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Overview

The main topics of this course are the following:

• Zeta function and cohomology

• Motivic complexes and its Z/pnZ-variants

• Galois cohomology and Selmer groups of Bloch-Kato

• Étale cohomology of arithmetic schemes

In this course, a ring means a commutative ring with unity, and a scheme means a
locally ringed space which is everywhere locally isomorphic to some affine scheme Spec(R)
(R is a ring), i.e., a pre-scheme in the sense of [GD1]. A variety over a field k means an
integral scheme which is separated of finite type over Spec(k).

Contents

1 Weil cohomology and congruence zeta function 2

2 Cohomology and zeta values 4

3 Étale motivic complexes 7

4 Finite-coefficient variant of Lichtenbaum’s axioms 10

5 Selmer group of Bloch-Kato 16

6 Filtration on the direct image 23

7 Comparison over local fields 27

8 Comparison over global fields 31

9 The case of arithmetic surfaces 33

A Purity of Gm 40

B Higher cycle class map for regular schemes 42

C Report exercises 46

1



1 Weil cohomology and congruence zeta function

Let F be a field, and let K be a field of characteristic 0, where F is independent of K and
ch(F ) is arbitrary. Let SmProj(F ) be the category whose objects are smooth projective
geometrically integral varieties over F and whose morphisms are morphisms over F . A
Weil cohomology theory on SmProj(F ) is a contravariant functor

H∗(−) : SmProj(F )op −→
{
graded commutative

K-algebras

}
with the data (D0)–(D2) which satisfy the axioms (A1)–(A6) below:

(D0) (Tate twist) A one-dimensional K-vector space K(1)

(D1) (Trace isomorphisms) For each X ∈ Ob(SmProj(F )), an isomorphism

TrX : H 2d(X)(d)
≃−→ K,

where d := dimX and H i(X)(r) := H i(X)⊗K K(1)⊗r for r ≧ 0.

(D2) (Cycle class maps) For each X ∈ Ob(SmProj(F )) and for each q ≧ 0, a homo-
morphism

cycX : Zq(X) −→ H2q(X)(q),

where Zq(X) denotes the group of algebraic cycles on X of codimension q.

(A1) (Finiteness) For any X ∈ Ob(SmProj(F )) and any q ≧ 0, Hq(X) is finite-
dimensional over K, and vanishes unless 0 ≦ q ≦ 2 dimX.

(A2) (Künneth formula) For any X,Y ∈ Ob(SmProj(F )), the following map is bijec-
tive:

H∗(X)⊗K H∗(Y )
≃−→ H∗(X × Y ), α⊗ β 7→ pr∗1(α) ∪ pr∗2(β),

Here ∪ denotes the cup product, i.e., the product structure of H∗(X × Y ).

(A3) (Poincaré duality) For any X ∈ Ob(SmProj(F )) of dimension d and any q ≧ 0,
the following pairing given by cup product and trace map is non-degenerate:

Hq(X)×H2d−q(X)(d) −→ K, (α, β) 7→ TrX(α ∪ β).

(A4) (Rational equivalence) For any X ∈ Ob(SmProj(F )), the map cycX sends
Zq(X)rat to 0, where Zq(X)rat denotes the subgroup of Zq(X) consisting of the
cycles which are rationally equivalent to 0.

(A5) (Functoriality) For any morphism f : X → Y in SmProj(F ), we have

cycX ◦ f∗ = f∗ ◦ cycY , cycY ◦ f∗ = f∗ ◦ cycX ,

where f∗ on the left hand side denotes the pull-back of Chow groups modulo rational
equivalence CHq(Y ) → CHq(X); f∗ on the right hand side denotes the dual of f∗

under the Poincaré duality for H∗(X) and H∗(Y ).

(A6) (Multiplicativity) For any X,Y ∈ Ob(SmProj(F )), z ∈ Zq(X) and any w ∈
Zr(Y ), cycX(z) ⊗ cycY (w) corresponds to cycX×Y (z ⊠ w) under the Künneth iso-
morphism in (A2), where z ⊠ w denotes the outer product of z and w.

(A7) (Normalization) If X = Spec(k), then cycX(X) = 1 and TrX(1) = 1.
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Example 1.1 (ℓ-adic étale cohomology) Let F be an arbitrary field, and let ` be a
prime number different from ch(F ). Fix a separable closure F of F and put XF := X⊗F F
for X ∈ Ob(SmProj(F )). Then the `-adic étale cohomology

H∗(X) := H∗
ét(XF ,Qℓ) = Qℓ ⊗Zℓ lim←−

n≧1

H∗
ét(XF ,Z/`

nZ) (X ∈ Ob(SmProj(F )))

with Qℓ(1) := Qℓ ⊗Zℓ lim←−
n≧1

µℓn(F ) yields a Weil cohomology theory.

Example 1.2 (crystalline cohomology) Let F be a perfect field of characteristic p >
0. Let W (F ) be the ring of Witt vectors over F , and let K0 be the fraction field of W (F ).
Then the crystalline cohomology

H∗(X) := H∗
crys(X/W (F ))⊗W (F ) K0 (X ∈ Ob(SmProj(F ))),

with K0(1) := K0 yields a Weil cohomology theory.

From the axioms of Weil cohomology theory, one can deduce the following formula by
formal computations, which plays a fundamental role in the study of the zeta function of
projective smooth varieties over finite fields:

Theorem 1.3 (Lefschetz trace formula) Let F and K be as above, and let H∗(−) be
a Weil cohomology theory on SmProj(F ). Let X be a d-dimensional variety which belongs
to SmProj(F ), and let f : X → X be a morphism over F . Then we have

deg(∆ · Γf ) =
2d∑
i=0

(−1)i ·Tr(f∗ |H i(X)),

where ∆ denotes the diagonal of X ×X, and Γf ⊂ X ×X denotes the graph of f .

Proof. See e.g. [SS1] §12.7.c, [Y] Theorem 1.75. □

Definition 1.4 Let p be a prime number, and let q be a power of p. For a scheme X
of finite type over Fq, we define the congruence zeta function Z(X/Fq, t) of X/Fq as the
exponential of the generating function of Fqn-valued points of X for n ≧ 1:

Z(X/Fq, t) := exp

( ∞∑
n=1

#X(Fqn)
n

tn
)
∈ Q[[t ]].

As a direct consequence of the Lefschetz trace formula, we have the following:

Corollary 1.5 Let H∗(−) be a Weil cohomology theory on SmProj(Fq) with coefficients
in the field K. Then for any X ∈ Ob(SmProj(Fq)), we have

Z(X/Fq, t) =
P 1(X/Fq, t)H∗ · · ·P 2d−1(X/Fq, t)H∗

P 0(X/Fq, t)H∗P 2(X/Fq, t)H∗ · · ·P 2d(X/Fq, t)H∗
(d := dimX)

in K[[t ]]. Here for each i = 0, 1, . . . , 2d, P i(X/Fq, t)H∗ is defined as

P i(X/Fq, t)H∗ := det(1− Fr∗q ·t |H i(X)) ∈ K[t ],

and Frq denotes the Frobenius morphism X → X over Fq.

Proof. By the Lefschetz trace formula over Fqn , we have

#X(Fqn) =
2d∑
i=0

(−1)i ·Tr
(
(Fr∗q)

n
∣∣H i(X)

)
.
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On the other hand, we have

det(E − tA)−1 = exp

( ∞∑
n=1

Tr(An)
n

tn
)

in K[[t ]]

for any square matrix A with entries in K. One obtains the assertion from these facts. □

Theorem 1.6 (Deligne/Katz-Messing) For any X ∈ Ob(SmProj(Fq)) and any 0 ≦
i ≦ 2 dim(X), the polynomial P i(X/Fq, t)H∗ ∈ K[t ] is independent of the Weil cohomology
theory H∗(−) satisfying weak Lefschetz, and lies in Z[t ]. Moreover, the reciprocal zeros of
P i(X/Fq, t) := P i(X/Fq, t)H∗ have complex absolute value qi/2.

2 Cohomology and zeta values

Throughout this section, let X be a scheme of finite type over Z.

Definition 2.1 We define the zeta function ζ(X, s) of the scheme X as the Euler product

ζ(X, s) :=
∏
x∈X0

1
1−N (x)−s

.

Here X0 denotes the set of closed points of X, and N (x) denotes the order of the residue
field κ(x) for each x ∈ X0.

Example 2.2 When X = Spec(OK), the spectrum of the integer ring OK of a number
field K, then we have ζ(X, s) = ζK(s), the Dedekind zeta function.

Proposition 2.3 (1) ζ(X, s) converges absolutely for Re(s) > dimX. In particular, it
does not have zeros there.

(2) ζ(X, s) is meromorphically continued to Re(s) > dimX− 1
2
, and has a pole of order

m at s = dimX. Here m denotes the number of the irreducible components of X
which have dimension dimX.

Proof. See [Se1] §1.3～§1.4. □

Exercise 1 Let X be a scheme of finite type over Fq. Then show that

ζ(X, s) = Z(X/Fq, q−s) for Re(s) > dimX.

Definition 2.4 For each positive integer m invertible on X, let µm = µm,X be the étale
sheaf of m-th roots of unity on X. For a prime number ` invertible on X and an integer
r ≧ 0, put

H∗(X,Zℓ(r)) := lim←−
n≧1

H∗
ét(X,µ

⊗r
ℓn ).

If X is a smooth scheme over Spec(Fp), then we put

H∗(X,Zp(r)) := lim←−
n≧1

H∗−r
ét (X,WnΩ

r
X,log),

where WnΩ
r
X,log denotes the étale subsheaf of logarithmic part of the Hodge-Witt sheaf

WnΩ
r
X (cf. [I]).

The following theorem is a special case of a theorem of Milne [Mi] Theorem 0.1.
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Theorem 2.5 Let X be a proper smooth geometrically integral variety over Fq. Then we
have

lim
s→d

(1− qd−s)ζ(X, s) = χ(X,OX , d)
2d−1∏
i=1

(#H i(X, Ẑ(d)))(−1)i ·#(H2d(X, Ẑ(d))tors),

ζ(X, r) = χ(X,OX , r)
2d+1∏
i=1

(#H i(X, Ẑ(r)))(−1)i (r > d, r ∈ Z),

where H∗(X, Ẑ(r)) and χ(X,OX , r) are defined as follows:

H i(X, Ẑ(r)) :=
∏

ℓ :prime

H i(X,Zℓ(r)),

χ(X,OX , r) :=
∏
i,j≧0

(#Hj(X,ΩiX))
(r−i) · (−1)i+j (Milne’s correcting factor)

Theorem 2.5 is based on the finiteness of H i(X, Ẑ(r)) (i ≧ 0, r ≧ d, (i, r) 6= (2d, d), (2d+
1, d)) and H2d(X, Ẑ(d))tors, which is a consequence of Theorem 1.6 and a theorem of
Gabber [Ga].

Remark 2.6 In [Mi] Theorem 0.1, Milne describes the behavior of ζ(X, s) at s → r
(r ∈ Z) by H∗(X, Ẑ(r)) and χ(X,OX , r), assuming the projectivity of X over Fq and the
1-semi-simplicity conjecture on the action of the Frobenius element ϕq ∈ Gal(Fp/Fq) on

H2r(X,Qℓ(r)) = H2r(X,Qℓ)⊗Qℓ Qℓ(1)
⊗r (X := X ⊗Fq Fq)

for all prime number `, including p (see also [T2] §3 (d)). This 1-semi-simplicity conjecture
obviously holds true for any r ≧ d under the properness of X over Fq, so do the assertions
in [Mi] Theorem 0.1 under the same assumption.

Definition 2.7 (Deligne cohomology) Assume that X is flat over Z, and that XQ :=
X ⊗Z Q is smooth over Q. We write X(C) for the set of C-valued points of X over Z, and
write X(C)an for the complex analytic variety associated with X(C). For a subring A ⊂ R
and r ≧ 0, let A(r)D be the following complex of sheaves on X(C)an:

A(r)D : (2π
√
−1)r ·A −→ OX(C)an

d−→ Ω1
X(C)an

d−→ · · · d−→ Ωr−1
X(C)an ,

where (2π
√
−1)r ·A is placed in degree 0. Then we define

H∗
D(X/C, A(r)) := H∗(X(C)an, A(r)D),

H∗
D(X/R, A(r)) := H∗

D(X/C, A(r))
+,

where + means the fixed part by the complex conjugation, acting on both X(C)an and
A(r)D .

