
EULER SYSTEM FOR GALOIS DEFORMATIONS

TADASHI OCHIAI

Abstract. In this paper, we develop the Euler system theory for Galois deformations.
By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary
modular deformations, we prove one of the inequalities predicted by the two variable
Iwasawa main conjecture. Our method of the proof of the Euler system theory is based
on non-arithmetic specializations. This gives a new proof of the inequality between the
characteristic ideal of the Selmer group of a Galois deformation and the ideal associated
to a Euler system even in the case of �d

p-extensions already treated by Kato/Perrin-
Riou/Rubin.
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For a motive M over a number field, the relation between the size of the Selmer groups
for M and the special values of L-function for M is one of the main theme of arithmetic
geometry. In Iwasawa theory, we are interested in the relation between the Selmer group
and the p-adic L-function for a Galois deformation of the p-adic realization of M . After
original works by Iwasawa for ideal class groups in the cyclotomic tower, many people
followed and generalized his philosophy to study elliptic curves, modular forms or more
general p-adic representations in the cyclotomic tower. In early 90’s, Greenberg [Gr2]
proposed a vast generalization and reformulation of Iwasawa theory through Mazur’s
theory of deformations of Galois representations.

In this paper, we study the theory of Euler system for Galois deformations to bound
the size of the Selmer group of a Galois deformation by the characteristic ideal of an Euler
system. Such theory was first obtained by Kolyvagin and it has been developed by Kato,
Perrin-Riou and Rubin in the case of cyclotomic deformations. However, the method of
their theory does not work well for Galois representations over general deformation rings
R. The difficulty comes from impossibility of finding nice system of Frobenius elements
which reflects the R-module structure of the Selmer group except the case where R
is the group algebra of a Zd

p-extension. Thus, the aim of this paper is to overcome
these difficulties in Euler system theory over a more general deformation ring R such
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as a nearly ordinary Hecke algebra of Hida by introducing a new approach to the Euler
system theory. As a corollary, we show one of the inequalities predicted by the two-
variable Iwasawa main conjecture for a nearly ordinary Hida deformation. This is the
first example of such inequality of the generalized Iwasawa Main conjecture proposed by
Greenberg over a deformation ring which is not the group algebra of Zd

p-extension of a
number field.

1. Two-variable Iwasawa Main Conjecture for Hida deformation

In this section, we shall introduce our main result in the case of Hida deformations. To
introduce our result, let us recall briefly Hida’s nearly ordinary modular deformations.

We fix a prime number p ≥ 3 and a norm compatible system {ζpn}n≥1 of primitive
pn-th roots of unity throughout the paper. Let Γ be the Galois group Gal(Q∞/Q) of
the cyclotomic Zp-extension Q∞/Q of the rational number field Q. We denote by Γ′ the
group of diamond operators for the tower of modular curves {Y1(pt)}t≥1. We have the
canonical isomorphisms:

Γ ∼−→
χ

1 + pZp ⊂ Z×
p , Γ′ ∼−→

χ′
1 + pZp ⊂ Z×

p .

Fix a topological generator γ (resp. γ′) of Γ (resp. Γ′). From now on, we fix an embedding
of an algebraic closure Q into the field C of complex numbers and an embedding of Q

into a fixed algebraic closure Qp of the field Qp of p-adic numbers simultaneously.
Let Hord

F be the quotient of the universal ordinary Hecke algebra with certain fixed
tame conductor, which corresponds to a certain Λ-adic eigen newform F . The algebra
Hord

F is a local domain finite flat over Zp[[Γ′]]. Hida’s nearly ordinary Hecke algebra Hn.o
F

is defined to be the formal tensor product of Hord
F and the cyclotomic Iwasawa algebra

Zp[[Γ]] over Zp. By this, Hn.o
F is isomorphic to Hord

F [[Γ]] and is a local domain finite flat
over Zp[[Γ×Γ′]]. In his celebrated paper [H1], Hida constructs a big Galois representation
ρ : G� = Gal(Q/Q) −→ Aut(T̃ ), where T̃ is a finitely generated torsion-free module of
generic rank two over Hn.o

F . The representation T̃ is presented as T̃ ord⊗̂Zp[[Γ]](χ̃), where
χ̃ is the universal cyclotomic character G� � Γ ↪→ Zp[[Γ]]× and Zp[[Γ]](χ̃) is a rank
one free Zp[[Γ]]-module on which G� acts via the character χ̃. We always assume the
following condition:

(F) T̃ is free of rank two over Hn.o
F and the residual representation T̃ /MT̃ of T̃ is an

irreducible G�-module, where M is the maximal ideal of Hn.o
F .

We expect an equality between the ideal generated by the p-adic L-function and the
characteristic ideal of the Selmer group for Hida deformation (Iwasawa Main Conjecture
which will be proposed later). In this paper, we shall show one of the inequalities between
these two objects under certain assumptions. In this section, we summarize briefly our
main result in this paper (Theorem C) and apply it to the Iwasawa Main Conjecture by
combining with our previous works (Theorem B).

Let us recall the following definition:

Definition 1.1. Let w be an integer. A point κ ∈ Hom�p(Hord
F , Qp) is called an arith-

metic point of weight w if there exists an open subgroup U of Γ′ such that the restriction
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κ|�p[[Γ′]] : Zp[[Γ′]] −→ Qp sends u to χ′w(u) for any u ∈ U . For an arithmetic point κ of
Hord

F , we will denote by w(κ) the weight of κ.

We briefly recall the properties of this Hida deformation T̃ (cf. [H1], [Wi]):

Basic property of Hida deformation T̃ . Assume the condition (F). Hida’s nearly
ordinary deformation T̃ has the following properties:

1. T̃ is unramified outside a finite set of primes S of Q containing p and the archimedean
prime.

2. Let χ̃′ : G� −→ Zp[[Γ′]]× be the universal character defined to be the composite

G�
�χ−→ Zp[[Γ]]× ∼−→ Zp[[Γ′]]× obtained by the canonical isomorphism Γ ∼−→ Γ′.

Then the determinant representation G� −→ Aut(
2
∧T̃ ) ∼= (Hn.o

F )× coincides with

the character G�

χ−1(�χ2×�χ′−1)−−−−−−−−−→ O[[Γ× Γ′]] ↪→ (Hn.o
F )× modulo a character of finite

order.
3. For each pair (j, κ) of integer j and an arithmetic point κ ∈ Hom�p(Hord

F , Qp)
satisfying 1 ≤ j ≤ w(κ) + 1, we denote by T (j,κ) the specialization of T̃ by the
homomorphism χj−1 ◦ κ : Hn.o

F = Hord
F [[Γ]] −→ κ(Hord

F )[[Γ]] −→ Qp. Then there
exists a normalized eigen cusp form fκ of weight w(κ) + 2 and T (j,κ) is the twist
Tfκ ⊗ χj of Deligne’s Galois representation Tfκ associated to fκ.

4. If we restrict the action of G� on T̃ to the decomposition group G�p at p, T̃ has
a filtration 0 −→ F+T̃ −→ T̃ −→ F−T̃ −→ 0 such that the graded pieces F+T̃ and
F−T̃ are free of rank one over Hn.o

F .
5. Further, the representation F+T̃ is isomorphic to Zp[[Γ]](χ̃)⊗̂�pH

ord
F (α̃) as a G�p -

module, where α̃ is an unramified character G�p −→ (Hord
F )× such that Ap =

α̃(Frobp) ∈ Hord
F satisfies an interpolation property κ(Ap) = ap(fκ) for each arith-

metic point κ of w(κ) ≥ 0 and Hord
F (α̃) is a rank one free Hord

F -module on which
G�p acts via the character α̃.

In order to consider p-tame twist of the representation T̃ by a power of the Teichmuller
character ω, we will consider the nearly ordinary deformation T = T̃ ⊗ ωi for 0 ≤ i ≤
p − 2. Let A be the discrete Galois representation T ⊗�n.o

F Hom�p(Hn.o
F , Qp/Zp). We

denote by QS the maximal Galois extension of Q which is unramified outside S. The
Selmer group is defined as a subgroup of H1(QS/Q,A). Once we fix a local condition
H1

? (Qp,A) ⊂ H1(Qp,A) at p, we define a Selmer group Sel?T as follows:

Sel?T = Ker

⎡
⎣H1(QS/Q,A) −→

∏
l∈S,l �=p

H1(Ql,A)
H1

ur(Ql,A)
× H1(Qp,A)

H1
? (Qp,A)

⎤
⎦

Let us consider two important types of local conditions ? = Gr or BK.
1. Greenberg’s local condition H1

Gr(Qp,A) ⊂ H1(Qp,A) is defined to be

H1
Gr(Qp,A) = Ker

[
H1(Qp,A) −→ H1(Qur

p ,F−A)
]
,

where Qur
p is the maximal unramified extension of Qp.
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2. Let (j, k) be a pair of integers satisfying 1 ≤ j ≤ k − 1 and let Φ(j,k)
s,t ⊂ Hn.o

F
be a height two ideal (γps − χj−1(γps

), γ′pt

− χ′k−2(γ′pt

)). We denote by A[Φ(j,k)
s,t ]

the Φ(j,k)
s,t -torsion part of A, which is cofree of finite rank over Zp. We define a

Bloch-Kato type local condition H1
BK(Qp,A) ⊂ H1(Qp,A) to be

H1
BK(Qp,A) = lim−→

s,t

H1
f (Qp,A[Φ(j,k)

s,t ]),

where H1
f (Qp,A[Φ(j,k)

s,t ]) ⊂ H1(Qp,A[Φ(j,k)
s,t ]) is the “finite part” defined by Bloch-

Kato in their paper [BK] using Fontaine’s ring of p-adic periods.

First, we recall the following result concerning these Selmer groups:

Proposition A . Assume the condition (F) above. We have the following statements:

(1) Two Selmer groups SelBK
T and SelGr

T are equal as subgroups of H1(QS/Q,A). Espe-
cially, the definition of SelBK

T does not depend on the choice of (j, k) as above.
(2) The Pontryagin duals (SelBK

T )∨ and (SelGr
T )∨ of our Selmer groups are torsion mod-

ules over Hn.o
F .

