E(kv))[p™])" = 0 (cf. [OV1] Theorem
4.1). For vlp,

Hl(koo,wy E(Fv))[poo] ~ H' (Koow Ev [p>])
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([CG] Proposition 4.3, 4.8). Here, E, denotes the reduction of £ modulo v.
From this, we have H' (koo 1, E(ky))[p™] = 0 for v € S5, For v & S5, we

p K
have
2

Z(_l)irankA(Gv)Hi(k‘oo,wa E, p>])Y = —[kv : Q)
i=0
by the same method as the proof for [HV] Proposition 7.4. Since dim G, > 1,
we have ranky ¢, ) H' (koo,w, Ev[p™])¥ = 0 for i = 0 and 2 and hence we have
(2.3).
Now we state our result. We need the following three assumptions:
(Al) koo contains Keyec.
(A2) @ is uniformly powerful (see [DAMS] for the definition).
(A3) @ is soluble.

Note G is pro-p with no torsion elements by the assumption (A2). Put
I' := Gal(keyc/k) and denote by A(I") the Iwasawa algebra of T'.

Theorem 2.3. Let E/k be an elliptic curve which has good reduction at all
primes above p. Assume that ks /k and G satisfy the above assumptions
(A1),(A2) and (A3). Then, we have rankyg)Selys(E/ks)" = s(E/k) if
rank rySelpe (E/keye)” = s(E/k).

Remark 2.4. In the case when Gal(ks/kcyc) = Zy, Theorem 2.3 is proven
in [HV]. The condition rankyySelyec (E/keyc)” = s(E/k) is known to be

true if E is defined over Q and k/Q is an abelian extension by Kato, Rubin
and Rohrlich.

Let us give a proof of the Theorem. By Proposition 2.2, it is enough to
show the other inequality. Put H := Gal(koo/kcyc). Then G satisfies the
following condition:

(A4) G contains a closed normal subgroup H satisfying I' = G/H = Z,,.

It is shown by a standard argument in Iwasawa theory combined with [Hr]
Lemma 2.5.1 that the kernel and cokernel of the natural restriction map

Selyoo (B /keye) — Selyoe (E/koo)
are cofinitely generated Z,-modules (cf. [HV] Theorem 3.1). This implies
that rank ) (Selp (E/koo)¥) g = rankypySelpoc (E/keye)¥. Here, My de-
notes the H-coinvariant of M for a A(H)-module M. Thus, it is enough to
show the following Lemma:

Lemma 2.5. Let G be a group satisfying (A2), (A3) and (A4). For a finitely
generated A(G)-module M, we have ranky gy M < rankyqyMpy.

The proof of this lemma is heavily depends on the results in [BH]. First
we show:

Lemma 2.6 (Balister-Howson [BH]). Assume the same assumptions on G
as Lemma 2.5. If My is A(T')-torsion then M is A(G)-torsion.

Proof. This fact is not explicitly stated but almost the whole of the proof
can be found in [BH]. We review the proof briefly. We prove the assertion
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by the induction on the dimension of G. There is nothing to prove when
dim G = 1since H = {1} and G =T. Let dim G > 1 and suppose the lemma
holds for any G’ satisfying dim G’ < dim G and the assumptions (A2), (A3)
and (A4). We claim that there exists a closed normal subgroup N of G
satisfying

(i) N = Z;, for some r > 0,

(ii) G/N is uniformly powerful and soluble where dim G/N < dim G, and
(iii) N C H.

Here, an important point is that N can satisfy (iii). This is the only fact
which is not explicitly written in [BH]. If this claim holds, G/N is uniformly
powerful and soluble with a subgroup H/N satisfying (G/N)/(H/N) = T.
This means that G/N satisfies dim G/N < dim G and the assumptions (A2),
(A3) and (A4). Thus we have My is A(G/N)-torsion if (My)g/n = Mu
is A(T')-torsion. By tracing the proof of the last Theorem in [BH] almost
words by words, we can prove the following fact: If My is A(G/N)-torsion
then M is A(G)-torsion. This proves the Lemma.

