p-adic L-functions for Galois deformation spaces and Iwasawa Main Conjecture Tadashi Ochiai (Osaka University)

January 2006

<u>Main Reference</u>

[1] "A generalization of the Coleman map for Hida deformation", the American Journal of Mathematics, 2003.

[2] "Euler system for Galois deformation", Annales de l'institut Fourier, 2005.

[3] "On the two-variable Iwasawa Main Conjecture for Hida deformations", preprint 2004.

Contents of the talk

★ General problems on *p*-adic *L*-functions
★ Two-variable p-adic L-functions for Hida families

<u>Situation</u>

p : fixed odd prime number,

 \mathbb{Q}_∞ : the cyclotomic \mathbb{Z}_p -ext. of \mathbb{Q}

 $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \xrightarrow[\chi]{} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times}$

(χ : *p*-adic cyclo. char)

We recall examples of p-adic L-functions.

Example 1.

Theorem(K-L, I, C).

 ψ : Dirichlet Character of Conductor D > 0 with (D, p) = 1 $\exists L_p(\psi) \in \mathbb{Z}_p[\psi][[\Gamma]]$ such that $\chi^r(L_p(\psi)) = (1 - \psi(p)p^r)L(\psi, -r)$ for each $r \ge 0$ divisible by p - 1.

Example 2.

E: an ellip. curve defined over \mathbb{Q} . L(E,s): Hasse-Weil *L*-function for *E*.

Theorem(M-S).

If *E* has good ordinary red. at *p*, Then, $\exists L_p(E) \in \mathbb{Z}_p[[\Gamma]]$ such that $\phi(L_p(E)) = \left(1 - \frac{\phi(p)}{\alpha}\right)^2 \times \alpha^{-s(\phi)}G(\phi^{-1})\frac{L(E,\phi,1)}{\Omega_E^+}$

for every finite order char. ϕ on Γ where $s(\phi) = \operatorname{ord}_p \operatorname{Cond}(\phi)$, α : p-unit root of $x^2 - a_p(E)x + p =$ 0 with $a_p(E) = 1 + p - \sharp E_p(\mathbb{F}_p)$ $G(\phi^{-1})$:Gauss sum, $\Omega_E^+ = \int_{E(\mathbb{R})} \omega_E$, **<u>Translation</u>** $L_p(E)$ is defined on $\mathcal{X} := \{ \text{cont. char's } \Gamma \xrightarrow{\eta} \overline{\mathbb{Q}}_p^{\times} \}$ \cong a unit ball $U(1;1) \subset \overline{\mathbb{Q}}_p$ $(U(a;r) = \{ x \in \overline{\mathbb{Q}}_p; |x-a|_p < r \})$

 $\widetilde{T} := T_p(E) \otimes \mathbb{Z}_p[[\Gamma]](\widetilde{\chi}) \text{ where}$ $\widetilde{\chi} : G_{\mathbb{Q}} \twoheadrightarrow \Gamma \hookrightarrow \mathbb{Z}_p[[\Gamma]]^{\times}$ $\mathbb{Z}_p[[\Gamma]](\widetilde{\chi}): \text{ free } \mathbb{Z}_p[[\Gamma]] \text{ -module of}$ rank one on which $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts via $\widetilde{\chi}$

Then the specialization $\widetilde{T}_{\phi} := \widetilde{T} \otimes_{\mathbb{Z}_p[[\Gamma]]} \mathbb{Z}_p[\phi]$ at $\phi \in \mathcal{X}$ is isomorphic to $T_p(E) \otimes \phi$. $L_p(E)$ is associated to \widetilde{T} .

Consider the following situations: $\star \mathcal{B}$: a rigid anal. space over \mathbb{Q}_p (Mostly, we think of a finite cover of an open unit ball in $\overline{\mathbb{Q}}_p^{\oplus s}$) $\mathcal{B} = \mathsf{Spf}\mathcal{O}(\mathcal{B})$ (If $\mathcal{B} = \mathcal{X}, \ \mathcal{O}(\mathcal{X}) = \mathbb{Z}_p[[\Gamma]])$ $\star T$: a family of Galois representations over \mathcal{B} (Mostly, $\mathcal{T} \cong \mathcal{O}(\mathcal{B})^{\oplus d}$) $\star P$: a dense subset in \mathcal{B} such that $\mathcal{T}_x \cong H_{\text{\'et},p}(M_x) \curvearrowright G_{\mathbb{O}}$ at each $x \in P$ for a certain motive M_x which is critical in the sense of Deligne.

Recall that

A (pure) motive M over \mathbb{Q} called <u>critical</u> if the composite $H^+_{\mathsf{B}}(M) \otimes \mathbb{C} \hookrightarrow H_{\mathsf{B}}(M) \otimes \mathbb{C} \xrightarrow{\sim}$ $H_{\mathsf{dR}}(M) \otimes \mathbb{C} \twoheadrightarrow \mathsf{Fil}^0 H_{\mathsf{dR}}(M) \otimes \mathbb{C}$ is an isomorphism, where $H^+_{\mathsf{B}}(M)$ is +-part for the action of the complex conj. on the Betti realization $H_{\mathsf{B}}(M)$.