The first statement of the above proposition is proved in [O2, §4]. The second one is
proved by a specialization of two variable Selmer group to a certain weight k and by the
use of results of Kato and Rubin (cf. [Ka3] and [R1]) for cotorsion-ness of one-variable
Selmer groups over the cyclotomic tower. For such specialization argument of Selmer
group, see [O1]. By the above proposition, we will denote the Selmer group for T simply
by SelT no matter how it is Greenberg type or Bloch-Kato type.

Now we will relate the characteristic ideal of the above Selmer group to a two-variable
p-adic L-function for Hida deformation by using an Euler system of Beilinson-Kato.

In order to introduce Beilinson-Kato elements, we need to prepare notations. For
each arithmetic point κ of weight w(κ) ≥ 0, we denote by fκ =

∑
n>0

an(fκ)σqn be the

dual modular form of fκ =
∑
n>0

an(fκ)qn where σ is a complex conjugation. The dual

modular form fκ is known to be a Hecke eigen cusp form of weight k = w(κ) + 2 with
Neben character dual of that of fκ. We denote by Qfκ

a finite extension of Q obtained
by adjoining all Fourier coefficients of fκ to Q. We associate the de Rham realization
VdR(fκ) to fκ. The de Rham realization VdR(fκ) has the following properties:

1. VdR(fκ) is a two dimensional vector space over Qfκ
and is equipped with a de

Rham filtration FiliVdR(fκ) ⊂ VdR(fκ), which is a decreasing filtration of Qfκ
-

vector spaces.
2. We have Fil0VdR(fκ) = VdR(fκ) and Filw(κ)+2VdR(fκ) = {0}. For each j such

that 1 ≤ j ≤ w(κ) + 1, FiljVdR(fκ) is naturally identified with one-dimensional
Qfκ

-vector space Qfκ
· fκ.

3. For each j such that 1 ≤ j ≤ w(κ) + 1, Filw(κ)+2−jVdR(fκ) ⊗�
f κ

Q̂fκ
is naturally

identified with Fil0DdR((V (j,κ))∗(1)), where Q̂fκ
is the p-adic completion of Qfκ

in
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the fixed embedding Qfκ
↪→ Qp, V (j,κ) is T (j,κ)⊗�p Qp and ( )∗ means the Qp-linear

dual here.

For each 1 ≤ j ≤ w(κ) + 1, we denote by δ
dR
κ the Qfκ

-basis of Filw(κ)+2−jVdR(fκ) sent

to fκ under the natural identification Filw(κ)+2−jVdR(fκ) = Qfκ
· fκ. Kato constructs

elements in the K2 of modular curves [Ka3]. By using his elements, we have the following
system of elements in Galois cohomology.

Proposition 1.2. [Ka3] Assume the condition (F). Let R be the set of all square-
free natural numbers which are prime to S. Then we have a collection of elements{
Z(r) ∈ H1(Q/Q(ζr),T ∗(1))

}
r∈R satisfying the following properties:

1. The element Z(r) is unramified outside primes of Q(ζr) over S for each r ∈ R. Let
r be a square-free number and let q be a prime number such that (r, q) = 1. Then the
norm Norm�(ζrq )/�(ζr )Z(rq) is equal to Pq(Frobq)Z(r), where Pq(X) ∈ Hn.o

F [X] is
the polynomial det(1−FrobqX;T ) and Frobq is ( the conjugacy class of) a geometric
Frobenius element at q in the Galois group Gal(Q(ζr)/Q).

2. For each pair (j, κ) of an integer j and an arithmetic point κ such that 1 ≤ j ≤
w(κ) + 1, let z(j,κ)(1) ∈ H1(QS/Q, (T (j,κ))∗(1)) be the specialization of Z(1) ∈
H1(QS/Q,T ∗(1)) via χj−1 ◦κ. If we denote by loc/f (z(j,κ)(1)) the image of z(j,κ)(1)
under the localization map:

H1(QS/Q, (T (j,κ))∗(1)) −→ H1
/f (Qp, (T (j,κ))∗(1)) :=

H1(Qp, (T (j,κ))∗(1))
H1

f (Qp, (T (j,κ))∗(1))
,

exp∗(loc/f (z(j,κ)(1))) is contained in Filw(κ)+2−jVdR(fκ) ⊂ Fil0DdR((V (j,κ))∗(1)),

for the dual exponential map H1
/f (Qp, (T (j,κ))∗(1))

exp∗
−→ Fil0DdR((V (j,κ))∗(1)) defined

by Kato (cf. [Ka1]).

3. Further, exp∗(loc/f (z(j,κ)(1))) is equal to
L(p)(fκ, ωi−j, j)

(2
√
−1π)j−1C

(−1)i
∞,κ

· δdR
κ , where C±

∞,κ ∈ C

is a complex period (see [O2, §3] and [O3] for C±
∞,κ).

Let H1
/f (Qp,T ∗(1)) be lim←−

s,t

H1
/f (Qp,T ∗(1)/Φ(1,2)

s,t T ∗(1)). We also denote by loc/f (Z(1))

the image of Z(1) under the localization map :

H1(Q,T ∗(1)) −→ H1(Qp,T ∗(1)) � H1
/f (Qp,T ∗(1)).

The main theorem in our previous paper [O2] is the construction of the two-variable
p-adic L-function Lp(T ) as follows:

Theorem B . [O2, Theorem 3.14] We assume the condition (F). Assume further that
Hn.o

F is integrally closed in its field of fraction. Then we have a map Ξ : H1
/f (Qp,T ∗(1)) −→

Hn.o
F such that Lp(T ) := Ξ(loc/f (Z(1))) has the following properties:

(1) We have the equality length(�n.o
F )�(H

1
/f (Qp,T ∗(1))/loc/f (Z(1)))� = ord�(Lp(T )) for

each height one prime p of Hn.o
F .
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(2) We have the interpolation property :

(χj−1 ◦ κ)(Lp(T ))/Cp,κ

= (−1)j−1(j − 1)!
(

1− ωi−j(p)pj−1

ap(fκ)

)(
pj−1

ap(fκ)

)q(i,j)

G(ωj−i)
L(fκ, ωi−j , j)

(2π
√
−1)j−1C

(−1)i
∞,κ

for each (j, κ) with 0 ≤ j − 1 ≤ w(κ), where Cp,κ ∈ Q
×
p is a p-adic period (see [O2]

and [O3] for Cp,κ) at each arithmetic point κ ∈ Hom�p(Hord
F , Qp), G(ωj−i) is the

Gauss sum and q(i, j) is equal to the p-order of the conductor of ωi−j.

Remark 1.3. The condition that Hn.o
F is normal in the above theorem is necessary only

to assure that the image of Ξ is contained in the integral part Hn.o
F . Without this condi-

tion, we only know that the localization of the image of Ξ is in the fraction field Frac(Hn.o
F )

of Hn.o
F is contained in (Hn.o

F )� for each height one prime p of Hn.o
F . Then, interpolation

properties as above hold without the condition that Hn.o
F is integrally closed (see the

arguments in [O2, §5]).

By the above Proposition A and Theorem B, we propose the following conjecture which
was first proposed by Greenberg [Gr2]:

Iwasawa Main Conjecture . We assume the condition (F). For each height one prime
p of Hn.o

F , we have the equality:

length(�n.o
F )�(Sel∨T )� = ord�(Lp(T )).

To relate our Euler system Z(1) to the Selmer group, we need to develop the Euler
system theory for Galois deformations which generalize the Euler system theory for the
cyclotomic tower proved by Kato[Ka4], Perrin-Riou[P] and Rubin[R2]. The following
theorem is the main result of this paper (see Theorem 2.4 and Theorem 2.6):

Theorem C . We assume that Hn.o
F is isomorphic to a two-variable power series algebra

O[[X1,X2]] over the ring of the integers O of a certain finite extension of Qp. Let us
assume the condition (F) and the existence of the elements τ ∈ G�(µp∞ ) and τ ′ ∈ G�

which satisfy the following properties:
1. The image of τ under the representation G� −→ Aut(T ) ∼= GL2(Hn.o

F ) has a pre-

sentation
(

1 Pτ

0 1

)
under certain choice of basis Aut(T ) ∼= GL2(Hn.o

F ), where Pτ is

a non-zero element of Hn.o
F .

2. The element τ ′ ∈ G� acts on T via the multiplication by −1.
Then there exists an integer k ≥ 0 such that we have the following inequality for each
height one prime p of Hn.o

F :

length(�n.o
F )�(Sel∨T )� ≤ length(�n.o

F )�((H/f (Qp,T ∗(1))/loc/f (Z(1))Hn.o
F )� + ord�(P k

τ ).

Finally, our results combining Proposition A, Theorem B and Theorem C are summa-
rized as follows.

Theorem . Let us assume the condition (F) and the existence of elements τ ∈ G�(µp∞ )

and τ ′ ∈ G� satisfying the conditions 1 and 2 stated in Theorem C. Assume further that
the local ring Hn.o

F is isomorphic to a two-variable power series algebra O[[X1,X2]]. Then
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(1) The Pontryagin dual Sel∨T of SelT is a finitely generated torsion Hn.o
F -module.

(2) If we assume the two conditions given in Theorem B, there exists an integer k such
that we have the following inequality for each height one prime p of Hn.o

F :

length(�n.o
F )�(Sel∨T )� ≤ ord(�n.o

F )�(Lp(T )) + ord�(P k
τ ).

The key of the proof of the inequality in Theorem C consists of:
1. the specialization lemma (see Proposition 3.6 and Proposition 3.11), which recovers

the characteristic ideal of a given torsion Iwasawa module M over an n-variable
Iwasawa algebra Λ(n) from the variation of the sizes of the specializations Mα of M
via a certain (well-chosen) family of homomorphisms {α : Λ(n) −→ Qp}α∈A.

2. induction argument (§4) using the above specialization lemma, which reduces the
problem of the Euler system theory over an n-variable Iwasawa algebra to the Euler
system theory over a discrete valuation ring already studied by several people.