We show the claim mentioned above. If G is abelian, we may take N = H.
Thus, we assume G is not abelian. Set D(G) := G and D"*+)(Q) :=
[D™)(G), D™(G)]. Then D™ (G = 0 but D™(G) # 0 for some m > 1
since G is soluble and non-abelian. Let

N:={geG| g € D™)(@) for some k}.
Then the proof of (3) of the first Proposition in §4 of [BH] shows IV satisfies
(i) and (ii). (iii) is shown as follows: Note that D(™(G) ¢ DMW(G) c H.
Take an element g in N. Then gpk is contained in D(™) (@), hence in H. This

means that the image of g in G/H is p-torsion. But G/H is p-torsionfree,
the image of ¢ in G/H should be zero, i.e. ¢ € H. Hence N C H. O

We return to the proof of Lemma 2.5. Assume r = ranky@gM >
rankA(p)MH = s. Take s elements x1,x9, - ,xs in My which generates
Q) @pr) Mp. Take their lifts y1,yo,- - ,ys in M. Then we have the exact
sequence

MG - M —C —0
by sending e; to y; where {e1, e, --es} is the canonical basis of A(G)®s.
Then we can see that ranky g )C > 7 —s > 0 but that rank,)Cy = 0. This
contradicts to Lemma 2.6 and proves Lemma 2.5.

Remark 2.7. We stress that Lemma 2.6 (hence Lemma 2.5) does not hold
in general if G is not soluble. See the arguments in [BH].

3. NON-EXISTENCE OF PSEUDO-NULL SUBMODULES

Let E/k, p, ks and G be again as in §1. In this section, we need not
to assume that G = Gal(ks/k) is pro-p. We assume only that G has no
p-torsion elements. This assures that A(G) is a left and right Noetherian
Auslander regular ring with the global dimension dim G + 1. (cf. [V] The-
orem 3.26). For a left (or right) A(G)-module M and an integer ¢ > 0, we
put E{(M) := Ext’, ()M, A(G)). If M is a left (resp. right) A(G)-module,
then E*(M) has a natural structure of a right (resp. left) A(G)-module.
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Definition 3.1. A left A(G)-module M is pseudo-null if E®(M) = E}(M) =
0.

Note that for general rings, we use a different definition from this (cf.
[CSS]), but the above definition is equivalent to that if the ring is Auslander
regular (cf. [CSS] Lemma 2.4, [V] Proposition 3.5). The following properties
are known:

(1) Any A(G)-module M has a unique maximal pseudo-null submodule M’
([V]). Any pseudo-null submodule M” of M is contained in M’.

(2) Any submodules and quotient modules of a pseudo-null module are
pseudo-null.

(3) For an exact sequence
0— My — My — M3 — 0,
M, is pseudo-null if so are My and Ms.

The condition E°(M) = Homy g (M,A(G)) = 0 is equivalent to the
condition that M is A(G)-torsion, i.e., every element m in M is killed by
some element in A(G) which is not a zero-divisor. For such A(G)-torsionness,
it is well known that the similar properties as (1), (2) and (3) above hold.
(Replace “pseudo-null” with “A(G)-torsion”.)

For a prime v of k, denote by E, the modulo v reduction of E. By fixing
a prime w of ko over v, we put G, = Gal(koo 1/ky) C G and let Koo be
the residue field of k. Now we state a theorem of Ochi and Venjakob.
We assume p is an odd prime. We assume the following five assumptions (i)
to (v):

(i) dim(G,) > 2 for any bad prime v of E,
(ii) all primes above p are deeply ramified in ko /k,

(iit) dim(G,) > 2 or dim(G,,) = 2 and #E,(Keo.w)[p™®] < oo for any prime
v|p of k which has good ordinary reduction,

(iv) the Weak Leopoldt’s conjecture H?(ks/kso, E[p™°]) = 0 holds,
(v) the map ¢ in (2.1) is surjective.