Example 2.8 There is a cartesian diagram of sheaves on X(C)an

2π
√
−1 ·Z //

��
□

OX(C)an

exp
����

0 // O×
X(C)an ,

which implies that we have Z(1)D ∼= O×
X(C)an [−1] in D

b(X(C)an).
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Setting 2.9 In the rest of this section, we put X := Spec(OK), the spectrum of the
integer ring of a number field K. We often write n for [K : Q]. In this case, X(C) is
exactly the set of the ring homomorphisms τ : OK → C, i.e., consists of distinct n points.
We write r1 (resp. r2, h, R, D) for the number of the real (resp. number of complex places,
class number, regulator, discriminant) of K, and write w for the number of roots of unity
in K.

By the isomorphism Z(1)D ∼= O×
X(C)an [−1] in Example 2.8, there is a commutative

diagram ( ∏
τ∈X(C)

C
)+

β

yysss
sss

sss
sss

s
exp

��

H1
D(X/R,Z(1)) α

≃ / /
( ∏
τ∈X(C)

C×
)+
.

(2.1)

The isomorphism Z(1)D ∼= O×
X(C)an [−1] also yields a natural homomorphism, called the

regulator map
regi,1D : H i−1(Xzar,O

×
X ) −→ H i

D(X/R,Z(1)).

for each i ≧ 1. Note that regi,1D is injective for i = 1 and zero otherwise. When we take

the kernel H̃1
D(X/R,Z(1)) of the trace map

TrX : H1
D(X/R,Z(1)) −→ R, (zτ )τ∈X(C) 7→

∑
τ∈X(C)

ln |zτ |,

then reg1,1D (O×
K) is a discrete cocompact subgroup of H̃1

D(X/R,Z(1)). Moreover, its co-
volume under a natural Haar measure defined in Definition 2.10 below involves several
important invariants of the number field K (see Proposition 2.11 below).

We define the action of Gal(C/R) on the C-vector space K ⊗Q C as

σ(a⊗ z) := a⊗ σ(z) (a ∈ K, z ∈ C, σ ∈ Gal(C/R)).

There is a canonical C-linear isomorphism

K ⊗Q C ∼=
∏

τ∈X(C)

C, a⊗ z 7−→ (τ(a)z)τ ,

which is Gal(C/R)-equivariant and induces an isomorphism of R-vector spaces

K ⊗Q R ∼=
( ∏
τ∈X(C)

C
)+
. (2.2)

This isomorphism and the map β in (2.1) define a natural continuous and open homo-
morphism from K ⊗Q R→ H1

D(X/R,Z(1)), whose image is a connected open subgroup of
index 2r1 . Let m0 be the Haar measure on H1

D(X/R,Z(1)) with respect to the lattice OK

of K⊗QR. We construct a Haar measure m1 on H̃
1
D(X/R,Z(1)) from m0 and the Lebesgue

measure λ1 on R as follows.

Definition 2.10 We put n := [K : Q] = #X(C), and fix a continuous section of TrX

s : R −→ H1
D(X/R,Z(1)), x 7→ α−1((exp(x/n))τ ),

which yields a homeomorphism of topological groups

H1
D(X/R,Z(1)) ∼= H̃1

D(X/R,Z(1))× R.
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Under this topological direct decomposition, we define

m1(V ) :=
m0(V × s(Z))

λ1(Z)
(2.3)

for any Borel subset V ⊂ H̃1
D(X/R,Z(1)), where Z on the right hand side is an auxiliary

bounded (and non-empty) open subset of R.

Exercise 2 Check that the value on the right hand side of (2.3) is independent of the
choice of a bounded open subset Z 6= ∅, and that m1 is a Haar measure on H̃1

D(X/R,Z(1)).

Now we are ready to state the following Proposition 2.11 concerning the reduced reg-
ulator map

r̃eg1,1D : O×
K −→ H̃1

D(X/R,Z(1)).

Proposition 2.11 Let m2 be the quotient Haar measure of m1 on Coker(r̃eg1,1D ). Then

m2(Coker(r̃eg
1,1
D )) =

2r1(2π)r2R

w
√
|D|

.

Proof. See e.g. [Sa4], Appendix A. □
By this formula, the classical class number formula is reorganized as follows:

Corollary 2.12 We have

Res
s=1

ζK(s) =
m2(Coker(r̃eg

1,1
D ))

#Ker(r̃eg1,1D )
·
#Ker(reg2,1D )

#Coker(reg2,1D )
,

where reg2,1D denotes Pic(X)→ 0.

Remark 2.13 The isomorphism (2.2) is in fact the comparison isomorphism

H0
dR(K/Q)⊗Q R ∼=

( ∏
τ∈X(C)

H0
sing(X(C)an,C)

)+
between the algebraic de Rham cohomology of Spec(K) and the singular cohomology of
X(C)an. In short, the measure m1 on H̃1

D(X/R,Z(1)) is determined by the lattice OK of

H0
dR(K/Q), and Proposition 2.11 computes the covolume of r̃eg1,1D (O×

K) concerning m1.

Exercise 3 Using classical facts on number fields, show that

H i
ét(Spec(OK),Gm) ∼=


(Z/2Z)⊕r′ (i = 2)

Q/Z (i = 3)

(Z/2Z)⊕r1 (i ≧ 4, even)

0 (i ≧ 5, odd),

where r1 denotes the number of real places of K, and r′ := max{r1 − 1, 0}.

3 Étale motivic complexes

Let X be a noetherian regular scheme. We introduce here a collection of axioms (L0)–(L7)
due to Lichtenbaum [Li1], [Li3] concerning a family {Z(r)}r≧0 of complexes of étale sheaves
on X. This family {Z(r)}r≧0 satisfying the following (L0)–(L7) and good candidates for
them are both called étale motivic complexes on X.

(L0) Z(0) = Z, Z(1) = Gm[−1].

(L1) (acyclicity) For r ≧ 2, Z(r) is acyclic outside of [1, r].
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(L2) (Hilbert’s Theorem 90) Let ε : Xét → Xzar be the natural continuous map of
sites. Then the Zariski sheaf Rr+1ε∗Z(r) is zero for any r ≧ 0.

(L3) (Kummer theory) Let m be a positive integer which is invertible on X. Then
there exists a distinguished triangle

Z(r) ×m // Z(r) // µ⊗rm // Z(r)[1] in D(Xét)

for any r ≧ 0.

(L4) (p-Kummer theory) Let p be a prime number, and assume that X is over Fp.
Then there exists a distinguished triangle

Z(r) ×pn // Z(r) //WnΩ
r
X,log[−r] // Z(r)[1] in D(Xét)

for any r ≧ 0 and n ≧ 1.

(L5) (Products) For each r, r′ ≧ 0, there exists a product morphism

Z(r)⊗L Z(r′) // Z(r + r′) in D(Xét).

(L6) (Connection with K-theory) The q-th cohomology sheaf H q(Z(r)) is isomorphic
to the étale sheafification of the presheaf

U ∈ Ob(Ét/X) 7−→ grrγK2r−q(U)

up to torsion involving primes ≦ r − 1. Here K2r−q(U) denotes the (2r − q)-th
algebraic K-group associated with the category of vector bundles over U , cf. [Q];
γ means the γ-filtration, cf. [So1]. Moreover, H r(Z(r)) is isomorphic to the étale
sheafification of the presheaf

U ∈ Ob(Ét/X) 7−→ KM
r (Γ (U,OU )),

where for a ring R, KM
r (R) denotes the r-th Milnor K-group of R.

(L7) (Purity) Let i : Z ↪→ X be a locally closed immersion with Z regular and of pure
codimension c. Then there exists a canonical isomorphism

i∗ : Z(r − c)Z [−2c] ≃ // τ≦r+cRi
!Z(r)X in D(Zét).

In his paper [Li2], Lichtenbaum constructed a candidate of Z(2) using algebraic K-groups.

Theorem 3.1 Lichtenbaum’s Z(2) satisfies

(L1) by definition, (L2) for any X up to 2-torsion,

(L3) for any X smooth of finite type over a field, and any odd m invertible on X,

(L4) for any X smooth of finite type over a field of characteristic p ≧ 3,

(L5) for any X, (L6) for any X smooth of finite type over a field,

(L7) for any X smooth of finite type over a field, and any Z with c = 1, up to
2-torsion.

Proof. See [Li2], [Li3] for details. □
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There are other strong candidates of Z(r) for r ≧ 2:

• Z(r) using Bloch’s cycle complex zr(−, ∗) ([Bl2]). See Definition 3.3 below.

• Z(r) for smooth schemes of finite type over a field [SV]. See also Remark 3.4 below.

See Exercise 4 below for (L0) for Bloch’s Z(r). (L0) for Suslin-Voevodsky’s Z(r) is straight-
forward.

Theorem 3.2 For any X smooth of finite type over a field, Bloch’s Z(r) and Suslin-
Voevodsky’s Z(r) agree in D(Xét), and satisfy

(L1) for degrees > r, (L2)–(L5), (L7) for any Z with c = 1.

The former half of (L6) holds for any X smooth of finite type over a field up to torsion,
and the latter half holds for the same X over an infinite field.

Proof. See [V1] for the comparison of the two candidates over a field. (L1) for degrees
> r follows from [SV] Lemma 3.2, or the Gersten conjecture for higher Chow groups
[Bl2] Theorem 10.1. See [GL2] for (L3) under the Bloch-Kato conjecture for norm-residue
homomorphisms, which has been proved in [V2], [V3]. See [GL1] for (L4); (L5) is obvious
for Suslin-Voevodsky’s Z(r). The assertions on the former half (resp. the latter half) of
(L6) is due to Bloch [Bl2] Theorem 9.1 (resp. Nesterenko-Suslin-Totato [NS], [To] and
Kerz [Ke] Theorem 1.1). See [Ge] Theorem 1.2 (2), (1) for (L2) and (L7). □

In what follows, we review the definitions of Bloch’s cycle complex and Z(r), briefly.

Definition 3.3 (Bloch’s zr(U, ∗) and Z(r)) For each integer q ≧ 0, put

∆q := Spec(Z[t0, t1, . . . , tq]/(t0 + t1 + · · ·+ tq − 1)).

A face of ∆q of codimension c ≧ 1 is a closed subscheme defined as

ti1 = ti2 = · · · = tic = 0 for some 0 ≦ i1 < i2 < . . . < ic ≦ q.

When c = 1, we often identify the face {ti = 0} with the closed immersion ∆q−1 ↪→ ∆q

given by

tj 7−→

{
tj (0 ≦ j < i)

tj−1 (i < j ≦ q).

For a noetherian uni-codimensional (e.g. integral) scheme U , let zr(U, q) be the free abelian
group generated by the set of the integral closed subschemes V ⊂ U ×∆q of codimension
r which meet all faces of U ×∆q properly, that is, for any face F ⊂ ∆q and any irreducible
component T of V ×U×∆q (U × F ), we have

codimU×∆q(T ) ≧ codimU×∆q(V ) + codim∆q(F ).

For each face ∂i : {ti = 0} ↪→ ∆q of codimension 1 (i = 0, 1, . . . , q), we define the coface
map

∂∗i : zr(U, q) −→ zr(U, q − 1)

as the pull-back of algebraic cycles along the effective Cartier divisor

idX × ∂i : {ti = 0} ×X � � // X ×∆q.

Taking the alternating sum

dq :=

q∑
i=0

(−1)i · ∂∗i : zr(U, q) −→ zr(U, q − 1)
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we obtain Bloch’s cycle complex zr(U, ∗) = ((zr(U, q))q≧0, (dq)q≧1), which is in fact a
complex of abelian groups. We define Bloch’s Z(r) onXét (resp. onXzar) by the assignment

U ∈ Ob(Ét/X) 7−→ zr(U, ∗)[−2r]

(resp. U ⊂ X (open) 7−→ zr(U, ∗)[−2r]),

which is a complex of abelian sheaves on Xét (resp. on Xzar).

Exercise 4 Show that Bloch’s Z(r) satisfies (L0) for any regular noetherian scheme X.

Remark 3.4 In [Ge], Geisser proves that for X smooth of finite type over a Dedekind
ring, Bloch’s Z(r) satisfies

(L1) for degrees > r, (L2), (L3), (L7) for any Z with c = 1.

In [CD] §11, Cisinski and Deglise construct a candidate of H∗
zar(X,Z(r)) for any regular

scheme X of finite dimension, generalizing Voevodsky’s construction.