We remark that our approach via the specialization lemma makes the proof of the Euler
system theory easier even in the classical case of the Euler system theory in a Zd

p-extension
(compare to [Ka4], [P] and [R2]). One feature of our proof is the use of non-arithmetic
specializations α : Λ(n) −→ Qp such that the specialized Galois representations Tα are not
necessarily associated to motives. Over a one-variable Iwasawa algebra, a similar idea of
the simplification of the Euler system argument is given also in a recent article [MR] by
Mazur and Rubin. The specializations of our result on the two variable main conjecture
to other non-critical or non-ordinary representations might give us some interesting con-
sequences. Thus, we expect that further inquiry of such systematic use of the induction
argument combined with the specializations will bring about fruitful applications and
new perspectives in the research of Iwasawa theory for Galois deformations.

Notations. For an integer r, we denote by µr the group of r-th roots of unity and
denote by Q(µr) the field obtained by adjoining µr to the rational number field Q. We
often denote by Q(µp∞) the field obtained by adjoining all p-power roots of unity to the
rational number field Q. For any Galois extension L/Q and a prime number q which is
unramified in L/Q, we denote by Frobq ∈ Gal(L/Q) (resp. ϕq ∈ Gal(L/Q)) (a conjugate
class of) a geometric (resp. arithmetic) Frobenius element at q.

Acknowledgements. The author expresses his sincere gratitude to professor Kazuya
Kato for advice on the use of non-arithmetic specializations. He thanks Yoshitaka Hachi-
mori, Kazuo Matsuno and Takeshi Saito for useful discussion. He also thanks Ralph
Greenberg and Haruzo Hida for stimulating conversation on the subject and encourage-
ment.

2. The main theorem for Euler system and its applications

Throughout the paper we denote by O the ring of the integers of a finite extension
K of Qp. For a natural number n, let Λ(n)

O be an n-variable Iwasawa algebra over O.
That is, Λ(n)

O is an n-variable power series ring O[[X1, · · · ,Xn]] over O. Let T be a
free Λ(n)

O -module of rank two with continuous G�-action. We denote the Kummer dual
representation Hom

Λ
(n)
O

(T ,Λ(n)
O )⊗�p Zp(1) by T , where ⊗�pZp(1) means the Tate twist.

The definition of the Euler system for Galois deformation is as follows:
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Definition 2.1. Let T be a free Λ(n)
O -module of rank two with continuous G�-action

which is unramified outside a finite set of primes S which contains {p,∞}. We denote
by R the set of all square-free natural numbers which are prime to S. An Euler system
for T is a collection of cohomology classes {Z(r) ∈ H1(Q(µr),T )}r∈R with the following
properties:

1. The element Z(r) is unramified outside S ∪ {r} for each r ∈ R.
2. The norm Norm�(µrq )/�(µr )Z(rq) is equal to Pq(Frobq)Z(r), where Pq(X) ∈ Λ(n)

O [X]
is a polynomial det(1 − FrobqX;T ) and Frobq is a (conjugacy class of) geometric
Frobenius element at q in the Galois group Gal(Q(µr)/Q).

Definition 2.2. Let M be a finitely generated torsion Λ(n)
O -module. For each height

one prime p of Λ(n)
O , we denote by l(M ; p) the length of Λ(n)

O,�-module M�, where Λ(n)
O,�

(resp. M� ) means the localization at p. Note that l(M ; p) is an integer which is zero for
almost all height one primes p of Λ(n)

O . Then the characteristic ideal char
Λ

(n)
O

(M) of M

is defined to be the ideal
∏
�

pl(M ;�), where p runs all height one primes in Hn.o
F . A torsion

Λ(n)
O -module M is called pseudo-null if l(M ; p) is zero for all height one primes p of Λ(n)

O .

Definition 2.3. We say that the representation T satisfies (Im) if there exist τ ∈
G�(µp∞ ) and τ ′ ∈ G� such that the following two conditions hold for the Galois im-
age of τ and τ ′:

1. The image of τ under the representation G� −→ Aut(T ) ∼= GL2(Λ
(n)
O ) has a pre-

sentation
(

1 Pτ

0 1

)
under certain choice of basis Aut(T ) ∼= GL2(Λ

(n)
O ), where Pτ is

a non-zero element of Λ(n)
O .

2. The element τ ′ ∈ G� acts on T via the multiplication by −1.

Let X2
S(T ) be the kernel of the restriction map H2(QS/Q,T ) −→ ⊕

v∈S
H2(Qv,T ). Our

main theorem is as follows:

Theorem 2.4. Let {Z(r) ∈ H1(Q(µr),T )}r∈R be an Euler system for T . Assume the
following conditions:

(i). The element Z(1) is not contained in the Λ(n)
O -torsion part of H1(GS ,T ).

(ii). For each finite place v ∈ S, H2(Qv,T ) is a torsion Λ(n)
O -module.

(iii). The images of the determinant representations G� −→ Aut(
2
∧T ) ∼= (Λ(n)

O )× and

G� −→ Aut(
2
∧T ) ∼= (Λ(n)

O )× contain elements of infinite order.
(iv). The residual representation T /(πO,X1, · · · ,Xn)T ∼= F⊕2 is an irreducible represen-

tation of G� .
(v). The ±-eigen spaces T ± of a complex conjugate element are both rank one modules

over Λ(n)
O .

Assume further the condition (Im) and fix τ ∈ G�(µp∞ ) satisfying (Im). Then we have
the following statements:
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(1) The group X2
S(T ) is a finitely generated torsion Λ(n)

O -module.
(2) Assume that the finitely generated Λ(n)

O -module X2
S(T ) admits a set of generators

consisting of k elements. Then the following inclusion of the characteristic ideals
holds:

(P k
τ )char

Λ
(n)
O

(H1(QS/Q,T )/Z(1)Λ(n)
O ) ⊂ char

Λ
(n)
O

(X2
S(T )).

Remark 2.5. Though we assume that rank
Λ

(n)
O

(T ) = 2 throughout the paper, it is not
essential assumption for the proof of the above result. A few minor modification of the
conditions in Theorem 2.4 and (Im) allows us a similar result in the case rank

Λ
(n)
O

(T ) > 2.
Since the application to Hida deformation requires only the rank two case, we restrict
ourselves to this case in order to avoid complicated notations. We would like to discuss
the general case together with other generalization in a subsequent paper.

The proof of Theorem 2.4 is completed in §4 after preparation in §3. Let us apply
Theorem 2.4 to Hida’s nearly ordinary deformation T = T̃ ⊗ ωi explained in §1. From
now on throughout the section, we assume that Hn.o

F is isomorphic to a two-variable
power series algebra O[[X1,X2]] over a complete discrete valuation ring O which is finite
flat over Zp.

Theorem 2.6. Assume the condition (F). We also assume that T = T̃ ⊗ ωi satisfies
the condition (Im) and fix τ ∈ G�(µp∞ ) satisfying (Im). Let Z(1) ∈ H1(QS/Q,T ∗(1))
be the Beilinson-Kato element (see Proposition 1.2). Then, under the assumption that
Hn.o

F is isomorphic to O[[X1,X2]], we have the following statements:

(1) The group X2
S(T ∗(1)) is a finitely generated torsion Hn.o

F -module.
(2) Assume that the finitely generated Λ(n)

O -module X2
S(T ) admits a set of generators

consisting of k elements. Then the following inclusion of the characteristic ideals
holds:

(P k
τ )char�n.o

F (H1(QS/Q,T ∗(1))/Z(1)) ⊂ char�n.o
F (X2

S(T ∗(1))).

Let us deduce Theorem 2.6 from Theorem 2.4.

Proof of Theorem 2.6. It is sufficient to check that our Galois module T and the Euler
system Z(1) satisfies the conditions in Theorem 2.4. The condition (iv) is already as-
sumed by the condition (F). The condition (v) is due to the fact that the determinant of
the representation associated to an elliptic modular form is odd. For the condition (iii),
we recall the basic properties of Hida deformation introduced after Definition 1.1. The
most non-trivial condition is (i). We need the result in Theorem B that the composite
homomorphism:

H1(QS/Q,T ∗(1)) −→ H1
/f (Qp,T ∗(1))

Ξd−→ O[[X1,X2]]

sends Z(1) to Lp(T ). Since Lp(T ) ∈ O[[X1,X2]] is not zero, the condition (i) follows.
This completes the proof.

Let us deduce Theorem C stated in §1 from Theorem 2.6.
9



Proof of Theorem C. By the global duality theorem, we have a four term exact sequence:

0 −→ H1(QS/Q,T ∗(1))/Z(1) −→ H1
/f (Qp,T ∗(1))/(loc/f (Z(1)))

−→ Sel∨T −→X2
S(T ∗(1)) −→ 0

Since H1
/f (Qp,T ∗(1)) is a torsion-free Hn.o

F -module of generic rank one by [O2, §4],
H1

/f (Qp,T ∗(1))/loc/f (Z(1)) is a torsion Hn.o
F -module. Hence by Theorem 2.6, Sel∨T is

a torsion Hn.o
F -module. We see that the inequality Theorem 2.6 (2) and the inequality in

Theorem C are equivalent by the exactness of the above sequence.

3. Iwasawa module and its specialization

In this section, we discuss about a characterization of the characteristic ideal of a given
torsion Iwasawa module by the behavior of the orders of its specializations. The results
obtained in this section are used for the proof of our main result in §4.

Before going into the main subject of this section, we give the following lemma, which
will be used in this section and the next:

Lemma 3.1. Let n ≥ 2 and let N be a pseudo-null Λ(n)
O -module. Let I be a height one

prime of Λ(n)
O such that Λ(n)

O /I is a regular local ring of Krull dimension n. Then, we
have the following equality between two ideals of Λ(n)

O /I:

char
Λ

(n)
O /I

(N [I]) = char
Λ

(n)
O /I

(N/IN)

Especially, N [I] is a pseudo-null Λ(n)
O /I-module if and only if N/IN is a pseudo-null

Λ(n)
O /I-module.

Since we have no reference for this lemma, we briefly give a proof here.