Theorem 3.2 (cf. [OV1] Theorem 5.5, [HV] Theorem 2.6, [O-y]). As-
sume E has good reduction at all primes of k above p. If we assume the
assumptions (i)—(v) above, then Sel(E/koo)Y has no non-trivial pseudo-null

A(G)-submodule.

The purpose of this section is to give a different proof of this Theorem
which is much simpler from the original paper. Let S be the set of primes of k
which exactly contains all the infinite primes, the primes above p, the primes
which is ramified in ko /k and the primes where E/k has bad reduction.
Taking the Pontrjagin dual of the sequence (2.1), we have an exact sequence

0= P Jo(B/k)” — H' (ks /koo, E[p™])Y — Sel(E/ks)” — 0
vES

because of the condition (v). The following is obtained by Ochi-Venjakob
and used also in the original proof.
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Theorem 3.3 (Ochi-Venjakob). (1) ([OV2] Theorem 4.6). Under the as-
sumption (iv), H'(ks/keo, E[p™])" has no non-trivial pseudo-null submod-
ule.

(2) ([OV2] Lemma 5.4, [HV] Proposition 2.3). Under the assumptions (i),
(ii) and (iii), @,cg Jo(E/kso)" is a reflexive module.

Here, a A(G)-module M is said to be reflexive if, the natural map M —
EYE?(M) is an isomorphism. Note that a reflexive module has no A(G)-
torsion submodule since E?(IV) has no A(G)-torsion for any module N. The
following is also by Ochi-Venjakob.

Proposition 3.4 (cf. [OV1] Lemma 3.1, Proposition 3.3). For a finitely
generated left A(G)-module M, W = EEY(M) is a reflexive module. The
kernel of the natural map M — W is the maximal A(G)-torsion submodule
of M and the cokernel is pseudo-null.

So the proof of the theorem is done if we show the following Proposition,
which is a new part of the proof:

Proposition 3.5. Let 0 — U — V — M — 0 be an exact sequence of
A(G)-modules. Assume that U is reflexive and V is a module which has no
non-trivial pseudo-null submodule. Then, M has no nontrivial pseudo-null
A(G)-submodule.

Proof. Take any pseudo-null submodule N of M. Let V'’ be the inverse
image of N in V. Then

0—-U—-V - N—=0

is exact. Since U is reflexive, it has no A(G)-torsion submodule (see Propo-
sition 3.4). This implies that the maximal A(G)-torsion submodule of V'
must be pseudo-null because N is pseudo-null. But since V' has no pseudo-
null submodules, it should be 0. Proposition 3.4 tells us that there exist a
reflexive module W and an injection V/ — W whose cokernel is pseudo-null.
Therefore the the cokernel N’ of the map U — W which obtained by the
composition is again pseudo-null. If we show that the map U — W is an
isomorphism, we see that NV is forced to be 0, which proves the proposition.
Now we consider the sequence

0—-U—=W — N —0.
We have the long exact sequence
0 — E°(N') — EY(W) — E°(U) — E'(N')
Since N’ is pseudo-null, we have that E°(N’) = EY{(N’) = 0 and EY(W) —
E%(U) is an isomorphism. Hence E’E?(U) — EYE°(W) is also an isomor-
phism. But since both U and V' are reflexive, this map is nothing other than

the original map U — W. Therefore the map is an isomorphism, which is
what we want. U

This proof simplifies the latter half of the proof of Theorem 5.2 in [OV1]
(after Lemma 5.6 of thar paper). The theorem has been proved by showing
that E‘E!(Sel(F/Kx)Y) = 0 for all 4 > 2, which is an equivalent conditon
for the non-existence of pseudo-null submodules in the all previously known
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proofs. We modify the proof of the Lemma in p. 123 of [Gr] and adapt it
to the new definition of pseudo-null modules (see also [O-t] Lemma 8.7).

(BH]
[CG]
[CSS]
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