Deligne's conjecture. $L(M,0)/\Omega_M^+ \in \overline{\mathbb{Q}},$ (where $\Omega_M^+ \in \mathbb{C}$ is the det. of $H^+_{\mathsf{B}}(M) \otimes \mathbb{C} \xrightarrow{\sim} \operatorname{Fil}^0 H_{\mathsf{dR}}(M) \otimes \mathbb{C}).$

Examples.

 $\star M = \mathbb{Q}(r)$: Tate Motive

 $L(M,s) = \zeta(s+r)$ is the Riemann's zeta function.

M is critical $\Leftrightarrow r = 2n \text{ or } 1 - 2m$ with $n, m \in \mathbb{Z}_{>0}$.

★ $M = M_f(j)$: *j*-th Tate twist of the motive for an eigen cuspform *f* of weight $k \ge 2$ $L(M_f(j), s) = L(f, s + j)$ Hecke *L*-funct. for *f* $M_f(j)$ is critical ⇔ $1 \le j \le k-1$ We call $(\mathcal{B}, \mathcal{T}, P)$ a geometric triple. For a given $(\mathcal{B}, \mathcal{T}, P)$, consider:

Problem. Is there a function $L_p(\mathcal{T})$ on \mathcal{B} with <u>p-adic continuity</u> which is <u>characterized</u> by the following interpolation property: $L_p(\mathcal{T})(x) = N_x \times L(M_x, 0)/\Omega_{M_x}^+$ at each $x \in P$? (N_x is a certain "normalization factor" at x)

Remarks.

•normalization factors are related to *p*-adic periods at *x*, Euler like factor, Gauss sum etc. •We have to specify the algebra $R \supset \mathcal{O}(\mathcal{B})$ where $L_p(\mathcal{T})$ is contained.

Example.

 $\mathcal{B} = \mathcal{X}, \ \mathcal{T} = T_p(E) \otimes \mathbb{Z}_p[[\Gamma]](\tilde{\chi})$ E: supersingular at p. We have $L_p(E)$ with the same interpolation property as ordinary cases. $L_p(E)$ is <u>never contained</u> in $\mathcal{O}(\mathcal{X})$, but is contained in a larger ring $\mathcal{H}_1 \supset \mathcal{O}(\mathcal{X})$. To give a result convincing to formulate the general conjecture, the following Hida deformations are important.

Preparation.

 Γ' : the group of Diamond operators on the tower $\{Y_1(p^t)\}_{t\geq 1}$ of modular curves

$$\begin{split} & \Gamma' \xrightarrow{\sim}_{\chi'} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times} \\ & \mathcal{Y} := \{ \text{cont. char's } \Gamma' \xrightarrow{\eta'} \overline{\mathbb{Q}}_p^{\times} \} \\ & \cong \text{ a unit ball } U(1;1) \subset \overline{\mathbb{Q}}_p \end{split}$$

Hida families.

★a finite cover $\mathcal{B} \xrightarrow{q} \mathcal{X} \times \mathcal{Y}$. ★ \mathcal{T} is a family of Galois representations on \mathcal{B} which is generically of rank two. (Mostly, $\mathcal{T} \cong \mathcal{O}(\mathcal{B})^{\oplus 2}$)

★P consists of $x \in \mathcal{B}$ such that $q(x)|_U = \chi^{j(x)} \times {\chi'}^{k(x)}$ satisfying $1 \le j(x) \le k(x) - 1$

for a certain open subgroup $U \subset \Gamma \times \Gamma'$.

 $(\mathcal{B}, \mathcal{T}, P)$ is a geometric triple with the following properties: For each $x \in P$,

• $\exists f_x$: an ordinary eigen cuspform of weight k(x)

• $\exists \phi_x$ a finite order character of Γ s. t. $\mathcal{T}_x \cong T_p(f_x)(j(x)) \otimes \phi_x \omega^{-j(x)}$. $(T_p(f): \text{ rep. of } G_{\mathbb{Q}} \text{ asso. to } f,$ $\omega:$ the Teichmuller character) Known constructions of (candidates of) *p*-adic *L*-functions for $(\mathcal{B}, \mathcal{T}, P)$ are classified into three cases below:

- •Use the theory of complex multiplication. (Only for \mathcal{T} with CM/by Katz, Yager, etc)
- Use the theory of modular symbols (Kitagawa, Greenberg-Stevens, etc)
- •Use the Eisenstein family and Shimura's theory (Panchishkin, Fukaya, Ochiai, etc)