Proof. Let us take arbitrary height one prime p of Λ(n)
O /I and let p̃ ⊂ Λ(n)

O be the inverse
image of p via Λ(n)

O −→ Λ(n)
O /I. Then p̃ is a height two prime of Λ(n)

O . We apply the
functor ⊗

Λ
(n)
O

(Λ(n)
O )

�� to the following exact sequence:

0 −→ N [I] −→ N −→ N −→ N/IN −→ 0.

Since a localization functor preserves an exact sequence, we have the following:

0 −→ (N [I])
�� −→ (N)

�� −→ (N)
�� −→ (N/IN)

�� −→ 0.(1)

Note that we have (N [I])
�� = (N [I])� (resp. (N/IN)

�� = (N/IN)�). We have to
prove the equality length

(Λ
(n)
O /I)�

(N [I])� = length
(Λ

(n)
O /I)�

(N/IN)� or equivalently the

equality length
(Λ

(n)
O )

��

(N [I])
�� = length

(Λ
(n)
O )

��

(N/IN)
��. Note that (N)

�� is also a pseudo-

null (Λ(n)
O )

��-module. Since (Λ(n)
O )

�� is of Krull dimension 2, any pseudo-null (Λ(n)
O )

��-
module has finite length. Hence by the above four term exact sequence (1), we have
length

(Λ
(n)
O )

��

(N [I])
�� = length

(Λ
(n)
O )

��

(N/IN)
��. This completes the proof of the lemma.

We introduce the following notations:

Definition 3.2. Let n ≥ 1 be an integer.
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1. A linear element l in an n-variable Iwasawa algebra Λ(n)
O
∼= O[[X1, · · · ,Xn]] is a

polynomial l = a0 +a1X1 + · · · anXn ∈ Λ(n)
O with ai ∈ O of degree at most one such

that l is not divisible by πO and is not invertible in Λ(n)
O . That is, l is a polynomial

of degree at most one such that a0 is divisible by πO, but not all ai are divisible by
πO.

2. We denote by L(n)
O the set of all linear ideals of Λ(n)

O . That is:

L(n)
O =

{
(l) ⊂ Λ(n)

O

∣∣∣ l is a linear element in Λ(n)
O

}
.

3. Let n ≥ 2. For a torsion Λ(n)
O -module M , we denote by L(n)

O (M) a subset of L(n)
O

which consists of (l) ⊂ L(n)
O satisfying the following conditions:

(a) The quotient M/(l)M is a torsion Λ(n)
O /(l)-module.

(b) The image of the characteristic ideal char
Λ

(n)
O

(M) ⊂ Λ(n)
O in Λ(n)

O /(l) is equal to

the characteristic ideal char
Λ

(n)
O /(l)

(M/(l)M) ⊂ Λ(n)
O /(l).

Definition 3.3. A linear transform σ of an n-variable Iwasawa algebra O[[X1, · · · ,Xn]]
is an automorphism ofO[[X1, · · · ,Xn]] given by σ(Xj) =

∑
1≤i≤n

ti,jXi such that (ti,j)1≤i,j≤n

is in GLn(O).

Note that a linear element defined in Definition 3.2 is stable under the action of a
linear transform. Let x ∈ Λ(n)

O . Take arbitrary linear transform σ of Λ(n)
O , σ(x) is a linear

element in Λ(n)
O if and only if x is a linear element in Λ(n)

O .
For a natural number m, we denote by Pm(O) the projective space of dimension m.

That is, Pm(O) is the set of ratios (x0 : · · · : xm) with xi ∈ O. We have the following
lemma:

Lemma 3.4. Let n ≥ 1 be an integer.

(1) Let l and l′ be linear elements in Λ(n)
O . If l = ul′ holds for a certain unit u ∈ (Λ(n)

O )×,
u is necessarily a constant element which is contained in O×.

(2) The set L(n)
O is (non-canonically) identified with MO × Pn−1(O).

(3) Let n ≥ 2. For a torsion Λ(n)
O -module M , L(n)

O (M) is equal to

{(l) ∈ L(n)
O |M/(l)M is a torsion Λ(n)

O /(l)-module} ∩ L(n)
O (Mnull),

where Mnull is the largest pseudo-null sub-module of M .

Proof. Let us prove the first statement. We take linear elements l = a0 +
∑

1≤i≤n
aiXi,

l′ = a′0 +
∑

1≤i≤n
a′iXi and u ∈ (Λ(n)

O )×, where ai (resp. a′i) is an element in O for each

i. By the definition of linear elements, one of the coefficients a′i of l′ is a unit of O. In
order to show that u is contained in O×, we may assume that a′n is a unit without loss
of generality. By multiplying an element of O×, we assume that a′n = 1. We denote
l′ − Xn ∈ O[[X1, · · · ,Xn−1]] by α. By definition α is contained in the maximal ideal
M of O[[X1, · · · ,Xn−1]]. Since u ∈ Λ(n)

O = O[[X1, · · · ,Xn−1]][[Xn]] has an expansion
11



u =
∑

0≤j<∞
bjX

j
n, where bj is an element in O[[X1, · · · ,Xn−1]], we have the following

expansion of ul′ in O[[X1, · · · ,Xn−1]][[Xn]] :

ul′ = (α + Xn)(
∑

0≤j<∞
bjX

j
n) = αb0 +

∑
1≤j<∞

(αbj + bj−1)Xj
n.

By the assumption that l = ul′, αbj + bj−1 must be zero for each j ≥ 2. Thus we have an
expression bj = (−α)rbj+r for arbitrary integers j, r ≥ 1. Since bj is divisible by arbitrary
large power ofM, bj must be zero for each j ≥ 1 (Note that ∩

r≥1
Mr = 0). Hence we have

l = αb0 + b0Xn in O[[X1, · · · ,Xn−1]][[Xn]]. Since the coefficient of Xn must be contained
in O, we have b0 ∈ O. This completes the proof of the statement (1).

By definition, the set of linear elements l ∈ Λ(n)
O is isomorphic toMO× (O⊕n \M⊕n

O ).
Let l, l′ ∈ Λ(n)

O be linear elements. As is shown above, (l) = (l′) holds if and only if there
exists a unit u ∈ O× such that l = ul′. Thus the set of linear ideals L(n)

O is isomorphic
to

(
MO × (O⊕n \M⊕n

O )
)
/ ∼, where ∼ is the equivalence relation under the diagonal

action by the multiplication of the elements of O×. Note that
(
O⊕n \M⊕n

O )
)
/ ∼ is

isomorphic to Pn−1(O). We consider a mapMO× (O⊕n \M⊕n
O ) toMO× (O⊕n \M⊕n

O )
which sends (m,x0, · · · , xn−1) to (mx−1

i , x0x
−1
i , · · · , xn−1x

−1
i ), where i is the minimal

integer such that xi is a unit of O. This induces a map
(
MO × (O⊕n \M⊕n

O )
)
/ ∼ to

MO × (O⊕n \ M⊕n
O )/ ∼. It is checked that the map L(n)

O −→ MO × Pn−1(O) defined
above is bijective. This completes the proof of (2).

Let us consider the fundamental exact sequence:

0 −→M/Mnull −→ ⊕
�

⊕
1≤i≤k(�)

Λ(n)
O /pei −→ N −→ 0,

where N is a pseudo-null Λ(n)
O -quotient. Let (l) ∈ L(n)

O be a linear ideal such that M/(l)M
is a torsion Λ(n)

O /(l)-module. Note that the multiplication by l is injective on ⊕
�

⊕
1≤i≤k(�)

Λ(n)
O /pei and that the characteristic ideal of the Λ(n)

O /(l)-module of ⊕
�

⊕
1≤i≤k(�)

Λ(n)
O /((l), pei )

is equal to the image of char
Λ

(n)
O

(M) in Λ(n)
O /(l) in this case. By the snake lemma, we

have the following exact sequence:

0 −→ N [l] −→ (M/Mnull)/(l)(M/Mnull) −→ ⊕
�

⊕
1≤i≤k(�)

Λ(n)
O /((l), pei ) −→ N/(l)N −→ 0.

By Lemma 3.1, we have:

char
Λ

(n)
O /(l)

(
(M/Mnull)/(l)(M/Mnull)

)
= char

Λ
(n)
O /(l)

(
⊕
�

⊕
1≤i≤k(�)

Λ(n)
O /((l), pei )

)
.

On the other hand, since the multiplication map by l is injective on M/Mnull, we have
the following exact sequence:

0 −→Mnull/(l)Mnull −→M/(l)M −→ (M/Mnull)/(l)(M/Mnull) −→ 0.

Hence (l) is contained in L(n)
O (M) if and only if (l) ∈ L(n)

O (Mnull). This completes the
proof of (3).
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Let us investigate the set L(n)
O (N ) for a pseudo-null Λ(n)

O -module N . For this purpose,
we introduce the specialization map of L(n)

O . Let FO be the residue field of O. We denote
by SpO the following specialization map:

L(n)
O
∼=MO × Pn−1(O) −→ Pn−1(FO), (a, (x0 : · · · : xn−1)) �→ (x0 : · · · : xn−1),

where xi ∈ FO is the reduction moduloMO of xi ∈ O for each 0 ≤ i ≤ n− 1.

Lemma 3.5. Let n ≥ 2. We have the following statements:

(1) Let N be a finitely generated pseudo-null Λ(n)
O -module and let {Pj}1≤j≤k the set of

the associated primes of height two for N . Then we have:

L(n)
O (N ) = ∩

1≤j≤k
L(n)
O (Λ(n)

O /Pi).

(2) Let P be a height two prime of Λ(n)
O . The set L(n)

O (Λ(n)
O /P ) contains (l) ∈ L(n)

O if and
only if (l) is not a sub-ideal of P . The complement L(n)

O \ L(n)
O (Λ(n)

O /P ) is infinite
if and only if P contains at least two different ideals (l1), (l2) ∈ L(n)

O . Further, if
L(n)
O \ L(n)

O (Λ(n)
O /P ) is infinite, there exist two linear elements l, l′ ∈ Λ(n)

O such that
P is equal to (l, l′).