4 Finite-coefficient variant of Lichtenbaum’s axioms

Setting 4.1 Let O be a Dedekind domain, and let K be its fraction field. Let p be a
prime number, and suppose that 0 ⫋ pO ⫋ O. Let X be an integral regular scheme which
is flat of finite type over B := Spec(O) and assume that

(∗1) the divisor Y := (X ⊗Z Fp)red has normal crossings on X.

Let ι and j be as follows:

X[p−1] �
� j // X Y.? _oo ι

We will often write π for the structure morphism X → B.
For a point x ∈ X, we often write ιx for the natural map x ↪→ X (more precisely,

{x} ↪→ X) and write Rι!x for i∗xRι
!
Z , where Z denotes the Zariski closure of {x} in X and

ix (resp. ιZ) denotes the natural map x ↪→ Z (resp. the closed immersion Z ↪→ X). Note
that Rι!x is not the right adjoint of Rιx∗ unless Z = {x}, i.e., x is a closed point of X.

4.1 Axioms and a solution

We introduce here a collection of axioms (T1)–(T5) on a family {Tn(r)}r≧0 of complexes
of étale Z/pnZ-sheaves on X.

(T1) (Trivialization) There is an isomorphism t : j∗Tn(r) ∼= µ⊗rpn .

(T2) (Acyclicity) Tn(r) is concentrated in [0, r], i.e., the q-th cohomology sheaf is zero
unless 0 ≦ q ≦ r.

(T3) (Purity) For a locally closed regular subscheme ιZ : Z ↪→ X of characteristic p and
of codimension c (≧ 1), there is a Gysin isomorphism

WnΩ
r−c
Z,log[−r − c]

≃ // τ≦r+cRι
!
ZTn(r) in Db(Zét,Z/pnZ).

(T4) (Compatibility) For any two points x, y ∈ X satisfying ch(x) = p, x ∈ {y} and
c := codimX(x) = codimX(y) + 1, the connecting homomorphism

δloc : Rr+c−1ιy∗(Rι
!
yTn(r)) −→ Rr+cιx∗(Rι

!
xTn(r))

10



in localization theory agrees with the sheafified boundary map of Galois cohomology
groups due to Kato ([KCT])

∂val :

R
r−c+1ιy∗µ

⊗r−c+1
pn (ch(y) = 0)

ιy∗WnΩ
r−c+1
y,log (ch(y) = p)

 −→ ιx∗WnΩ
r−c
x,log

up to a sign depending only on (ch(y), c), via the Gysin isomorphisms for ιy and ιx.
Here the Gysin isomorphism for ιy with ch(y) = 0 is defined by the isomorphism t
in T1 and Deligne’s cycle class in R2c−2ι!yµ

⊗c−1
pn .

(T5) (Products) There is a unique morphism

Tn(r)⊗L Tn(r
′) −→ Tn(r + r′) in D−(Xét,Z/pnZ)

that extends the natural isomorphism µ⊗rpn ⊗ µ⊗r
′

pn
∼= µ⊗r+r

′

pn on X[p−1].

The axioms (T1)–(T3) and (T5) are Z/pnZ-analogue of (L1)–(L5) and (L7); (T4) is not
among Lichtenbaum’s axioms, but a natural property to be satisfied. Concerning these
axioms, we have the following fundamental result:

Theorem 4.2 ([SH], [Sa5]) If π : X → B is log smooth around Y , then there exists a
family {Tn(r)}r≧0 of objects in Db(Xét,Z/pnZ) satisfying (T1)–(T5). Moreover, for each
r ≧ 0, the pair (Tn(r), t) of Tn(r) and t of (T1) satisfying (T2)–(T4) is unique up to a
unique isomorphism in Db(Xét,Z/pnZ).

The complexes {Tn(r)}r≧0 in Theorem 4.2 are functorial in the following sense:

Theorem 4.3 ([SH], [Sa5]) Let X → B be as in Theorem 4.2. Let O′ be a Dedekind
domain which is flat over O, and let X ′ be an integral regular scheme flat of finite type
over B′ := Spec(O′) such that Y ′ := (X ′ ⊗Z Fp)red has normal crossing on X ′ and such
that π′ : X ′ → B′ is log smooth around Y ′. Let f : X ′ → X be an arbitrary morphism,
and let ψ : X ′[p−1] → X[p−1] be the induced morphism. Put c := dim(XK) − dim(X ′

K′),
where K ′ denotes Frac(O′) and we put XK := X ⊗O K and X ′

K′ := X ′ ⊗O′ K ′. Then:

(T6) (Contravariant functoriality) There exists a unique morphism

f ♯ : f∗Tn(r)X −→ Tn(r)X′ in Db(X ′
ét,Z/pnZ)

that extends the natural isomorphism ψ∗µ⊗rpn
∼= µ⊗rpn on (X ′[p−1])ét.

(T7) (Covariant functoriality) If f is separated of finite type, then there exists a unique
morphism

trf : Rf!Tn(r − c)X′ [−2c] −→ Tn(r)X in Db(Xét,Z/pnZ)

that extends the push-forward map trψ : Rψ!µ
⊗r−c
pn [−2c]→ µ⊗rpn on (X[p−1])ét.

Remark 4.4 f ♯ in (T6) is not an isomorphism in genral, unless f is étale. We do not
need the log smoothness of X nor X ′ for the existence of trf in (T7) with r ≧ dimX.

4.2 Construction of Tn(r)

We start the construction of Tn(r) with the following straight-forward observation, where
we do not need the log-smoothness around Y . For a point x ∈ X, let ix be the natural
map x ↪→ X.
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Lemma 4.5 Assume that there exists an object Tn(r) ∈ Db(Xét,Z/pnZ) satisfying (T1)–
(T4). Then:

(1) There is an exact sequence of sheaves on Xét

Rrj∗µ
⊗r
pn

//
⊕
y∈Y 0

ιy∗WnΩ
r−1
y,log

//
⊕
x∈Y 1

ιx∗WnΩ
r−2
x,log, (4.1)

where each arrow arises from the boundary maps of Galois cohomology groups.

(2) There is a distinguished triangle in Db(Xét,Z/pnZ) of the form

ι∗ν
r−1
Y,n [−r − 1]

g // Tn(r)
t′ // τ≦rRj∗µ

⊗r
pn

σ // ι∗ν
r−1
Y,n [−r]. (4.2)

Here t′ is induced by t of (T1) and the acyclicity property (T2); νr−1
Y,n denotes the

sheaf on Yét defined as the kernel of the second arrow in (4.1) (restricted onto Y ),
and σ denotes the morphism induced by the exact sequence (4.1).

Proof. Consider a localization distinguished triangle

Tn(r)
j∗ // Rj∗j

∗Tn(r)
δlocU,Z // ι∗Rι

!Tn(r)[1]
ι∗ // Tn(r)[1]. (4.3)

We have t : j∗Tr(n) ∼= µ⊗rpn by (T1). On the other hand, one has

τ≦r(ι∗Rι
!Tn(r)[1]) ∼= ι∗ν

r−1
Y,n [−r]

by (T3) and (T4). The map of cohomology sheaves at degree r of δlocU,Z looks like

Rrj∗µ
⊗r
pn −→ ι∗ν

r−1
Y,n , (4.4)

which is compatible with Kato’s boundary maps up to a sign by (T4). Thus the sequence
(4.1) must be a complex and we obtain the morphism σ of (4.2). Finally by (T2), the
map (4.4) must be surjective, which implies the exactness of (4.1) and that we obtain the
triangle (4.2) by truncating and shifting the triangle (4.3) suitably. □

In view of Lemma 4.5, the next step is to show the following proposition without
assuming the existence of Tn(r), where we do not need the log-smoothness around Y yet:

Proposition 4.6 The sequence (4.1) is exact étale locally on X.

Proof. The assertion that the sequence (4.1) is a complex follows from a result of Kato
[KCT] Proposition 1.7, and then one can check the exactness of (4.1) using the Gersten
conjecture for logarithmic Hodge-Witt sheaves for regular schemes in characteristic p ([GS],
[Sh]). See [SH] Lemma 3.2.4 and the first part of Theorem 3.4.2 for details. □

By Proposition 4.6, there exists a morphism

σ : τ≦rRj∗µ
⊗r
pn −→ ι∗ν

r−1
Y,n [−r] in Db(Xét,Z/pnZ)

and the induced homomorphism of cohomology sheaves

H r(σ) : Rrj∗µ
⊗r
pn −→ ι∗ν

r−1
Y,n

is surjective.
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Definition 4.7 For n ≧ 1 and r ≧ 0, we define the desired complex Tn(r) as that fitting
into a distinguished triangle of the same form as (4.2):

ι∗ν
r−1
Y,n [−r − 1]

g // Tn(r)
t′ // τ≦rRj∗µ

⊗r
pn

σ // ι∗ν
r−1
Y,n [−r]. (4.5)

Tn(r) satisfies (T1) (resp. (T2)) by definition (resp. the surjectivity of H r(σ)). Since

HomDb(Xét,Z/pnZ)(Tn(r), ι∗ν
r−1
Y,n [−r − 1]) = 0

for the reason of degrees, the pair (Tn(r), t
′) is unique up to a unique isomorphism in

Db(Xét,Z/pnZ) and g is determined by (Tn(r), t
′). See also Exercise 5 (3) below. If the

residue fields of O of characteritic p are perfect, then we have

Tn(r) ∼= Rj∗µ
⊗r
pn for any r ≧ dimXK + 1

Exercise 5 Let A be an abelian category with enough injective objects, and let N1
f→

N2
g→ N3

h→ N1[1] be a distinguished triangle in D−(A ). Show the following:

(1) Let i : K → N2 be a morphism with g◦i = 0, and assume HomD−(A )(K ,N3[−1]) =
0. Then there exists a unique morphism i′ : K → N1 that i factors through.

(2) Let p : N2 → K be a morphism with p ◦ f = 0 and suppose HomD−(A )(N1[1],K ) =
0. Then there exists a unique morphism p′ : N3 → K that p factors through.

(3) Assume that HomD−(A )(N2,N1) = 0. Then relatively to a morphism h : N3 →
N1[1], the triple (N2, f, g) is unique up to a unique isomorphism, and f is determined
by the pair (N2, g).

4.3 Proof of (T3)–(T7)

In our proof of (T3)–(T7), the following fact plays and essential role:

Theorem 4.8 For any r ≧ 0, the sheaf Rrj∗µ
⊗r
pn on Xét is generated by the image of the

symbol map (
j∗O

×
X[p−1]

)⊗r −→ Rrj∗µ
⊗r
pn .

Proof. See [BK1] Corollary 6.1.1, [H] Theorem 1.6 (1) and [SS2] Theorem 1.1 (see also
[Sa5] Remark 2.4). □

Proof of (T5), (T6). Put U1O×
X := Ker

(
O×
X → ι∗O

×
Y

)
(in the étale topology). We

define a filtration
0 ⊂ U1Rrj∗µ

⊗r
pn ⊂ FRrj∗µ⊗rpn ⊂ Rrj∗µ⊗rpn

on the sheaf Rrj∗µ
⊗r
pn as

U1Rrj∗µ
⊗r
pn := the subsheaf generated étale locally by symbols of the form

{a, b1, . . . , br−1} with a ∈ U1O×
X and bj ∈ j∗O×

X[p−1]
,

FRrj∗µ
⊗r
pn := the subsheaf generated étale locally by U1Rrj∗µ

⊗r
pn and the symbols

{a1, a2, . . . , ar} with aj ∈ O×
X .