 $L_{p}^{\mathsf{Ki}}(\mathcal{T}) \in \mathcal{O}(\mathcal{B})$ is rather desirable so that $\exists U$ an invertible element in $(\mathcal{O}(\mathcal{B})\otimes\mathcal{O}_{\mathbb{C}_p})\supset\mathcal{O}(\mathcal{B})$ such that $L_p^{\mathsf{Ki}}(\mathcal{T}) \cdot U \in \mathcal{O}(\mathcal{B}) \otimes \mathcal{O}_{\mathbb{C}_p}$ has the interpolation property: $(L_p^{\mathsf{Ki}}(\mathcal{T})(x) \cdot U(x)) / \Omega_{p,x}^+ =$ $(-1)^{j-1}(j-1)! \left(1 - \frac{\phi_x \omega^{-j}(p)p^{j-1}}{a_p(f_x)}\right)$ $\times \left(\frac{p^{j-1}}{a_p(f_x)}\right)^{s(j)} \frac{L(f_x, \phi_x \omega^{-j}, j)}{\Omega_{\infty}^+ r}$

at each $x \in P$.

Remark.

• $\Omega_{p,x}^+ \in \mathbb{C}_p$ is the *p*-adic period at *x* defined to be the determinant of:

$$H_{\mathsf{B}}(M_{f_x})^+ \otimes B_{\mathsf{H}\mathsf{T}} \xrightarrow{\sim} \\ \mathsf{Fil}^{\mathsf{0}} H_{\mathsf{d}\mathsf{R}}(M_{f_x}) \otimes B_{\mathsf{H}\mathsf{T}}.$$

•This interpolation uniquely characterizes the ideal $(L_p^{\text{Ki}}(\mathcal{T})) \in \mathcal{O}(\mathcal{B})$ •By using both of $\Omega_{p,x}^+$ and $\Omega_{\infty,x}^+$, the interpolation is <u>balanced</u> so that it is independent of the choice of bases. From our detailed study on Selmer groups for \mathcal{T} , we have a wellchosen the algebraic *p*-adic *L*function $L_p^{alg}(\mathcal{T})$ defined to be the characteristic ideal of certain Selmer group for \mathcal{T} . Thus, we propose

Iwasawa Main Conjecture. $(L_p^{\text{Ki}}(\mathcal{T})) = (L_p^{\text{alg}}(\mathcal{T}))$ (refinement of the conj. by Greenberg)

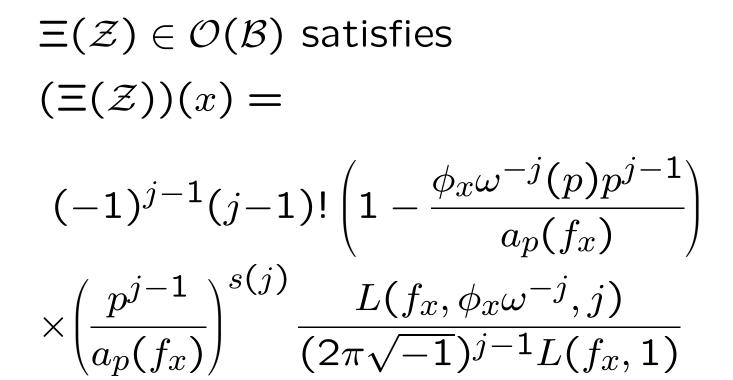
Theorem(O-).

We have the interpolation map: $\Xi: H^1_{/f}(\mathbb{Q}_p, \mathcal{T}^*(1)) \longrightarrow \mathcal{O}(\mathcal{B}) \text{ with}$ $\exp_x^* \circ x = x \circ \Xi$

where

• $\mathcal{T}^*(1) = \operatorname{Hom}_{\mathcal{O}(\mathcal{B})}(\mathcal{T}, \mathcal{O}(\mathcal{B})(1))$ • \exp_x^* is the dual exponential map $H^1_{/f}(\mathbb{Q}_p, \mathcal{T}^*(1)) \longrightarrow \overline{\mathbb{Q}}_p.$

$$\mathcal{Z} \in H^1(\mathbb{Q}_p, \mathcal{T}^*(1))$$
: Kato's Euler system element such that $L_{(p)}(f_x, \phi_x, j(x)) = rac{L_{(p)}(f_x, \phi_x, j(x))}{(2\pi\sqrt{-1})^{j-1}L(f_x, 1)}$



 $\Xi(\mathcal{Z}) \in \mathcal{O}(\mathcal{B})$ gives the interpolation of the *L*-values, but the complex period is not "optimal". Later we arrived the following modification:

Theorem (O-). We have a normalized $\mathcal{Z}^{\text{Ki}} \in H^1_{/f}(\mathbb{Q}_p, \mathcal{T}^*(1))$ such that $\Xi(\mathcal{Z}^{\text{Ki}}) = L_p^{\text{Ki}}(\mathcal{T}).$

This theorem combined with Euler system theory for Galois deformations gives:

Theorem (O-). $(L_p^{\mathsf{Ki}}(\mathcal{T})) \subset (L_p^{\mathsf{alg}}(\mathcal{T}))$