(3) Let P = (l, l′) be a height two prime of Λ(n)
O generated by two linear elements. If

P contains the ideal (πO), there exists an element x ∈ Pn−1(FO) such that the
complement L(n)

O \L
(n)
O (Λ(n)

O /P ) is equal to the inverse image (SpO)−1(x) of x. If P

does not contain the ideal (πO), the complement L(n)
O \ L(n)

O (Λ(n)
O /P ) is isomorphic

to P1(O).

Proof. First, we show the assertion (1). If all prime ideals in the set Ass
Λ

(n)
O

(N ) of the

associated primes of a pseudo-null Λ(n)
O -module N have height greater than two, the set

L(n)
O (N ) is equal to L(n)

O . Hence we have nothing to prove in this case. If N is the
extension 0 −→ N ′ −→ N −→ N ′′ −→ 0 of two pseudo-null Λ(n)

O -modules N ′ and N ′′,
we have L(n)

O (N ) ⊃ L(n)
O (N ′) ∩ L(n)

O (N ′′) by definition. For a linear element l ∈ ΛO,
consider the exact sequence:

N ′′[l] −→ N ′/(l)N ′ −→ N/(l)N −→ N ′′/(l)N ′′ −→ 0.

By the surjectivity of the last map, we have L(n)
O (N ) ⊂ L(n)

O (N ′′). If l is contained
in L(n)

O (N ) \ (L(n)
O (N ′) ∩ L(n)

O (N ′′)) = L(n)
O (N ) \ L(n)

O (N ′), N ′′/(l)N ′′ and N ′′[l] must
be a pseudo-null Λ(n)

O /(l)-module by Lemma 3.1. Thus we have L(n)
O (N ) = L(n)

O (N ′) ∩
L(n)
O (N ′′). If Ass

Λ
(n)
O

(N ) contains a prime p ⊂ Λ(n)
O such that ht(p) ≥ 3, N has a

submodule which is isomorphic to Λ(n)
O /p [M, Theorem 6.4]. Since L(n)

O (Λ(n)
O /p) = L(n)

O ,
we may replace N by a quotient of N by Λ(n)

O /p in order to investigate the set N . Since
N is finitely generated, we may suppose that Ass

Λ
(n)
O

(N ) consists only of prime ideals of

height two {Pj}1≤j≤k by repeating the above process. Thus N is a successive extension
of a Λ(n)

O -module of type Λ(n)
O /Pi [M, Theorem 6.4]. This completes the proof of (1).
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Let P be a height two prime of Λ(n)
O . The first two statements in (2) are rather clear.

Let us assume that P contains an ideal (f, g) such that (f) and (g) are different linear
ideals. If (f, g) is a prime, we must have P = (f, g) since both ideals are of height two.
Suppose that (f, g) is not a prime. By replacing (f, g) with a suitable linear transform
(fσ, gσ) if necessary, we may assume that f = Xn + a with a ∈ O. Let g ∈ Λ(n)

O /(f) =
O[[X1, · · · ,Xn−1]] be the image of g by the specialization modulo (f). Since the degree
of g ∈ O[[X1, · · · ,Xn−1]] is at most one, g must be divisible by πO if (f, g) is not a prime
of Λ(n)

O . Let us write as g = πe
O · g′ where g′ is not divisible by πO. A height one primes

of O[[X1, · · · ,Xn−1]] which contains a principal ideal (g) are only (πO) or (g′) (if g′ is
not a unit). Hence P is either the inverse image of (πO) or (g′) via Λ(n)

O −→ Λ(n)
O /(f). In

the former case, P is equal to (f, πO) = (f, f + πO). In the latter case, let us regard g′

as an element of Λ(n)
O via the natural injection O[[X1, · · · ,Xn−1]] ↪→ Λ(n)

O and denote it
by g′. Then (f, g′) is the inverse image of (g′) via Λ(n)

O −→ Λ(n)
O /(f). This completes the

proof of (2).
Let P = (l, l′) be a height two prime such that l, l′ are linear elements. First, we

suppose that P contains the ideal (πO). By this assumption, P = (l, πO) for a suitable
linear element l. If another linear element f is contained in P , we have f = ul + u′πO
with u, u′ ∈ Λ(n)

O . Hence f is congruent to l modulo πO. If x ∈ Pn−1(FO) is the
point corresponding to the reduction modulo πO of l, (f) corresponds to a point in
(SpO)−1(x) ⊂MO×Pn−1(O). Suppose P does not contain the ideal (πO). By replacing
(l, l′) with a suitable linear transform (lσ, l′σ) if necessary, we may assume that l = Xn+a
with a ∈ O and that l′ = Xn−1 +b with b ∈ O. If l′′ is an element of P , l′′ = ul+u′l′ with
u, u′ ∈ Λ(n)

O . By similar argument of comparison of coefficients as the proof of Lemma
3.4 (1), we prove that u, u′ are contained in O. Hence (l′′) corresponds to a point of
Ol ⊕Ol′/ ∼∼= P1(O). This completes the proof of (3).

We have the following proposition which characterizes the characteristic ideal of a given
torsion Λ(n)

O -module for n ≥ 2:

Proposition 3.6. Let n ≥ 2 be an integer and let M and N be a finitely generated
torsion Λ(n)

O -modules. Then the following three statements are equivalent.
1. We have char

Λ
(n)
O

(M) ⊃ char
Λ

(n)
O

(N).

2. Let O′ be arbitrary complete discrete valuation ring which is finite flat over O.
Then, for all but finitely many (l) ∈ L(n)

O′ (MO′) ∩ L(n)
O′ (NO′), we have the inclusion

char
Λ

(n)

O′ /(l)
(MO′/(l)MO′) ⊃ char

Λ
(n)

O′ /(l)
(NO′/(l)NO′).

3. There exists a complete discrete valuation ring O′ which is finite flat over O such
that we have the inclusion

char
Λ

(n)

O′ /(l)
(MO′/(l)MO′) ⊃ char

Λ
(n)

O′ /(l)
(NO′/(l)NO′)

for all but finitely many (l) ∈ L(n)
O′ (MO′) ∩ L(n)

O′ (NO′).

We recall the following well-known lemma (see [B] Chap. 7, §3.8, Proposition 6 or
[NSW, Theorem 5.3.4]):
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Lemma 3.7. Let R be a complete Noetherian local ring with its maximal ideal MR.
Assume that R/MR is a finite field. Then we have the following statements:
(1) f(X) =

∑
i≥0

aiX
i ∈ R[[X]] is a unit in R[[X]] if and only if the constant term a0 is

a unit of R.
(2) Assume that there exist integers i such that ai are units of R. Take r ≥ 0 to be the

minimal one among such i’s. Then there exists a unique decomposition:

f(X)u(X) = Xr + br−1X
r−1 + · · ·+ b1X + b0,

where u(X) is a unit in R[[X]] and bi is contained in MR for each 1 ≤ i ≤ r − 1.

We will prove the following lemma:

Lemma 3.8. For n ≥ 2, let f(X1, · · · ,Xn) =
∑
r≥0

arX
r ∈ O[[X1, · · · ,Xn]] (ar ∈ O is the

coefficient of Xr = Xr1
1 · · ·Xrn

n ) be a power series which is not a unit of O[[X1, · · · ,Xn]].
Assume that f(X) is not divisible by πO. Then there exist a finite extension O′ of O and
a linear transform σ of O′[[X1, · · · ,Xn]] such that

σ(f)(X) = u(X)
(
Xr

n + br−1X
r−1
n + · · ·+ b1Xn + b0

)
,

with a unit u(X) in O′[[X1, · · · ,Xn]] and an integer r, where bi belongs to the maximal
ideal of O′[[X1, · · · ,Xn−1]] for 0 ≤ i ≤ r − 1.

Before the proof of this lemma, we give the following lemma:

Lemma 3.9. Let n ≥ 1 be an integer and let Vr,�p
be a Fp-vector space ⊕

deg(r)=r
Fp ·

Xr1
1 · · ·Xrn

n spanned by n-variable monomials of degree r over Fp. Let us denote by pn

the projection map Vr,�p
−→ Fp · Xr

n. Then, for any non-zero element v ∈ Vr,�p
, there

exists an element σ ∈ GLn(Fp) such that pn(σ(v)) is not zero.

Proof. For an element w ∈ Vr,�p
, the following statements are equivalent:

1. The projection pn(w) ∈ Fp ·Xr
n is not zero.

2. The value w(0, · · · 0, 1) ∈ Fp of w at (X1, · · · ,Xn−1,Xn) = (0, · · · , 0, 1) is not zero.
Let (α1, · · · , αn) ∈ F

n
p be a point such that x(α1, · · · , αn) ∈ Fp is not zero. We take

σ = (ti,j)1≤i,j≤n ∈ GLn(Fp) such that tn,jαn = αj for each 1 ≤ j ≤ n. Let us denote
by σ(v) ∈ Vr,�p

the action given by g ·Xj =
∑

1≤i≤n
ti,jXi for g = (ai,j)1≤i,j≤n ∈ GLn(Fp).

Then σ(v)(0, · · · , 0, 1) = v(α1, · · · , αn) �= 0. This completes the proof.

Let us return to the proof of Lemma 3.8.

Proof of Lemma 3.8. Since f(X) is not divisible by πO, there exists an n-tuple r =
(r1, · · · , rn) such that ar ∈ O×. Let Vr,� be a F-vector space ⊕

deg(r)=r
F · Xr1

1 · · ·Xrn
n

spanned by n-variable monomials of degree r. Let v =
∑

deg(r)=r

arX
r1
1 · · ·Xrn

n ∈ Vr,� an

element obtained by the modulo πO-reduction of degree r-part of f(X). By the assump-
tion, v is not zero. Hence, by using the Lemma 3.9, after taking a finite extension F′ of
F if necessary, there exists σ ∈ GLn(F′) such that the coefficient of σ(v) at Xr

n is not
15



zero. Let σ = (ti,j)1≤i,j≤n ∈ GLn(W (F′)) be a lift of σ = (ti,j)1≤i,j≤n ∈ GLn(F′) where
ti,j ∈ W (F′) is the Teichmuller representative of ti,j . Let O′ be a finite extension of O
which contains W (F′). As a power series of Xn, σ(f)(X) ∈ O′[[X1, · · · ,Xn−1]][[Xn]] is
presented as

b′0 + b′1Xn + · · ·+ b′r−1X
r−1
n + b′rX

r
n + (higher order terms)

where b′i is contained in the maximal ideal ofO′[[X1, · · · ,Xn−1]] for each 0 ≤ i ≤ r−1 and
b′r is a unit ofO′. By applying Lemma 3.7 for this σ(f)(X) and for R = O[[X1, · · · ,Xn−1]],
we complete the proof of Lemma 3.8.