We have Rrj∗µ
⊗r
pn /FR

rj∗µ
⊗r
pn
∼= ι∗ν

r−1
Y,n by Theorem 4.8 and [SH] Theorem 3.4.2. Hence

H r(Tn(r)) ∼= FRrj∗µ
⊗r
pn . (4.6)
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Now (T5) follows from (4.6) for r = r, r′ and the following diagram:

Tn(r)⊗L Tn(r
′)

t⊗t //

Exercise 5 (1)

��

0 by (4.6)

��

τ≦rRj∗µ
⊗r
pn ⊗L τ≦r′Rj∗µ

⊗r′
pn

product

��

Tn(r + r′)
t // τ≦r+r′Rj∗µ

⊗r+r′
pn

σ // νr+r
′−1

Y,n [−r − r′]

(T6) also follows from (4.6) and a similar argument. □

Proof of (T3). Let Z be a closed subscheme of Y of pure codimension, and let ιZ : Z ↪→
X be the natural closed immersion. For s ≧ 0, let Csn,Z be the Gersten complex on Zét:

⊕
z∈Z0

iz∗WnΩ
s
z,log

(−1)s−1∂val //
⊕
z∈Z1

iz∗WnΩ
s−1
z,log

(−1)s−1∂val //
⊕
z∈Z2

iz∗WnΩ
s−2
z,log

(−1)s−1∂val // · · ·,

where iz denotes the natural map z ↪→ Z for each z ∈ Z; Zq denotes the set of the points
on Z of codimension q for each q ≧ 0, and the first term is placed in degree 0. Now put
c := codimX(Z). To prove (T3), we consider a composite morphism

ιZ∗ : ιZ∗ν
r−c
Z,n [−r − c]

γ // ι∗ν
r−1
Y,n [−r − 1]

g // Tn(r) in Db(Xét,Z/pnZ),

where we define the left arrow γ as the following zig-zag of complex homomorphisms

ιZ∗ν
r−c
Z,n [−r − c] −→ ιZ∗C

r−c
n,Z [−r − c] −→ ι∗C

r−1
n,Y [−r − 1]

qis←− ι∗νr−1
Y,n [−r − 1]

where we have used a result of Gros-Suwa [GS] to verify that the most right arrow is a
quasi-isomorphism [Sa1] Corollary 2.2.5 (1). Since γ induces an isomorphism

νr−cZ,n [−r − c] ∼= τ≦r+cRι
!
Z(ι∗ν

r−1
Y,n [−r − 1]) in Db(Zét,Z/pnZ)

by [Sa1] Theorem 2.4.2, it remains to check that

τ≦r+cRι
!
Z(ι∗ν

r−1
Y,n [−r − 1]) ∼= τ≦r+cRι

!
ZTn(r) (4.7)

via Rι!Z(g). To prove (4.7), it is enough to show that

τ≦r+cRι
!
Z(τ≦rRj∗µ

⊗r
pn ) = 0. (4.8)

(4.8) is reduced to the n = 1 case by a distinguished triangle

τ≦rRj∗µ
⊗r
pn−1 −→ τ≦rRj∗µ

⊗r
pn −→ τ≦rRj∗µ

⊗r
p −→ (τ≦rRj∗µ

⊗r
pn−1)[1],

and then further reduced to showing that

τ≦r+c−1Rι
!
Z(τ≧r+1Rj∗µ

⊗r
p ) = 0 (4.9)

by a distinguished triangle

τ≦rRj∗µ
⊗r
p −→ Rj∗µ

⊗r
p −→ τ≧r+1Rj∗µ

⊗r
p −→ (τ≦rRj∗µ

⊗r
p )[1],
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Finally the vanishing (4.9) is due to Hagihara [SH] Theorem A.2.6 (see also [Sa5] Proof of
Proposition 2.6). □

Proof of (T4), (T7). See [SH] §6 and [Sa5] Lemma 2.8 for the proof of (T4). The
property (T4) is a key ingredient of (and closely related to) the proof of (T7). (T7) is
proved mainly in the following three steps (cf. Exercise 5 (1)):

Step 1. Show the existence (and the uniqueness) of trf , when f : Z → X is isomorphic
to the projective space PmX → X. This step is in fact a part of the final step of the proof
of (T4). See [SH] Lemma 6.4.1 for details.

Step 2. Show that

HomDb(Xét,Z/pnZ)(Rf!Tn(r − c)Z [−2c], ι∗Rι
!Tn(r)X) = 0.

See [SH] (7.2.1) and [Sa5] Proof of Proposition 2.9 (1) for details.

Step 3. Show that the composite morphism

Rf!Tn(r − c)Z [−2c]
Rj∗(trψ) // Rj∗µ

⊗r
pn

δloc // ι∗Rι
!Tn(r)X [1]

is zero in Db(Xét,Z/pnZ). We use Step 1 to prove this in the general case. See [SH] (7.2.2)
for details. □

Remark 4.9 Assume that the residue field of O of characteritic p are perfect. When
r ≧ d := dimXK + 1, one can construct a canonical trace morphism

trπ : Rπ!Tn(r)X [2(d− 1)] −→ Tn(r + 1− d)B

using the arguments in [JSS] §5.4; we do not need the log smoothness of π there. It is not
so difficult to see the uniqueness of trπ.

The following relative duality theorem is a consequence of Gabber’s absolute purity
[FG] and duality results of [JSS] Theorems 4.6.1, 4.6.2, where de Jong’s alteration theorem
[dJ] plays an important role.

Theorem 4.10 Assume that π : X → B is separated, and that any residue field of O
of characteristic p is perfect. Then (without log smoothness assumption) the adjunction
morphism of trπ is an isomorphism for any r ≧ d = dimXK + 1:

Tn(r)X [2(d− 1)] ∼= Rπ!Tn(r + 1− d)B in D+(Xét,Z/pnZ).

4.4 Comparison with other complexes

Theorem 4.11 ([Sa3], [Sa5]) Let Z(r) be Bloch’s Z(r) considered on Xét. If π : X → B
is log smooth around Y , then there exists a canonical morphism

cycr : Z(r)⊗ Z/pnZ −→ Tn(r) in D−(Xét,Z/pnZ)

which agrees with Bloch’s cycle morphism [Bl3] restricted onto X[p−1].

To construct this cycle morphism, we need the following improvements on Tn(r):

• We extend Tn(r) to a complex of sheaves on a big étale site Cét whose underlying
category C is the category of schemes X over B which satisfies (∗1) of Setting 4.1
and which is log smooth over B around Y .
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• We introduce Tn(r) for r < 0 to formulate a projective bundle formula correctly.

Tn(r) := j!H om
(
µ
⊗(−r)
pn ,Z/pn

)
for r < 0.

• Because Tn(r) is not homotopy invariant for r ≧ 0, we introduce a version of the
complex Tn(r) with log poles along a nice divisor D ⊂ X which is flat over B, and
formulate a certain homotopy invariance using this new complex. See Lemma B.5
below.

• We further prove purity of Tn(r)(X,D) along log poles. See (B9) of Appendix B below.

Let ε : Cét → Czar be the natural continuous map of big sites. We apply the framework
of Appendix B to the complexes {Rε∗Tn(r)}r∈Z on Czar to obtain cycr of Theorem 4.11
for each X ∈ Ob(C ), where we need the property (T4) of T(r) for r ≧ 0 to verify that
{Rε∗Tn(r)}r∈Z satisfies the axiom (B4).

Exercise 6 Show that cycr of Theorem 4.11 is an isomorphism for r = 0, 1.

Conjecture 4.12 ([SH] Conjecture 1.4.1) cycr is an isomorphism for any r ≧ 2.

This conjecture is equivalent to another conjecture that Z(r)⊗Z/pnZ is acyclic at degrees
> r. See [Sa3] Remark 7.2 and [Z] Theorem 1.3. If X is smooth over B then this last
acyclicity conjecture holds true by Geisser [Ge] Theorem 1.2 (5).

Proposition 4.13 If O is a complete d.v.r. and X is smooth over B, then we have

ι∗Tn(r) ∼= Sn(r) in D−(Yét,Z/pnZ)

for any 0 ≦ r ≦ p−2, where the right hand side denotes the syntomic complex of Fontaine-
Messing.

Proof. The assertion follows from a result of Kurihara [Ku] Theorem 1 and the definition
of Tn(r). □

5 Selmer group of Bloch-Kato

For a profinite group G and a topological G-module M , let H∗(G,M) be the continuous
Galois cohomology in the sense of Tate [T3]. For example, H0(G,M) =MG and

H1(G,M) =

{
ϕ : G→M continuous map

∣∣ ∀x, ∀y ∈ G,ϕ(xy) = ϕ(x) + x ·ϕ(y)
}{

ϕ : G→M continuous map
∣∣ ∃a ∈M, ∀x ∈ G,ϕ(x) = x ·a− a

}
by definition. For a field K, we fix a separable closure K of K and put GK := Gal(K/K).
For a topological GK-module M , we write H∗(K,M) for H∗(GK ,M). In this section, we
introduce the Selmer group of Bloch-Kato [BK2] associated with `-adic representations of
GK for local and global fields K.

5.1 Selmer group of local Galois representations

In this subsection, let K be a p-adic field, i.e., a finite field extension of Qp. Let BdR, Bst

and Bcrys be Fontaine’s period rings of de Rham, semistable and crystalline representa-
tions, respectively [F1], [F2]. Let ` be a prime number, and let V be a finite-dimensional
Qℓ-vector space endowed with a continuous Qℓ-linear GK-action. Recall that V is called
a de Rham (resp. semistable, crystalline) representation, if ` = p and

dimQp V = dimK(BdR ⊗QpV )GK(
resp. dimQp V = dimK0(Bst ⊗QpV )GK , dimQp V = dimK0(Bcrys ⊗QpV )GK

)
,
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where K0 denotes the maximal unramified extension of Qp in K.

Definition 5.1 (1) If ` 6= p, then we define

H1
f (K,V ) := Ker(Res : H1(K,V )→ H1(Knr, V )),

where Knr denotes the maximal unramified extension of K (in K).

(2) If ` = p, then we define

H1
f (K,V ) := Ker(H1(K,V )→ H1(K,Bcrys ⊗QpV )).

DR(V ) := (BdR ⊗QpV )GK , and Crys(V ) := (Bcrys ⊗QpV )GK .

Example 5.2 We have

H1(K,Qℓ) = Homcont(GK ,Qℓ), H1(K,Qℓ(1)) ∼= Qℓ ⊗Zℓ lim←−
n≧1

K×/(K×)ℓ
n
.

If ` 6= p, then we have

H1
f (K,Qℓ) = Homcont(Gk,Qℓ) ∼= Qℓ, H1

f (K,Qℓ(1)) = 0.

If ` = p, then

H1
f (K,Qp) = Homcont(Gk,Qp) ∼= Qp, H1

f (K,Qp(1)) ∼= Qp ⊗Zp lim←−
n≧1

O×
K/(O

×
K)p

n
,

where OK denotes the valuation ring of K. The last isomorphism can be explained by an
exponential map.

Exercise 7 Let ξ ∈ H1(K,V ) correspond to an extension of `-adic representations of GK

0 −→ V −→ E −→ Qℓ −→ 0.

Then show the following:

(1) If ` 6= p, then ξ belongs to H1
f (K,V ) if and only if the induced sequence

0 −→ V IK −→ EIK −→ QIK
ℓ (= Qℓ) −→ 0

is exact.

(2) If ` = p, then ξ belongs to H1
f (K,V ) if and only if the induced sequence

0 −→ Crys(V ) −→ Crys(E) −→ Crys(Qp)(= K0) −→ 0

is exact.

Exercise 8 Let G be a profinite group and let N be a closed normal subgroup of G. Let
M be a topological G-module, and put

Z1(N,M) :=
{
ϕ : N →M continuous map

∣∣ ∀x, ∀y ∈ N,ϕ(xy) = ϕ(x) + x ·ϕ(y)
}
,

B1(N,M) :=
{
ϕ : N →M continuous map

∣∣ ∃a ∈M, ∀x ∈ N,ϕ(x) = x ·a− a
}
.

Then show the following:

(1) For ϕ ∈ Z1(N,M) and g ∈ G, define a map g ·ϕ : N →M by

(g ·ϕ)(x) := g ·(ϕ(g−1xg)).

Then g ·ϕ belongs to Z1(N,M), and the map

γ : G× Z1(N,M)→ Z1(N,M), (g, ϕ) 7→ g ·ϕ

defines a left G-action on Z1(N,M).
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(2) B1(N,M) is a left G-submodule of Z1(N,M).

(3) N acts trivially on H1(N,M) via γ, i.e., H1(N,M) is a left G/N -module.

Exercise 9 Let G be a profinite group and let N be a closed normal subgroup of G. Put
Γ := G/N . Let M be a topological G-module. Then show that there is an inflation-
restriction exact sequence

0 // H1(Γ,MN )
Inf // H1(G,M)

Res // H1(N,M)Γ . (5.1)

Let k be the residue field of K, and let IK = Gal(K/Knr) be the inertia subgroup of
GK . We have GK/IK ∼= Gk.

Proposition 5.3 (1) If ` 6= p, then we have

H1(k, V IK ) = H1
f (K,V ).

(2) If ` = p, then we have
H1(k, V IK ) ⊂ H1

f (K,V ).

I learned the following proof of (2) from Kentaro Nakamura.