Let us return to the proof of Proposition 3.6.

Proof of Proposition 3.6. The implication 1 =⇒ 2 =⇒ 3 is clear. Let us show the impli-
cation 3 =⇒ 1. Let us fix fundamental isomorphisms for M and N :

M
fM−→

⊕
i

Λ(n)
O

/
(πµi

O )⊕
⊕

j

Λ(n)
O

/
(fj(X))λj ,

N
fN−→

⊕
i′

Λ(n)
O

/
(π

µ′
i′

O )⊕
⊕
j′

Λ(n)
O

/
(gj′(X))λ

′
j′ ,

where Ker(fM ) (resp. Ker(fN )) and Coker(fM) (resp. Coker(fN )) are pseudo-null Λ(n)
O -

modules and fj’s and gj′ ’s are monic polynomials. Let f(X) =
∏
j
fj(X)nj (resp. g(X) =

∏
j′

gj′(X)n
′
j′ ) and let µ =

∑
i
µi (resp. µ′ =

∑
i′

µ′
i′). In order to show that char

Λ
(n)
O

(M) ⊃

char
Λ

(n)
O

(N), it suffices to show that the image of the ideal (g(X)) (resp. πµ′
O ) is zero in

the ring Λ(n)
O /(f(X)) (resp. Λ(n)

O /(πµ′
O )). If f(X) is a unit in Λ(n)

O , there is nothing to
prove. We assume that f(X) is not a unit in Λ(n)

O from now on. By Lemma 3.8, after
a finite base change O′ of O and change of the coordinate by a linear transform, we
may assume that f(X) is of the form f(X) = (Xr

n + br−1X
r−1
n + · · · + b1Xn + b0)u(X)

where bi belongs to the maximal ideal of O′[[X1, · · · ,Xn−1]] for each 0 ≤ i ≤ r − 1 and
u(X) is a unit of Λ(n)

O′ . The algebra Λ(n)
O′ /(f(X)) is finite flat over O′[[X1, · · · ,Xn−1]]

(⊂ Λ(n)
O′ = O′[[X1, · · · ,Xn]]). We have the following claim:

Claim 3.10. There exist a complete discrete valuation ring O′′ which is finite flat over
O′ and a set {(li) ∈ L(n)

O′′}1≤i<∞ satisfying the following properties:
(i). The ideals (li) are all different.
(ii). For each i ≥ 1, li is contained in O′′[[X1, · · · ,Xn−1]].
(iii). For each i, (li) is contained in L(n)

O′′(MO′′) ∩ L(n)
O′′(NO′′).

By this claim, if we replace O′ by a sufficiently large extension of O′ if necessary, we
may suppose that we have a set {(li) ∈ L(n)

O′ }1≤i<∞ satisfying the above three properties.
By the third condition of the claim, the image of g(X) in Λ(n)

O′ /(f(X), li) is zero for each
i. By the first two conditions, we have an injection O′[[X1, · · · ,Xn−1]]/(l1 · · · lj) ↪→∏
1≤i≤j

O′[[X1, · · · ,Xn−1]]/(li) for each j ≥ 1. Since the extension Λ(n)
O′ /(f(X)) is finite flat
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over O′[[X1, · · · ,Xn−1]], we have an injection Λ(n)
O′ /(f(X), l1 · · · lj) ↪→

∏
1≤i≤j

Λ(n)
O′ /(f(X), li)

for each j ≥ 1. Thus the image of g(X) in Λ(n)
O′ /(f(X), l1 · · · lj) is zero for each j ≥ 1.

By the completeness of Λ(n)
O′ /(f(X)), we have lim←−

j

Λ(n)
O′ /(f(X), l1 · · · lj) ∼= Λ(n)

O′ /(f(X)) and

g(X) must be zero in Λ(n)
O′ /(f(X)). As for the inclusion (πµ

O′) ⊃ (πµ
O′) in Λ(n)

O′ , it suffices to
find only one linear element l ∈ L(n)

O′ (MO′)∩L(n)
O′ (NO′). Then the element πµ

O′ (resp.πµ
O′)

is equal to the highest power of πO dividing the characteristic power series of MO′/(l)MO′

(resp. NO′/(l)NO′). This completes the proof assuming the above claim.
Finally, we give the proof of Claim 3.10. By Lemma 3.4 (3), L(n)

O′ (MO′) ∩ L(n)
O′ (NO′)

is equal to L(n)
O′ ((Mnull ⊕Mnull)O′), where Mnull (resp. Nnull) is the largest pseudo-null

submodule of M (resp. N). The set of linear ideals of Λ(n−1)
O′ = O′[[X1, · · · ,Xn−1]] is

L(n)
O′ =MO′ ×Pn−2(O′). By Lemma 3.5, L(n)

O′ \L(n)
O′ ((Mnull⊕Mnull)O′) is of the following

form: (
∪

1≤i≤j
xi

)
∪

(
∪

1≤i′≤j′
Sp−1

O′ (yi′)
)
∪

(
∪

1≤i′′≤j′′
P1(O′)

)
,

where xi is an element of Pn−1(O′) for each i, yi′ is an element of Pn−1(FO′) for each
i′. Note that the inverse image Sp−1

O′ (Pn−2(FO′)) is contained in L(n)
O′ . Let n ≥ 3. By

replacing O′ by a sufficiently large unramified extension if necessary, we choose x ∈
Pn−2(FO′) which is equal to none of yi′ . Then Sp−1

O′ (x)∩
(
∪

1≤i′≤j′
Sp−1

O′ (yi′)
)

is empty and

Sp−1
O′ (x) ∩

(
∪

1≤i′′≤j′′
P1(O′)

)
is finite. Thus, if we choose arbitrary sequence of different

linear ideals (li) ∈ Sp−1
O′ (x)\

(
∪

1≤i≤j
xi ∪ ∪

1≤i′′≤j′′
P1(O′)

)
, this satisfies the three conditions

of the claim. Let n = 2. If one of yi′ ∈ P1(FO′) coincides with the point y0 corresponding
to SpO′(L(1)

O′ ), we can not choose x as in the case of n ≥ 3. Hence, if y0 coincides with
one of yi′′ , we need to replace O′ by a sufficiently large unramified extension and replace
a transform σ in Lemma 3.9 so that SpO′(L(1)

O′ ) is different from all yi′ . If we choose

arbitrary sequence of different linear ideals (li) ∈ Sp−1
O′ (y0) \

(
∪

1≤i≤j
xi ∪ ∪

1≤i′′≤j′′
P1(O′)

)
,

this satisfies the three conditions of the claim.

Next, we discuss how to recover the characteristic ideal of a torsion Λ(n)
O -module in the

case of n = 1. For short, we denote Λ(1)
O (resp. L(1)

O ) by ΛO (resp. LO), when n = 1.
Recall that a monic polynomial E(X) = Xe + ae−1X

e−1 + · · · + a1X + a0 ∈ O[X]
is called an Eisenstein polynomial if the i-th coefficient ai is contained in the maximal
ideal MO of O for each 0 ≤ i ≤ e − 1 and πO divides a0 exactly. It is known that
OE = O[X]/(E(X)) is a complete discrete valuation ring whose fraction field Frac(OE)
is a totally ramified extension of Frac(O) and that the image of X in OE is a uniformizer
of OE . Note that an Eisenstein polynomial E(X) ∈ O[X] is not a unit in a power series
algebra O[[X]] and O[X]/(E(X)) is isomorphic to O[[X]]/(E(X)).
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A set of ideals EO = {Im ⊂ ΛO | m ∈ Z≥1} is called Eisenstein type if Im = (Em(X))
where Em(X) is an Eisenstein polynomial of degree m in O[X] for each m ≥ 1. The
result is as follows:

Proposition 3.11. Let M and N be finitely generated torsion O[[X]]-modules. We have
the following:
(1) The following conditions are equivalent:

(a) There exists an integer h ≥ 0 such that charΛO(M) ⊃ (πh
O)charΛO(N).

(b) Let O′ be arbitrary complete discrete valuation ring which is finite flat over
O. Then there exists a constant c depending only on MO′ and NO′ such that
�(MO′/IMO′) divides c · �(NO′/INO′) for all but finitely many I ∈ LO′.

(2) As for the difference by the constant ideal (πh
O), we have the following equivalence:

(a) Let M(πO) (resp. N(πO)) be the localization of M (resp. N) at the prime ideal
(πO). Then we have length(ΛO)(πO)

(M(πO)) ≤ length(ΛO)(πO)
(N(πO)).

(b) There exist a set of ideals EO = {Im | m ∈ Z≥1} of Eisenstein type and a con-
stant c depending only on M and N such that �(M/ImM) divides c · �(N/ImN)
for all but finitely many Im.

Proof. Let us fix fundamental sequences for given torsion ΛO-modules:

M
fM−→

⊕
i

ΛO/ (πµi

O )⊕
⊕

j

ΛO/ (fj(X))λj

N
fN−→

⊕
i′

ΛO/ (π
µ′

i′
O )⊕

⊕
j′

ΛO/ (gj′(X))λ
′
j′ ,

where Ker(fM ) (resp. Ker(fN )) and Coker(fM ) (resp. Coker(fN )) are finite groups and
fj(X) (resp. gj′(X)) is a monic polynomial for each j (resp. j′). Let O′ be arbitrary
complete discrete valuation ring which is finite flat over O. Let us denote

∏
fj(X) ∈

O[[X]] (resp.
∏

gj(X) ∈ O[[X]] ) by f(X) (resp. g(X)). Put µ =
∑
i
µi (resp. µ′ =

∑
i′

µ′
i′).

By a simple diagram chasing argument using the snake lemma, we see that

�(MO′/IMO′) = �ΛO′/((πµ
O), I) · �ΛO′/((f(X)), I) · �

(
Ker(fM )⊗O O′/IKer(fM )⊗O O′)

�(NO′/INO′) = �ΛO′/((πµ′
O ), I) · �ΛO′/((g(X)), I) · �

(
Ker(fN )⊗O O′/IKer(fN )⊗O O′)

for any I ∈ LO′ ∪ EO′ such that MO′/IMO′ and NO′/INO′ are finite. Hence we may
replace MO′ (resp. NO′) by a fundamental type module ΛO′/(πµ

O) ⊕ ΛO′/(f(X)) (resp.
ΛO′/(πµ′

O ) ⊕ ΛO′/(g(X))) in order to show the equivalence between (a) and (b). For
the fundamental type modules above, the implication (a) ⇒ (b) is easy to see in both
cases (a) and (b). In the rest of the proof, we show the implication (b) ⇒ (a) for such
fundamental type modules.

Let us consider the first statement (1). Take fundamental modules M = ΛO/(πµ
O) ⊕

ΛO/(f(X)) and N = ΛO/(πµ′
O )⊕ ΛO/(g(X)). Suppose that f(X) does not divide g(X).

We will deduce a contradiction to the statement (b) from this assumption. Let O′ ⊂ Zp

be a complete discrete valuation ring which is finite flat over O which contains all roots
of f(X) and g(X). Thus we have a decomposition f(X) =

∏
(X − αi)si (resp. g(X) =
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∏
(X − βj)tj ) with αi ∈ O′ (resp. βj ∈ O′ ) such that αi �= αi′ (resp. βj �= βj′) if i �= i′

(resp. j �= j′).
If f(X) does not divide g(X), there exists i0 such that (X − αi0)

si0 does not divide
g(X). For each m ≥ 1, we define (lm) ∈ LO′ to be (lm) = (X − αi0 − pm). The
order of ΛO′/(πµ

O, lm) is bounded independent of m. Thus the order of MO′/(lm)MO′ =
ΛO′/(πµ

O, lm) ⊕ ΛO′/(f(X), lm)) is equal to �(O′/pm)ai0 modulo a finite error bounded
independent of m. On the other hand, the order of NO′/(lm)NO′ = ΛO′/(πµ′

O , lm) ⊕
ΛO′/(g(X), lm) is equal to �(O′/pm)ti0 modulo a finite error bounded independent of m,
where the number ti0 ≥ 0 is the maximal integer such that (X − αi0)

ti0 divides g(X).

Since we assume ti0 < si0 ,
�(NO′/(lm)NO′)
�(MO′/(lm)MO′)

converges to zero when m tends to ∞. This

contradicts to the statement (b) of (1).
Next, we prove the statement (2). We assume that πµ

O does not divides πµ′
O , namely

µ > µ′. In this case, we consider a sequence Im ∈ EO such that the extension degree em

of ΛO/Im over O tends to ∞. The order of ΛO/(πµ
O, Im) (resp. ΛO/(πµ′

O , Im)) is equal to
�(O/πO)emµ (resp. �(O/πO)emµ′

). On the other hand, the order of ΛO/(f(X), Im) (resp.

ΛO/(g(X), Im)) is bounded by a finite constant independent of m. Hence
�(N/ImN)
�(M/ImM)

converges to zero when m tends to ∞. This again contradicts to the statement (b) of
(2). This completes the proof.

4. Proof of the main theorem

In this section, we give a proof of Theorem 2.4 for an Euler system over an n-variable
Iwasawa algebra Λ(n)

O . We reduce Theorem 2.4 to the Euler system theory over discrete
valuation rings (Theorem 4.7) by using a method of specializations of Iwasawa modules
established in §3 (cf. Proposition 3.6 and Proposition 3.11).

First, we prepare the following lemmas:

Lemma 4.1. Let n ≥ 1 and let M be a finitely generated Λ(n)
O -module. We denote by

Mtor (resp. Mnull) the largest torsion (resp. pseudo-null) Λ(n)
O -submodule of M . Then,

for each height one prime I of Λ(n)
O such that I is prime to the characteristic ideal of

Mtor, we have an isomorphism M [I] ∼= Mnull[I].

See [O1] for the proof of the above lemma in the case n = 1. We prove the above
lemma by using a fundamental isomorphism of torsion Λ(n)

O -module (cf. [B, Chapter 7]).
Since the proof for general n is done exactly in the same way as the case n = 1, we omit
the proof here.

Let N be a finite discrete module with continuous G�-action unramified outside a fi-
nite set of primes S of Q. We define the Tate-Shafarevich group Xi

S(N) to be the kernel
of the restriction map H i(QS/Q,N) −→ ⊕

v∈S
H i(Qv, N). For an inductive system {Mj}

(resp. projective system {Nj}) of finite discrete G�-modules, we define Xi
S(lim−→ jMj)

(resp. Xi
S(lim←− jNj)) to be the inductive limit lim−→ j(Xi

S(Mj)) (resp. projective limit
lim←− j(Xi

S(Nj))). Since lim−→ jH
i(QS/Q,Mj) (resp. lim−→ jH

i(Qv,Mj)) is isomorphic to
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H i(QS/Q, lim−→ jMj) (resp. H i(Qv, lim−→ jMj)) (cf. [Se, Proposition 8]), Xi
S(lim−→ jMj) is

equal to the kernel of H i(QS/Q, lim−→ jMj) −→ ⊕
v∈S

H i(Qv, lim−→ jMj). Xi
S(lim←− jNj) is equal

to the kernel of H i(QS/Q, lim←− jNj) −→ ⊕
v∈S

H i(Qv, lim←− jNj) since lim←− jH
i(QS/Q,Nj)

(resp. lim←− jH
i(Qv, Nj)) is isomorphic to H i(QS/Q, lim←− jNj) (resp. H i(Qv, lim←− jNj)) by

[T, Corollary (2.2)].
The following proposition is a part of the global duality theorem (cf. [NSW, Chapter

VIII]):

Proposition 4.2. For a finite discrete G�-module M unramified outside a finite set of
primes S, the Tate-Shafarevich groups X1

S(N) and X2
S(N∨(1)) are finite and we have

a canonical perfect pairing:

X1
S(N)×X2

S(N∨(1)) −→ Q/Z.

The following two lemmas will be a key to the reduction step of the proof of Theorem
2.4:

Lemma 4.3. Let the assumptions and the notations be as in Theorem 2.4. We have the
following statements:

(1) Let I be a height one prime of Λ(n)
O . We denote by T I be the quotient module T /IT .

Then the natural map X2
S(T )/IX2

S(T )
pI−→ X2

S(T I) is surjective. Especially, if
(Λ(n)

O )-module X2
S(T ) admits a set of generators consisting k elements, (Λ(n)

O /I)-
module X2

S(T I) admits a set of generators consisting of k elements.
(2) For all but finitely many height one prime ideals I of Λ(n)

O , Ker(pI) is a tor-
sion Λ(n)

O /I-module. Further, Ker(pI) is a subquotient of P[I] for all but finitely
many height one primes I. Here P is the largest pseudo-null Λ(n)

O -submodule of
⊕

v∈S
(T ∗)G�v

, where T ∗ = Hom
Λ

(n)
O

(T ,Λ(n)
O ). Especially, the order of the kernel of

X2
S(T )/IX2

S(T ) −→ X2
S(T I) is bounded by the order of a finite group P for all

but finitely many height one primes I of ΛO when n = 1.

Proof. By the global duality theorem (Proposition 4.2), X2
S(T ) is the Pontryagin dual of

X1
S(A), where A is the discrete Galois representation T ⊗

Λ
(n)
O

Hom�p(Λ
(n)
O , Qp/Zp). By

taking the Pontryagin dual of the map X2
S(T )/IX2

S(T ) −→X2
S(T I), it suffices to prove

that the restriction map X1
S(A[I]) −→X1

S(A)[I] is injective to prove (1). By the irre-
ducibility of the residual representation, we have H0(QS/Q,A[M]) = H0(QS/Q,A)[M] =
0, where M is the maximal ideal of Λ(n)

O . Hence H0(QS/Q,A) = 0 by Nakayama’s lemma.
Thus, we have the following commutative diagram:

0 −−−→ X1
S(A[I]) −−−→ H1(QS/Q,A[I]) −−−→ ⊕

v∈S
H1(Qv,A[I])⏐⏐� w1

⏐⏐� ⏐⏐�w2

0 −−−→ X1
S(A)[I] −−−→ H1(QS/Q,A)[I] −−−→ ⊕

v∈S
H1(Qv,A)[I]
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By the snake lemma, the kernel of the restriction map X1
S(A[I]) −→ X1

S(A)[I] must
be zero since the kernel of w1 is H0(QS/Q,A)/IH0(QS/Q,A) = 0. This proves the first
statement (1).

For the statement (2), we remark that the Pontryagin dual of ker(w2) is ⊕
v∈S

(T ∗)G�v
[I].

By using again the snake lemma in the above commutative diagram, we see that the coker-
nel of X1

S(A[I]) −→X1
S(A)[I] is a subquotient of the Pontryagin dual of ⊕

v∈S
(T ∗)G�v

[I].

Hence the kernel of X2
S(T )/IX2

S(T ) −→X2
S(T I) is a subquotient of ⊕

v∈S
(T ∗)G�v

[I]. We

see that ⊕
v∈S

(T ∗)G�v
[I] is a torsion Λ(n)

O /I-module if and only if I is relatively prime to the

characteristic of a torsion Λ(n)
O -module ⊕

v∈S
(T ∗)G�v

. Further, ⊕
v∈S

(T ∗)G�v
[I] is isomorphic

to P[I] by Lemma 4.1. This completes the proof of (2).

By Lemma 4.3 (1), the number k in the statement of Theorem 2.4 is well-behaved under
the specialization argument.