Proof. (1) follows immediately from the exact sequence (5.1) for (G, I,M) = (GK , IK , V ).
(2) follows from a commutative diagram

H1(k, V IK )
Inf //

Inf
��

0

))

H1(K,V )

��
H1(K,V IK ) // H1(K,Bcrys ⊗Qp (V

IK )) // H1(K,Bcrys ⊗QpV )

and the fact that the unramified representation is crystalline [FO] Proposition 9.3. □

Theorem 5.4 ([BK2] Proposition 3.8) Put V ∗ := HomQℓ(V,Qℓ). If ` = p, assume
that V is a de Rham representation. Then under the non-degenerate pairing

H1(K,V )×H1(K,V ∗(1)) −→ H2(K,Qℓ(1)) ∼= Qℓ

the subspaces H1
f (K,V ) and H1

f (K,V
∗(1)) are the exact annihilators of each other, where

V ∗(1) := V ∗ ⊗Qp Qp(1).

Example 5.5 In the case V = Qp, under the non-degenerate pairing

Homcont(GK ,Qp)×
(
Qp ⊗Zp lim←−nK

×/(K×)p
n) −→ Qp,

Homcont(Gk,Qp) and Qp ⊗Zp lim←−n O
×
K/(O

×
K)p

n
are the exact annihilators of each other.

5.2 Sketch of Theorem 5.4

We omit the case ` 6= p and include a sketch of the case ` = p. Note first that DR(V ∗) ∼=
DR(V )∗ by [F1] 3.10 Théorème (v), so that V ∗ is also de Rham. Our task is to check

(a) dimQp H
1
f (K,V ) + dimQp H

1
f (K,V

∗(1)) = dimQp H
1(K,V ),

(b) H1
f (K,V )×H1

f (K,V
∗(1)) goes to 0 under the pairing.

We omit (b) and explain (a) in what follows. There is a short exact sequence of topological
GK-modules

0 // Qp
α // Bcrys ⊕B+

dR

β // Bcrys ⊕BdR
// 0,
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where α(x) = (x, x) and β(x, y) = (x − φ(x), x − y) ([BK2] Proposition 1.17), and B+
dR

denotes the valuation ring of BdR. Tensoring this exact sequence with V and taking
continuous Galois cohomology, we obtain the following exact sequence of finite-dimensional
Qp-vector spaces:

0 −→ V GK −→ Crys(V )⊕DR(V )0 −→ Crys(V )⊕DR(V )
δ−→ H1

f (K,V ) −→ 0, (5.2)

where DR(V )0 := (B+
dR ⊗QpV )GK , and we have used the assumption that V is de Rham

to verify the surjectivity of δ. See [BK2] Lemma 3.8.1 for details, and see also loc. cit.
Remark 1.18 for a topological remark. By the exact sequence (5.2), we have

dimQp H
1
f (K,V ) = dimQp V

GK + dimQp(DR(V )/DR(V )0). (5.3)

Applying this formula for V ∗(1), we obtain

dimQp H
1
f (K,V

∗(1)) = dimQp V
∗(1)GK + dimQp(DR(V ∗)/DR(V ∗)1),

where
DR(V ∗)1 := (B+

dR ⊗Qp V
∗(1))GK .

On the other hand, by Tate’s formula, we have

dimQp V
GK − dimQp H

1(K,V ) + dimQp V
∗(1)GK = −[K : Qp] · dimQp V.

Since V is de Rham by assumption, the right hand side agrees with − dimQp DR(V ).
Therefore in order to prove (a), it remains to check that

dimK DR(V )0 + dimK DR(V ∗)1 = dimK DR(V ).

Indeed, we have

dimK DR(V ) =
∑
i∈Z

dimK H
0(K,Cp(i)⊗QpV )

=
∑
i≧0

dimK H
0(K,Cp(i)⊗QpV ) +

∑
i≦−1

dimK H
0(K,Cp(i)⊗QpV )

⋆
=

∑
i≧0

dimK H
0(K,Cp(i)⊗QpV ) +

∑
i≧1

dimK H
0(K,Cp(i)⊗QpV

∗)

= dimK DR(V )0 + dimK DR(V ∗)1,

where the first and the last equality is explained in [BK2] Proof of Lemma 3.8.1.

Exercise 10 Show the equality ?.

5.3 Selmer group of global Galois representations

In this subsection, let K be a number field, i.e., a finite field extension of Q. Let P be
the set of the places of K. For each place v of K, let Kv for the completion of K at v;
we fix a K-homomorphism K → Kv. Let p be a prime number, and let V be a finite-
dimensional Qp-vector space endowed with a continuous Qp-linear GK-action. We assume
the following:

Condition 5.6 There exists a finite set S of places of K including {v ∈ P | v|p or v|∞}
such that V is unramified outside of S, i.e., for any place v 6∈ S, the inertia subgroup Iv
of the decomposition group Dv = Gal(Kv/Kv) acts trivially on V .

Definition 5.7 We fix a finite set S of places of K as in Condition 5.6, and define

H1
f (K,V ) := Ker

(
H1(GS , V ) −→

⊕
v∈S

H1(Kv, V )

H1
f (Kv, V )

)
.
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Here GS := Gal(KS/K) with KS the maximal extension of K which is unramified outside
of S. The space H1(GS , V ) is finite-dimensional over Qp, so is H1

f (K,V ).

Exercise 11 Show that H1
f (K,V ) is independent of the choice of S as in Condition 5.6.

Example 5.8 We have

H1
f (K,Qp) = 0, H1

f (K,Qp(1)) ∼= Qp ⊗O×
K .

Exercise 12 Let E be an elliptic curve over K, and let Sel(E/K)(p) be the p-primary
Selmer group:

Sel(E/K)(p) := Ker

(
H1(K,E{p}) −→

∏
v∈P

H1(Kv, E{p})
E(Kv)⊗Qp/Zp

)
,

where E{p} denotes the p-primary torsion part of E(K). Put

VE := Qp ⊗Zp lim←−
n≧1

pnE,

where pnE denotes the pn-torsion part of E(K). Is there a natural map

H1
f (K,VE) −→ Sel(E/K)(p)?

If so, is the cokernel finite?

Proposition 5.9 ([J] Lemma 4) Let XK be a proper smooth variety over K and put
V i := H i

ét(XK ,Qp). Let S be the set of the places v ∈ P which divides p or ∞, or at which
XK has bad reduction. Then the inflation map

Inf : H1(GS , V
i(r)) −→ H1(K,V i(r))

is bijective for any (i, r) with i−2r 6= −2. In particular, H1(K,V i(r)) is finite-dimensional
over Qp for the same (i, r).

Proof. Consider the inflation-restriction exact sequence

0 // H1(GS , V
i(r))

Inf // H1(K,V i(r))
Res // H1(KS , V

i(r))GS .

Noting that GKS = Gal(K/KS) is the smallest closed normal subgroup of GK containing
Iv for all v 6∈ S, we have

H1(KS , V
i(r))GS = Homcont(GKS , V

i(r))GS � � //Res ∏
v ̸∈S

Homcont(Iv, V
i(r))Γv .

where Γv := Dv/Iv. For any v 6∈ S, we have v6 |p and

Homcont(Iv, V
i(r))Γv ∼= Homcont(Zp(1), V i(r))Γv ∼= V i(r − 1)Γv ,

which is zero by Deligne [D] Corollary 3.3.9 and the assumption that i 6= 2(r − 1). □

Remark 5.10 By Proposition 5.9, we have

H1
f (K,V

i(r)) = Ker

(
H1(K,V i(r)) −→

⊕
v∈S

H1(Kv, V
i(r))

H1
f (Kv, V i(r))

)
if 2r−i−1 6= 1, i.e., i−2r 6= −2. This fact corresponds to the conjecture that CHr(XK)hom
(resp. CHr(XK , 2r − i − 1)) is finitely generated modulo torsion if 2r − i − 1 = 0 (resp.
2r − i− 1 ≧ 2).
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Conjecture 5.11 ([BK2] Conjecture 5.3) Let XK be a proper smooth variety over K.
Then the p-adic Abel-Jacobi maps

aj2r,r : CHr(XK)hom −→ H1(K,V 2r−1(r))

aj2r−i,r : CHr(XK , i) −→ H1(K,V 2r−i−1(r)) (i ≧ 1)

induce isomorphisms

CHr(XK)hom ⊗Qp
∼= H1

f (K,V
2r−1(r))

CHr(XK , i)Z ⊗Qp
∼= H1

f (K,V
2r−i−1(r)) (i ≧ 1),

where CHr(XK , i)Z denotes the integral part of CHr(XK , i)⊗Q ∼= Ki(XK)(r), cf. [Sch].

Conjecture 5.11 extends the Tate conjecture to ‘higher extensions’, and the first part of
the Tamagawa number conjecture.

5.4 Local-global maps

In this subsection, K remains to be a number field. Let P be the set of all places of K.

Setting 5.12 Let T be a free Zp-module of finite rank on which GK acts continuously.
Put V := Qp ⊗Zp T , and assume

(i) There exists a finite set S of places of K containing all places dividing p · ∞ such
that the action of GK is unramified outside of S.

Put
H1
f (K,T ⊗Qp/Zp) := Im(H1

f (K,V )→ H1(K,T ⊗Qp/Zp)).
For each v ∈ P , put

H1
f (Kv, T ⊗Qp/Zp) := Im(H1

f (Kv, V )→ H1(Kv, T ⊗Qp/Zp)),

and let Dv ⊂ GK be the decomposition group of v, which is dependent on the (fixed)
K-homomorphism K → Kv. Let kv be the residue field of Kv. Let α and β be as follows:

α :
H1(K,T ⊗Qp/Zp)
H1
f (K,T ⊗Qp/Zp)

−→
⊕
v∈P

H1(Kv, T ⊗Qp/Zp)
H1
f (Kv, T ⊗Qp/Zp)

,

β : H2(K,T ⊗Qp/Zp) −→
⊕
v∈P

H2(Kv, T ⊗Qp/Zp),

where we have to note that H1
f (Kv, T ⊗ Qp/Zp) = H1(kv, T ⊗ Qp/Zp) for any v 6∈ S, to

verify the well-definedness of α.

Proposition 5.13 ([BK2] Lemma 5.16) Ker(α) is finite, Coker(β) = 0, and Coker(α)
and Ker(β) are cofinitely generated over Zp. Assume further that

(ii) V is a de Rham representation of Dv at any v ∈ S with v|p.

(iii) V Dv = 0 for any v ∈ S with v6 |p · ∞, and Crys(V |Dv)φv=1 = 0 for any v ∈ S with
v|p. Here for each v|p, Crys(V |Dv) denotes (Bcrys ⊗Qp V )Dv and ϕv denotes the
Frobenius operator.

(iv) V (−1)Dv = 0 for any v ∈ P ∖ S.

Then we have

dimQp H
1
f (K,V ) = [K : Q] · dimQp V − dimQp DR(V )0 − dimQp V

+

+ corankZpCoker(α) + corankZpKer(β),
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where DR(V )0 denotes the direct sum of (B+
dR ⊗Qp V )Dv for all v|p and V + denotes the

direct sum of V Dv for all v|∞.

Proof. Take an open subset U ⊂ B ∖ S, and consider restriction homomorphisms

αU :
H1(U, T ⊗Qp/Zp)
H1
f (K,T ⊗Qp/Zp)

−→
⊕

v∈P∖U

H1(Kv, T ⊗Qp/Zp)
H1
f (Kv, T ⊗Qp/Zp)

,

βU : H2(U, T ⊗Qp/Zp) −→
⊕

v∈P∖U
H2(Kv, T ⊗Qp/Zp).