By similar arguments using the snake lemma, we prove the following:

Lemma 4.4. Let the assumptions and the notations be as in Theorem 2.4. We have the
following statements:

(1) For any height one prime I of Λ(n)
O , the natural map:

(H1(QS/Q,T )/Z(1)Λ(n)
O )

/
I(H1 (QS/Q,T )/Z(1)Λ(n)

O )
qI−→ H1(QS/Q,T I)/Z(1)I

is injective, where we denote by Z(1)I the image of Z(1) by H1(QS/Q,T ) −→
H1(QS/Q,T I).

(2) For all but finitely many height one prime ideals I of Λ(n)
O , Coker(qI) is a torsion

Λ(n)
O /I-module. Further, Coker(qI) is isomorphic to Q[I] for all but finitely many

height one primes I, where Q is the largest pseudo-null Λ(n)
O -module of H2(QS/Q,T ).

Especially, the order of Coker(qI) is bounded by the order of a finite group Q for all
but finitely many height one primes I of ΛO when n = 1.

Recall the following lemma, which is an immediate consequence of the definition of
the characteristic ideal:

Lemma 4.5. Let M be a torsion Λ(n)
O -module and let O′ be a complete discrete valuation

ring which is finite flat over O. Then, we have char
Λ

(n)

O′
(MO′) = char

Λ
(n)
O

(M)Λ(n)
O′ , where

MO′ is the extension M ⊗O O′.

By this lemma, we may take an extension of the coefficient ring O freely to prove
Theorem 2.4.

Let us return to the proof of Theorem 2.4. Our strategy for the proof is an induction
argument with respect to n by using the results in §3. The case of n = 0 is already
studied by several people. Let T be a free O-module of rank two with continuous G� -
action and denote by T the Kummer dual HomO(T,O)⊗�p Zp(1) of T . We assume that
T is unramified outside a finite set of primes S containing p and ∞. In this situation, we
define an Euler system as follows:
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Definition 4.6. Let R be the set of all square-free natural numbers which are prime to
S. An Euler system for T is a collection of cohomology classes {z(r) ∈ H1(Q(µr), T )}r∈R
with the following properties:

1. The element z(r) is unramified outside p for each r ∈ R.
2. The norm Norm�(µrq )/�(µr )z(rq) is equal to Pq(Frobq)z(r), where Pq(X) ∈ O[X] is

a polynomial det(1−FrobqX;V ) and Frobq is (the conjugacy class of) a geometric
Frobenius element at q in the Galois group Gal(Q(µr)/Q).

Let us recall the following result on the Euler system theory over discrete valuation
rings (n = 0 case):

Theorem 4.7. Let the notations be as above and let {z(r) ∈ H1(Q(µr), T )}r∈R be an
Euler system for T . Assume the following conditions:
(i). The element z(1) is not contained in the O-torsion part of H1(GS , T ).
(ii). For each finite place v ∈ S, H2(Qv, T ) is finite.

(iii). The images of the determinant representations G� −→ Aut(
2
∧T ) ∼= O× and G� −→

Aut(
2
∧T ) ∼= O× both contain elements of infinite order.

(iv). The residual representation T/πT ∼= F⊕2 is an irreducible representation of G� .
(v). The ±-eigen spaces T± of a complex conjugate element are both rank one modules

over O.
Assume further that there exist τ ∈ G�(µp∞ ) and τ ′ ∈ G� such that the image of τ under

the representation G� −→ Aut(T ) ∼= GL2(O) has a presentation
(

1 pτ

0 1

)
by pτ �= 0

under certain choice of basis of T and that τ ′ acts on T via the multiplication by −1.
Then the following statements hold:
(1) The group X2

S(T ) is finite.
(2) �

(
X2

S(T )
)

divides �(O/(pk
τ ))·�

(
H1(QS/Q, T

)
/Oz), where k is the number of cyclic

O-factors of X2
S(T ).

We omit the proof of the above result since the case over discrete valuation rings with
finite residue field was already discussed by several authors. We refer the reader to [R2,
Theorem 2.2.10]. Though the statement of [R2, Theorem 2.2.10] treats only the case
where pτ is a unit, careful reading of the argument of the proof in [R2, Chapter 5] gives
us the above slightly generalized version.

Let M = X2
S(T ) ⊕ P (resp. N = Λ(n)

O /(P k
τ ) ⊕ H1(QS/Q,T )/Z(1) ⊕ Q ). For the

proof of Theorem 2.4, we need to show the following two statements:

(1) The module M is a torsion Λ(n)
O -module.

(2) The ideal char
Λ

(n)
O

(N) is contained in char
Λ

(n)
O

(M).

First, we prove the case where n = 1. We assume the conditions from (i) to (v) and the
condition (Im) which appeared in the statement of Theorem 2.4. Let us take a complete
discrete valuation ring O′ which is finite flat over O. For height one prime ideals I ∈ LO′ ,
let us consider the following conditions:
(I). The groups NO′/INO′ and H2(QS/Q,T ⊗O O′)[I] are torsion ΛO′/I-modules.
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(II). The module ⊕
v∈S

H2(Qv, (T ⊗O O′)I) is a torsion ΛO′/I-module.

(III). The images of the determinant representations G� −→ Aut(
2
∧(T ⊗O O′)I) ∼=

(ΛO′/I)× and G� −→ Aut(
2
∧(T ⊗O O′)I) ∼= (ΛO′/I)× contain elements of infinite

order.

Clearly (I) holds for all but finitely many I ∈ LO′ . Since we have an exact sequence:

⊕
v∈S

H2(Qv,T ⊗O O′) ×I−→ ⊕
v∈S

H2(Qv,T ⊗O O′) −→ ⊕
v∈S

H2(Qv, (T ⊗O O′)I) −→ 0,

the condition (II) also holds for all but finitely many I ∈ LO′ . By the condition (iii)
of Theorem 2.4 in the case n = 1, there exists an element g ∈ G� such that the image

Ug ∈ (ΛO′)× of g via G� −→ Aut(
2
∧(T ⊗O O′)) ∼= (ΛO′)× is of infinite order. The image

Ug,I ∈ (ΛO′/I)× of g via G� −→ Aut(
2
∧(T ⊗O O′)I) ∼= (ΛO′/I)× is the specialization of

Ug modulo I. Note that we have

{the group of roots of unity in ΛO′/I} = {the group of roots of unity in O′}

for any I ∈ L(n)
O′ . Take a sufficiently big natural number r such that ζr = 1 for any root

of unity ζ in O′. Hence Ug,I ∈ (ΛO′)× is of finite order if and only if I divides U r
g − 1.

Since there are only finitely many I which divide (U r
g − 1), G� −→ Aut(

2
∧(T ⊗O O′)I)

contains an element of infinite order for all but finitely many I ∈ LO′ . By the exactly

same argument, we see that G� −→ Aut(
2
∧(T ⊗O O′)I) contains an element of infinite

order for almost all I ∈ LO′ . Hence (III) holds for all but finitely many I ∈ LO′ .
The conditions (iv) and (v) in Theorem 4.7 are trivially satisfied for all TI by the

conditions (iv) and (v) for n = 1 case of Theorem 2.4. By Lemma 4.3 (3) and by Lemma
4.4 (3), the conditions from (I) to (III) imply all assumptions in Theorem 4.7 for all but
finitely many I ∈ LO′ . By Theorem 4.7, the following statements hold for all but finitely
many I ∈ LO′ for arbitrary complete discrete valuation ring O′ which is finite flat over
O:

(1) The module MO′/IMO′ is a torsion Λ(n)
O′ /I-module.

(2) �(MO′/IMO′) divides c · �(NO′/INO′), where c is the order of the finite group P ⊗O
O′.

Since c is a constant which is independent of I ∈ LO′ , we deduce that M is a torsion ΛO-
module and that there exists an integer h such that we have the inclusion charΛO(M) ⊃
(πh

O)charΛO(M) by using Proposition 3.11 (1).
To finish the proof of Theorem 2.4 for n = 1 case, we have to show that the above

constant h is zero. We take a sequence of ideals EO = {Im | m ∈ Z≥1} of Eisenstein type
in the sense of Proposition 3.11 (2). As in the above argument, we consider the following
conditions:

(I). The groups N/ImN and H2(QS/Q,T )[Im] are torsion ΛO/Im-modules.
(II). The module ⊕

v∈S
H2(Qv,T Im) is a torsion ΛO/Im-module.
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(III). The images of the determinant representations G� −→ Aut(
2
∧TIm) ∼= (ΛO/Im)×

and G� −→ Aut(
2
∧T Im) ∼= (ΛO/Im)× contain elements of infinite order.

The properties (I) and (II) hold for all but finitely many Im by exactly the same argument
as above. The difference from the above argument is that (III) might fail to be true for
infinitely many m if we take arbitrary set of ideals EO of Eisenstein type. So we have to
choose a set of ideals EO of Eisenstein type so that

{the group of roots of unity in ΛO/Im} = {the group of roots of unity in O}
holds for all m. We may choose EO = {Im = (Xm − πO)}m∈�≥1

for example for EO with
the above conditions. Then, we show that (III) holds for all but finitely many Im by
the same argument as in the case of LO′ . By Lemma 4.3 (3) and by Lemma 4.4 (3),
the conditions from (I) to (III) imply all assumptions in Theorem 4.7 for all but finitely
many Im. By Theorem 4.7, the following statements hold for all but finitely many Im:

(1) The module M/ImM is a torsion Λ(n)
O /Im-module.

(2) �(M/ImM) divides c′ · �(N/ImN), where c′ is the order of the finite group P.
Since c′ is a constant which is independent of Im, we deduce that h is zero by Proposition
3.11 (2). This completes the proof of Theorem 2.4 when n = 1.

For general n, we reduce the proof of Theorem 2.4 for n ≥ 2 to the case n − 1 by
induction. The induction argument for n ≥ 2 proceeds basically in the same way as the
proof of the case n = 1 by using Proposition 3.6 instead of Proposition 3.11. So we omit
writing the process of arguments for n ≥ 2.
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