Note that βU (hence β) is surjective by Tate duality [T1]. We first claim that we have
Ker(αU ) = Ker(α) and an exact sequence

0 −→ Coker(αU ) −→ Coker(α) −→ Ker(βU ) −→ Ker(β) −→ 0. (5.4)

Indeed, there is a commutative diagram with exact columns

0

��

0

��

Ker(αU ) // H
1(U, T ⊗Qp/Zp)

H1
f (K,T ⊗Qp/Zp)

αU //

��

⊕
v ̸∈U

H1(Kv, T ⊗Qp/Zp)
H1
f (Kv, T ⊗Qp/Zp)

//

��

Coker(αU )

Ker(α) // H
1(K,T ⊗Qp/Zp)

H1
f (K,T ⊗Qp/Zp)

α //

��

⊕
v∈P

H1(Kv, T ⊗Qp/Zp)
H1
f (Kv, T ⊗Qp/Zp)

//

��

Coker(α)

⊕
v∈U

H2
v (U, T ⊗Qp/Zp)

∼

��

⊕
v∈U

H1(Kv, T ⊗Qp/Zp)
H1
f (Kv, T ⊗Qp/Zp)

0

��

Ker(βU ) // H2(U, T ⊗Qp/Zp)
βU //

��

⊕
v ̸∈U

H2(Kv, T ⊗Qp/Zp) //

��

0

Ker(β) // H2(K,T ⊗Qp/Zp)
β //

��

⊕
v∈P

H2(Kv, T ⊗Qp/Zp) //

��

0

⊕
v∈U

H3
v (U, T ⊗Qp/Zp)

∼

��

⊕
v∈U

H2(Kv, T ⊗Qp/Zp)

��
0 0

We obtain the above claims by a diagram chase on this diagram. Since H∗
c (U, T ⊗Qp/Zp)

is cofinitely generated over Zp, we see that Ker(αU ) = Ker(α) is finite by the definition of
H1
f (K,V ) and that Coker(αU ) and Ker(βU ) (hence Coker(α) and Ker(β)) are cofinitely

generated over Zp. See [BK2] Proof of Lemma 5.16 for the dimension formula. □
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Definition 5.14 LetXK be a proper smooth variety overK. When T = H̃ i(XK ,Zp(r)) :=
H i(XK ,Zp(r))/H

i(XK ,Zp(r)){p}, then Ker(α) is called the p-Tate-Shafarevich group of
the motive H i(XK)(r) and often denoted by III(p)(H i(XK)(r)).

Conjecture 5.15 ([BK2] Proposition 5.14 (2)) Assume that T = H̃ i(XK ,Zp(r)) with
i− 2r ≦ −3. Then Coker(α) is finite and isomorphic to HomGK (T,Qp/Zp(1))∨.

By Jannsen [J] p. 337 Theorem 3 (d), this conjeture for T is equivalent to the following
conjecture for T ∗(1) = HomZp(T,Zp(1)):

Conjecture 5.16 ([Fl] Conjecture 1.6) Assume that T = H̃ i(XK ,Zp(r)) with i−2r ≧
0. Then we have H1

f (K,V ) = 0.

Example 5.17 Conjecture 5.15 holds true for T = Zp(2) (Moore 1968, Garland 1971),
and T = Zp(r) with r ≧ 3 (Borel 1974, Soulé 1979, Kahn unpublished).

Example 5.18 Let E be an elliptic curve over Q with complex multiplication, and assume
that p is regular for E in the sense of Soulé [So2] 3.3.1. Then Conjecture 5.15 holds true
for T = H1(EQ,Zp(2)) by [BK2] Propositions 7.4 and 7.5.

6 Filtration on the direct image

The sections 6–8 are devoted to the proof of Theorem 8.2 below.

Setting 6.1 Let O, B,K, p,X, Y, ι and j be as in Setting 4.1. In this section we further
assume that

(∗2) the structure morphism π : X → B is separated and surjective, and any residue field
of O of characteristic p is perfect.

We do not assume the log smoothness of π in this section. Unless indicated otherwise, all
cohomology groups of schemes are taken over the étale topology.

6.1 The complex H∗(X,Tn(r))

Lemma 6.2 For any r ≧ d := dimX, we have

Rπ∗Tn(r)X ∼= RH omB,Z/pnZ(Rπ!Tn(d− r)X ,Tn(1)B)[2− 2d]

in D+(Bét,Z/pnZ), where Tn(s) := j!H om
(
µ
⊗(−s)
pn ,Z/pn

)
for s < 0.

Proof. Since r ≧ d, there exists a canonical isomorphism

Tn(r)X ∼= RH omX,Z/pnZ(Tn(d− r)X ,Tn(d)X) in D+(Xét,Z/pnZ),

which is obvious if r = d. Otherwise, this isomorphism follows from the isomorphism

Tn(r)X ∼= Rj∗µ
⊗r
pn (for r > d, by the assumption (∗2))

and the adjunction between j! and Rj∗. Hence we have

Rπ∗Tn(r)X ∼= Rπ∗RH omX,Z/pnZ(Tn(d− r)X , Rπ!Tn(1)B[2− 2d])

∼= RH omB,Z/pnZ(Rπ!Tn(d− r)X ,Tn(1)B)[2− 2d]

in D+(Bét,Z/pnZ) by Theorem 4.10 and the adjunction between Rπ! and Rπ∗. □
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Definition 6.3 For each r ≧ d and i ∈ Z, we define

H≦i(X,Tn(r)) := RH omB,Z/pnZ(τ≧2(d−1)−iRπ!Tn(d− r)X ,Tn(1)B)[2− 2d],

Hi(X,Tn(r)) := RH omB,Z/pnZ(R
2(d−1)−iπ!Tn(d− r)X ,Tn(1)B),

which are objects of D+(Bét,Z/pnZ). See §4.4 for the definition of Tn(s) for s < 0.

Note that Hi(X,Tn(r)) is not the sheaf Riπ∗Tn(r), but a complex of sheaves. These
objects are related by a distinguished triangle of the form

H≦i−1(X,Tn(r)) −→ H≦i(X,Tn(r)) −→ Hi(X,Tn(r))[−i] −→ H≦i−1(X,Tn(r))[1].

By Lemma 6.2 and the proper base change theorem (for Rπ!), we have

H≦i(X,Tn(r)) ∼=

0 (i ≦ −1)

Rπ∗Tn(r)X (i ≧ 2(d− 1))

Hi(X,Tn(r)) = 0 unless 0 ≦ i ≦ 2(d− 1).

Thus the data {H≦i(X,Tn(r))}i≦2(d−1) forms a finite ascending filtration on the complex

H≦2(d−1)(X,Tn(r)) ∼= Rπ∗Tn(r)X , and yield a spectral sequence

Ea,b2 = Ha(B,Hb(X,Tn(r))) =⇒ Ha+b(X,Tn(r)), (6.1)

which relates the étale cohomology of B with coefficients in H∗(X,Tn(r)) to the étale
cohomology of X with coefficients in Tn(r).

Example 6.4 ([Sa5] Proposition 3.4) Assume that π : X → B is proper and that the
generic fiber XK is geometrically connected over K. Let U ⊂ B[p−1] be an open subset
for which XU = X ×B U → U is smooth. Then

(1) Hi(X,Tn(r))|U is the locally constant constructible sheaf placed in degree 0, associ-
ated with the π1(U, η)-module H i(XK , µ

⊗r
pn ), where η := Spec(K).

(2) The trace morphism trX/B : Rπ∗Tn(r)X [2(d − 1)] → Tn(r + 1 − d)B induces an
isomorphism

H2(d−1)(X,Tn(r)) ∼= Tn(r + 1− d)B.

6.2 Local structure of H∗(X,Tn(r))

For a closed point v ∈ B, we often write Yv (resp. Yv, Xv) for (X ×B v)red (resp. X ×B v,
X ×B Bsh

v ), where Bsh
v denotes the spectrum of the strict henselization of Ov = OB,v at

its maximal ideal.

Proposition 6.5 Let v be a closed point on B, and let q and m be integers. We write
ιv for the closed immersion v ↪→ B and jv for the open immersion B∖ v ↪→ B. Assume
r ≧ d. Then

(1) We have Rqι!vH
i(X,Tn(r)) = 0 unless q = 2, and a canonical isomorphism

(R2ι!vH
i(X,Tn(r)))v ∼= H i+2

Yv
(Xv,Tn(r)).

(2) We have
(Rqjv∗j

∗
vH

i(X,Tn(r)))v ∼= Hq(Iv,H
i(XK , µ

⊗r
pn )),

which is zero unless q = 0 or 1 by the fact that cdp(Iv) = 1.
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Proof. (1) By the adjunction between ιv∗, we have

Rι!vH
i(X,Tn(r)) = Rι!vRH omB,Z/pnZ(R

2(d−1)−iπ!Tn(d− r)X ,Tn(1)B)
∼= RH omv,Z/pnZ(ι

∗
vR

2(d−1)−iπ!Tn(d− r)X , Rι!vTn(1)B)
∼= RH omv,Z/pnZ(R

2(d−1)−iπYv/v!(ι
∗
YvTn(d− r)X),Z/p

nZ)[−2],

where ιYv denotes the closed immersion Yv ↪→ X, and we have used the proper base change
theorem for Rπ! and the purity for Tn(1)B in the last isomorphism. The assertion now
follows from the fact that there is a canonical non-degenerate pairing of finite groups

H2(d−1)−i
c (Yv, ι

∗
YvTn(d− r))×H

i+2
Yv

(Xv,Tn(r)) −→ H2d
Yv , c(Xv,Tn(d))

Tr−→ Z/pnZ

([Sa5] Corollary 2.11) and the fact that Z/pnZ is an injective Z/pnZ-module, where the
subscript c means the étale cohomology with compact support.

(2) We may assume that B is local with closed point v, without loss of generality. Put
η := B ∖ v, which is the generic point of B. The sheaf j∗vR

2(d−1)−iπ!Tn(d− r)X is locally
constant on ηét, and the object

j∗vH
i(X,Tn(r)) = RH omη,Z/pnZ(j

∗
vR

2(d−1)−iπ!Tn(d− r), µpn)

is isomorphic to the sheaf (on ηét) associated with H i(XK , µ
⊗r
pn ) placed in degree 0 by the

Poincaré duality. The assertion follows from this fact. □

Corollary 6.6 Hi(X,Tn(r)) is concentrated in [0, 2], and Rπ∗Tn(r)X is concentrated in
[0, 2d].

6.3 Standard finiteness

Proposition 6.7 Let m and n be positive integers. Then:

(1) There exists a unique morphism pm : Tn(r)→ Tn+m(r) in D
b(Xét) that extends the

natural inclusion µ⊗rpn ↪→ µ⊗r
pn+m

on X[p−1]ét.

(2) There exists a unique morphism Rm : Tn+m(r)→ Tn(r) in D
b(Xét) that extends the

natural surjection µ⊗r
pn+m

↠ µ⊗rpn on X[p−1]ét.

(3) There exists a canonical Bockstein morphism δn,m : Tn(r) → Tm(r)[1] in Db(Xét)
satisfying

(3.1) δn,m extends the Bockstein morphism µ⊗rpn → µ⊗rpm [1] in D
b(X[p−1]ét) associated

with the short exact sequence 0→ µ⊗rpm → µ⊗r
pm+n → µ⊗rpn → 0 on X[p−1]ét.

(3.2) δn,m fits in to an anti-distinguished triangle

Tm(r)
pn

// Tm+n(r)
Rm

// Tn(r)
δn,m // Tm(r)[1].

Proof. See [SH] Proposition 4.3.1 and [Sa5] Proposition 2.5. □

Setting 6.8 In what follows, we assume that O and K = Frac(O) satisfy either of the
following conditions:

(L) K is a non-archimedean local field of characteristic 0, i.e., a finite field extension of
Qℓ for some prime number `, and O is the valuation ring of K.

(G) K is an algebraic number field, i.e., a finite field extension of Q, and B = Spec(O)
is an open subset of Spec(OK), where OK denotes the integer ring of K.
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Proposition 6.9 There is a canonical isomorphism

Hq(B,Hi(X,Tn(r))) ∼= ExtqB(R
2(d−1)−iπ!Tn(d− r),Gm) (6.2)

for any q, i ≧ 0, n ≧ 1 and r ≧ d. Moreover, Hq(X,Tn(r)) and Hq(B,Hi(X,Tn(r))) are
finite for the same (q, i, n, r).

Proof. The first assertion follows from the definition of Hi(X,Tn(r)) and the canonical
isomorphism

RH omB(Z/pnZ,Gm) ∼= Tn(1),

which is a variant of Exercise 6 for r = 1. The finiteness of ExtqB(R
2(d−1)−iπ!Tn(d−r),Gm)

follows from the constructibility of R2(d−1)−iπ!Tn(d− r) and the finiteness of Ext-groups
in the Artin-Verdier duality [Ma] (2.4). The finiteness of Hq(X,Tn(r)) follows from the
spectral sequence (6.1). □

For r ≧ d, we introduce the following groups:

Hq(X,Zp(r)) := lim←−
n≧1

Hq(X,Tn(r)), Hq(X,Qp(r)) := Hq(X,Zp(r))⊗Zp Qp,

Hq(X,Qp/Zp(r)) := lim−→
n≧1

Hq(X,Tn(r)),

Hq(B,Hi(X,Zp(r))) := lim←−
n≧1

Hq(B,Hi(X,Tn(r))),

Hq(B,Hi(X,Qp(r))) := Hq(B,Hi(X,Zp(r)))⊗Zp Qp,

Hq(B,Hi(X,Qp/Zp(r))) := lim−→
n≧1

Hq(B,Hi(X,Tn(r))).

Here the transition maps in the definition of Hq(B,Hi(X,Zp(r))) are defined by the com-
mutative diagram

Hq(B,Hi(X,Tn+1(r))) //

∼=(6.2)
��

Hq(B,Hi(X,Tn(r)))

∼=(6.2)
��

ExtqB(R
2(d−1)−iπ!Tn+1(d− r),Gm) // ExtqB(R

2(d−1)−iπ!Tn(d− r),Gm)

with the bottom arrow induced by p : Tn(d − r) ↪→ Tn+1(d − r) of Proposition 6.7. The
transition maps in the definition of Hq(B,Hi(X,Qp/Zp(r))) are defined by the commuta-
tive diagram

Hq(B,Hi(X,Tn(r))) //

∼=(6.2)
��

Hq(B,Hi(X,Tn+1(r)))

∼=(6.2)
��

ExtqB(R
2(d−1)−iπ!Tn(d− r),Gm) // ExtqB(R

2(d−1)−iπ!Tn+1(d− r),Gm)

with the bottom arrow induced by R1 : Tn+1(d − r) ↠ Tn(d − r) of Proposition 6.7.
Taking the projective limit of the spectral sequence (6.1) with respect to n ≧ 1, we obtain
a convergent spectral sequence of Zp-modules

Ea,b2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)). (6.3)

This spectral sequence yields a spectral sequence of Qp-vector spaces:

Ea,b2 = Ha(B,Hb(X,Qp(r))) =⇒ Ha+b(X,Qp(r)). (6.4)

Theorem 6.10 (1) Hq(X,Zp(r)) and Hq(B,Hi(X,Zp(r))) are finitely generated over
Zp for any q, i ∈ Z and any r ≧ d.
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(2) Hq(X,Qp/Zp(r)) and Hq(B,Hi(X,Qp/Zp(r))) are cofinitely generated over Zp for
any q, i ∈ Z and any r ≧ d.

(3) We have rankZp H
q(B,Hi(X,Zp(r))) = corankZp H

q(B,Hi(X,Qp/Zp(r))) for any
q, i ∈ Z and any r ≧ d.

Proof. We explain only the case (G); the case (L) is similar and left to the reader.
The assertions for Hq(X,Zp(r)) and Hq(X,Qp/Zp(r)) follow from a standard argument
using Propositions 6.7 and 6.9. By the Artin-Verdier duality ([Ma], [KCT] §3), the as-
sertions for Hq(B,Hi(X,Zp(r))) and Hq(B,Hi(X,Qp/Zp(r))) are reduced to those for

H3−q
c (B,Ri

′
π!Qp/Zp(d− r)) and H3−q

c (B,Ri
′
π!Zp(d− r)) with i′ := 2(d− 1)− i, which are

standard and omitted. □

7 Comparison over local fields

Setting 7.1 Let O, B,K, p and X be as in Setting 4.1. Fix another prime number `
independently of p. In this section, we assume [K : Qℓ] <∞ and that O is the valuation
ring of K. Let k be the residue field of K, and let IK = Gal(K/Knr) be the inertia
subgroup of GK . Put Y := (X ⊗O k)red and Y := Y ⊗k k. Note that Y defined here is
different from that in Setting 4.1 unless ` = p. We often write v for the closed point of B,
i.e., v = Spec(k).

We assume that π : X → B is proper and that XK := X ⊗O K is geometrically
connected over K. We assume further that π : X → B is log smooth around Y , if ` = p
and r = d. Unless indicated otherwise, all cohomology groups of schemes are taken over
the étale topology. For each i, q ≧ 0 and r ≦ 0, we put

V i := H i(XK ,Qp) and Hq(B,Riπ∗Qp(r)) := Qp ⊗Zp lim←−
n≧1

Hq(B,Riπ∗Tn(r)).

For i ≧ 0 and r ∈ Z, we put

H1
/f (K,V

i(r)) := H1(K,V i(r))/H1
f (K,V

i(r)).

Theorem 7.2 For any i ≧ 0 and r ≧ d := dimX, we have

Hq(B,Hi(X,Qp(r))) =

{
H1
f (K,V

i(r)) (q = 1)

0 (q 6= 1).

Moreover, if ` 6= p, then we have H1(B,Hi(X,Qp(r))) = 0 for any r ≧ d and i ≧ 0.

Corollary 7.3 The spectral sequence (6.4) degenerates at E2, and we have

H i(X,Qp(r)) ∼= H1
f (K,V

i−1(r))

for any i ≧ 0 and r ≧ d.

Remark 7.4 If ` 6= p, then we obtain H i(X,Qp(r)) = 0 for any r ≧ d and i ≧ 0, from
the proper base change theorem and a theorem of Deligne [D] Corollary 3.3.4. Theorem
7.2 refines this fact.

7.1 Reduction to dual statements

We first check that Theorem 7.2 is reduced to the following:
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Theorem 7.5 Assume that π : X → B is log smooth around Y , if ` = p and s = 0. Then
for any i ≧ 0 and s ≦ 0, we have V i(d− s)GK = 0 and

Hq(B,Riπ∗Qp(s)) ∼=


V i(s)GK (if q = 0)

H1
f (K,V

i(s)) (if q = 1)

0 (otherwise)

In the case s < 0, it is easy to see that Hq(B,Riπ∗Qp(s)) = 0 for any q and i. In this case
Theorem 7.5 asserts that the groups on the right hand side are zero.

“Theorem 7.5⇒Theorem 7.2”. Consider the localization long exact sequence with
(q′, i′, s) := (3− q, 2d− 2− i, d− r)

· · · // Hq′
v (B,Ri

′
π∗Qp(s)) // Hq′(B,Ri

′
π∗Qp(s)) // Hq′(K,V i′(s)) // · · · .

By this exact sequence and Theorem 7.5, we have

Hq′
v (B,R

i′π∗Qp(s)) ∼=


0 (q′ 6= 2, 3)

H1
/f (K,V

i′(s)) (if q′ = 2)

H2(K,V i′(s)) (if q′ = 3).

The first assertion of Theorem 7.2 follows from this fact, Theorem 5.4 and the local Tate
duality for cohomology of B:

Hq′
v (B,R

i′π∗Qp(s))×Hq(B,Hi(X,Qp(r))) −→ H3
v (B,H

2d−2(X,Qp(d))) ∼= Qp,

where the last isomorphism is obtained from the relative trace isomorphism in Exam-
ple 6.4 (2) and the trace isomorphism H3

v (B,Tn(1))
∼= Z/pnZ. The second assertion of

Theorem 7.2 follows from the vanishing V i(r)GK = 0 and the equality

dimQp(V
i(r)GK ) = dimQp H

1(k, V i(r)IK ).

Thus Theorem 7.2 is reduced to Theorem 7.5. □

Because Riπ∗Tn(s)v ∼= H i(Y ,Tn(s)|Y ), we see that the second assertion of Theorem 7.5
is reduced to the computations on the cospecialization map

cospi,s : H i(Y ,Qp(s)) := Qp ⊗Zp lim←−
n

H i(Y ,Tn(s)|Y ) −→ V i(s)IK .

7.2 The case ℓ ̸= p

In this subsection, we give an outline of a proof of Theorem 7.5, assuming ` 6= p.

Proposition 7.6 Let i ≧ 0 be an integer.

(1) We have V i(r)GK = 0 for any r ≧ d.

(2) The cospecialization map

cospi,s : H i(Y ,Qp(s)) −→ V i(s)IK

induces an isomorphism

Hq(k,H i(Y ,Qp(s))) ∼= Hq(k, V i(s)IK )

for q = 0, 1 and any s ≦ 0.

Outline of Proof. When X has good reduction, the assertions of Proposition 7.6 follows
from the proper smooth base change theorem and a theorem of Deligne [D] 3.3.9. The
general case is reduced to the case that X has strict semi-stable reduction by the alteration
theorem of de Jong [dJ] and a standard norm argument using the absolute purity [FG].
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To explain the outline of our proof of the strict semi-stable case, we introduce some
notation. Let j be the canonical map XK → Xnr := X ⊗O Onr, and let ι be the closed
immersion Y → Xnr. By the properness of π : X → B, we have the following Leray
spectral sequence for any n ≧ 1:

Ea,b2 = Ha(Y , ι∗Rbj∗Z/pnZ) =⇒ Ha+b(XK ,Z/p
nZ). (7.1)

By Rapoport-Zink [RZ] Theorem 2.23, we have the following facts:

• The E2-terms of are finite.

• IK acts trivially on the E2-terms.

We obtain a spectral sequence

Ea,b2 = Ha(Y , ι∗Rbj∗Qp) =⇒ Ha+b(XK ,Qp) = V a+b (7.2)

from (7.1) by taking the projective limit with respect to n ≧ 1 and the tensor product
with Qp over Zp. Note that the canonical map Ei,02 = H i(Y ,Qp) → Ei = V i agrees with

the cospecialization map cospi,0X .

Lemma 7.7 In the spectral sequence (7.2), we have Ea,b2 = 0 unless 0 ≦ a ≦ 2(d− b− 1)
and 0 ≦ b ≦ d− 1. Moreover, for a pair (a, b) with 0 ≦ a ≦ 2(d− b− 1) and 0 ≦ b ≦ d− 1,

the weights of Ea,b2 are at least max{2b, 2(a+ 2b+ 1− d)} and at most a+ 2b.

Proof. See [Sa5] Lemma 5.9. □

By this lemma, the kernel and the cokernel of the cospecialization map cospi,sX have only
positive weights for any s ≦ 0, which implies Proposition 7.6 (2). One can also derive
Proposition 7.6 (1) from Lemma 7.7 easily. □

7.3 The case ℓ = p

In this subsection, we prove Theorem 7.5, assuming ` = p. Note that H i(Y ,Qp(s)) = 0 if
s < 0 by the definition of Tn(s).

Proposition 7.8 Let i ≧ 0 be an integer, and put V := V i.

(1) We have V (r)IK = 0 unless 0 ≦ r ≦ d− 1 = dim(XK).

(2) We have H1(k, V (s)IK ) = H1
f (K,V (s)) as subspaces of H1(K,V (s)) for any s ≦ 0.

In particular, we have H1
f (K,V (s)) = 0 if s < 0.

(3) If π : X → B is log smooth around Y , then the cospecialization map

cospi,0 : H i(Y ,Qp) −→ V IK

is bijective.

Proof. The assertions (1) and (2) are reduced to the case where X has semi-stable
reduction by the alteration theorem of de Jong [dJ] and a standard norm argument. So
we prove (1)–(3) in the semi-stable case and then prove (3) in the log smooth case.

(I) Proof of (1)–(3) in the semi-stable reduction case. Let Bcrys, Bst, B
+
dR and BdR be

Fontaine’s rings as in §5.1. Put D := H i
log-crys(Y/W(k)). By the Fontaine-Jannsen conjec-

ture ([Ts]), there is a canonical isomorphism

Bst ⊗Qp V
∼= Bst ⊗W(k) D, (7.3)
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which preserves the Frobenius operator φ, the monodromy operator N , the action of GK ,
and the Hodge filtration F•

H after taking ⊗BstBdR. By the isomorphism (7.3), we have

V (r) ∼=
(
Bst ⊗W(k) D

)N=0, ϕ=pr ∩ FrH
(
BdR ⊗W(k) D

)
and

V (r)IK ⊂ (H i
log-crys(Y /W(k))Qp)

φ=pr , (7.4)

for any r ∈ Z. Here ϕ denotes the Frobenius operator acting on H i
log-crys(Y /W(k)), and

we have used the fact that (Bst)
IK = Frac(W(k)) ([F2] 5.1.2, 5.1.3). Proposition 7.8 (1)

follows from (7.4) and the fact that

(H i
log-crys(Y /W(k))Qp)

φ=pr = 0 unless 0 ≦ r ≦ d− 1.

Proposition 7.8 (3) is due to Wu [W] Theorem 1. Recall that we have H1(k, V (s)IK ) ⊂
H1
f (K,V (s)) by Proposition 5.3 (2). To prove Proposition 7.8 (2), it remains to show the

following claim:

Claim. We have dimQp H
1(k, V (s)IK ) = dimQp H

1
f (K,V (s)) for any s ≦ 0.

Proof. Since V is a de Rham representation, we have

dimQp H
1
f (K,V (s)) = dimQp(DR(V )/DR(V (s))0) + dimQp V (s)GK

by (5.3). Since s ≦ 0, we have DR(V ) ∼= H i
dR(XK/K) = FsHH

i
dR(XK/K) ∼= DR(V (s))0,

so the claim follows from the equalities

dimQp H
1
f (K,V (s)) = dimQp V (s)GK = dimQp H

1(k, V (s)IK ).

This completes the proof of Proposition 7.8 in the semi-stable reduction case.

(II) Proof of (3) in the log smooth reduction case. By the alteration theorem of de Jong
[dJ] Theorem 6.5, there exists a proper generically étale morphism f : X ′ → X such that
X ′ is regular and flat over B and has (strict) semi-stable reduction over the normalization
B′ of B in X ′. Let L (resp. k′) be the function field of B′ (resp. the residue field of L′),
Y ′ for the special fiber of π′ : X ′ → B′. Let ν : B′ → B be the canonical map. We derive
the bijectivity of cospi,0 for X from that for X ′. There exists a trace homomorphism

trf : ν∗R
iπ′∗Z/pnZ→ Riπ∗Z/pnZ

on Bét for each n ≧ 1 by (T7) of Theorem 4.3, which yields a commutative diagram

H i(Y ,Qp)
f♯ //

×[L(X′):K(X)]

))

cospi,0X
��

H i(Y ′,Qp)
trf //

cospi,0
X′

��

H i(Y ,Qp)

cospi,0X
��

V IK
f♯ //

×[L(X′):K(X)]

55H i(X ′
L
,Qp)

IL
trf // V IK .

Since cospi,0X′ is bijective by (I), we see that cospi,0X is bijective as well by a diagram chase.
This completes the proof of Proposition 7.8 and Theorems 7.5, 7.2. □

By Proposition 7.8 (1) and the exact sequence (5.2) for V i(r) = H i(XK ,Qp(r)), we
obtain the following corollary:

Corollary 7.9 The exponential map of Bloch-Kato induces an isomorphism

exp : H i
dR(XK/K)

≃−→ H1
f (K,V

i(r)) for any i ≧ 0 and r ≧ d.
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8 Comparison over global fields

Setting 8.1 Let O, B,K, p,X and Y be as in Setting 4.1. In this section, assume that K
is a number field and that O is the integer ring of K. For a place v of K, we write Kv for
the completion of K at v.

We assume that π : X → B is proper and that XK := X ⊗O K is geometrically
connected over K. We assume further that π : X → B is log smooth around Y , if r = d.
We fix a finite set S of places of K including all places which divide p ·∞ or where X has
bad reduction. We put GS := Gal(KS/K), where KS denotes the maximal extension of
K which is unramified outside of S. Unless indicated otherwise, all cohomology groups of
schemes are taken over the étale topology. For each i ≧ 0, we put T i := H i(XK ,Zp) and
V i := T i ⊗Zp Qp.

Theorem 8.2 Let q, i and r be integers with r ≧ d := dimX and i ≧ 0. Assume Conjec-
ture 5.15 for T i(r) if q = 2 and i− 2r ≦ −3. Then we have

Hq(B,Hi(X,Qp(r))) ∼=


H1
f (K,V

i(r)) (if q = 1)

Qp (if (q, i, r) = (3, 2d− 2, d))

0 (otherwise).

Corollary 8.3 Assume Conjecture 5.15 for T i−2(r), if (i, r) 6= (2d+1, d). Then we have

H i(X,Qp(r)) ∼=

{
Qp (if (i, r) = (2d+ 1, d))

H1
f (K,V

i−1(r)) (otherwise)

for any r ≧ d and any i ≧ 0.

8.1 Proof of Theorem 8.2

We first check the assertions other than the vanishing of H2(B,Hi(X,Qp(r))).

Proposition 8.4 Assume r ≧ d. Then:

(1) Hq(B,Hi(X,Zp(r))) is finite in each of the following cases:

(i) i < 0 (ii) i > 2d−2 (iii) q ≦ 0 (iv) q > 3 (v) q = 3, (i, r) 6= (2d−2, d)

(2) For any i ≧ 0, we have

H1(B,Hi(X,Qp(r))) = H1
f (K,V

i(r)).

Proof. (1) The cases (i) and (ii) are clear by the definition of Hi(X,Tn(r)) (see Definition
6.3). The case (iii) with q < 0 follows from the fact that Hi(X,Tn(r)) is concentrated in
degrees ≧ 0 (see Corollary 6.6). When q = 0, the restriction map

H0(B,Hi(X,Zp(r))) −→ H i(XK ,Zp(r))
GK

is injective by Proposition 6.5 (1) and the last group is finite by [D] Corollary 3.3.9. Hence
H0(B,Hi(X,Zp(r))) is finite as well. See [Sa5] Proposition 6.1 for the cases (iv) and (v).

(2) Let S be a finite set of places of K including all places with v|p ·∞ and all finite places
where X has bad reduction. To prove the assertion, it is enough to check that there is an
exact sequence of Qp-vector spaces

0 −→ H1(B,Hi(X,Qp(r))) −→ H1(GS , V
i(r))

Res−→
⊕

v∈S∩B0

H1
/f (Kv, V

i(r)),
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where B0 denotes the set of the closed points of B. One obtains this exact sequence by a
standard localization argument on étale cohomology and the isomorphisms

Hq
v (Bv,H

i(Xv,Qp(r))) ∼=


0 (if q 6= 2, 3, by Proposition 6.5 (1))

H1
/f (Kv, V

i(r)) (if q = 2, by Theorem 7.2)

H2(Kv, V
i(r)) (if q = 3, by Theorem 7.2)

Here Bv denotes Spec(Ov) with Ov the valuation ring of Kv, and Xv := X ×B Bv. □

Proposition 8.5 Let αi,r,+ be the following local-global map:

αi,r,+ :
H1(K,H i(XK ,Qp/Zp(r)))
H1
f (K,H

i(XK ,Qp/Zp(r)))
−→

⊕
v∈P

H1(Kv,H
i(XK ,Qp/Zp(r)))

H(Bv,Hi(X,Qp/Zp(r)))
.

Then for any i ≧ 0 and r ≧ d, there is a canonical map

Coker(αi,r,+) −→ H2(B,Hi(Xv,Qp/Zp(r))),

which has finite kernel and cokernel. Consequently, under Conjecture 5.15 for T i(r) with
i−2r ≦ −3, the group H2(B,Hi(X,Zp(r))) is finite and we have H2(B,Hi(X,Qp(r))) = 0.
See also Theorem 6.10 (3).

Proof. If (i, r) = (2d− 2, d), then we have

H2(B,H2d−2(X,Qp/Zp(2))) ∼= H2(B,Qp/Zp(1))) ∼= Br(OK)[p∞],

which is zero (if p 6= 2) or finite 2-torsion (if p = 2) by the classical Hasse principle for
Br(K). Assume (i, r) 6= (2d−2, d) in what follows and consider the following commutative
diagram with exact rows, where both rows are obtained from localization sequences of étale
cohomology, and the coefficients Hi(X,Qp/Zp(r)) (resp. Hi(Xv,Qp/Zp(r))) in the upper
row (resp. the lower row) are omitted:

H1(K) //

α

��

⊕
v∈B0

H2
v (B) //

δ

��

H2(B) //

β

��

H2(K) //

γ

��

⊕
v∈B0

H3
v (B)

δ

��⊕
v∈B0

H1
/Bv

(Kv)
(∗) //

⊕
v∈B0

H2
v (Bv) //

⊕
v∈B0

H2(Bv) //
⊕
v∈B0

H2(Kv) //
⊕
v∈B0

H3
v (Bv).

Here for each v ∈ B0, we put

H1
/Bv

(Kv) :=
H1(Kv,H

i(XK ,Qp/Zp(r)))
H(Bv,Hi(Xv,Qp/Zp(r)))

.

We have the following facts concerning this diagram:

• The arrows δ are bijective by étale excision (and a rigidity lemma in [Sa5] 3.9).

• The arrow γ has finite kernel and cokernel by a Hasse principle of Jannsen in [J] p.
337, Theorem 3 (c).

• The arrow (∗) is injective by the defition of H1
/Bv

(Kv).

• H2(Bv) is finite for any v ∈ B0 by Theorem 7.2, and zero for any v ∈ B0 ∖ S by
Example 6.4 (1).

Hence we see that there is a canonical map

Coker(αi,r,+) −→ H2(B,Hi(X,Qp/Zp(r)))

and that this map has finite kernel and cokernel. □
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9 The case of arithmetic surfaces

Setting 9.1 Let the notation be as in Setting 8.1. We assume further that X is an
arithmetic surface, i.e., d = 2. For i ≧ 0, put T i := H i(XK ,Zp).

For a finite place v of K, we write kv (resp. Yv, Yv) for the residue field at v (resp.
X ⊗OK kv, X ⊗OK kv), and Bv (resp. Xv, Xv) for Spec(Ov) (resp. X ⊗OK Ov, X ⊗OK Osh

v ),
where Ov (resp. Osh

v ) denotes the completion of OK at v (resp. the strict henselization of
Ov at its maximal ideal). We put qv := #kv.

9.1 Integral comparison

Lemma 9.2 We have

H1(Bv,H
i(Xv,Zp(r))) = H1

f (Kv, T
i(r))

as subgroups of H1(Kv, T
m(r)), for any finite place v of K, i ≧ 0 and r ≧ 2.

Proof. Consider the following commutative diagram:

H1(Kv,H
i(Xv,Zp(r)))

d // H2
v (Bv,H

i(Xv,Zp(r)))

b
��

H1(Kv, T
i(r))

a // H1
/f (Kv, V

i(r)) �
� d′ // H2

v (Bv,H
i(Xv,Qp(r))),

where the arrows d and d′ are connecting maps of localization sequences of cohomology of
Bv, and the existence and the injectivity of d′ is a consequence of Theorem 7.2 for q = 1.
The arrow a is the natural map, and we have Ker(a) = H1

f (Kv, T
i(r)) by definition. On

the other hand, since H1
v (Bv,H

i(Xv,Zp(r))) = 0 by Proposition 6.5 (1), we have

Ker(d) = H1(Bv,H
i(Xv,Zp(r))).

Thus it remains to check that the arrow b is injective, which follows from the facts that

H2
v (Bv,H

i(Xv,Zp(r))) = 0 if v|p and r ≧ 3

and that otherwise

H2
v (Bv,H

i(Xv,Zp(r))) ∼= H1(kv,H
2−i(Yv,Qp/Zp(2− r)))∗

is torsion-free, because dim(Yv) = 1 and cd(kv) = 1. □

As a corollary of Lemma 9.2, we obtain

Corollary 9.3 We have

H1(B,Hi(X,Zp(r))) ∼= H1
f (K,T

i(r))

for any i ≧ 0 and r ≧ 2.

9.2 p-adic Abel-Jacobi maps

Let r be an integer with r ≧ 2. We define the motivic cohomology of X as

H i
M (X,Z(r)) := H i

zar(X,Z(r)),

and define the motivic cohomology with Z/pnZ-coefficients as

H i
M (X,Z/pnZ(r)) := H i

zar(X,Z(r)⊗ Z/pnZ) (n ≧ 1).
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Lemma 9.4 Assume that r ≧ 2, and that p ≧ 3 or B(R) = ∅. Then the cycle class map

cli,rZ/pnZ : H i
M (X,Z/pnZ(r)) −→ H i(X,Tn(r))

is bijective for any i ∈ Z with (i, r) 6= (5, 2) and any n ≧ 1. Consequently, there exists a
short exact sequence

0 −→ H i
M (X,Z(r))/pn −→ H i(X,Tn(r)) −→ pnH

i+1
M (X,Z(r)) −→ 0

for the same (i, n), where for an abelian group M , pnM (resp. M/pn) denotes the kernel

(resp. cokernel) of the map M
×pn−→M .

Proof. See [Sa5] Lemma 7.1 (3). □
We define a p-adic cycle class map

cli,rp : H i
M (X,Z(r)) ⊗̂Zp −→ H i(X,Zp(r))

as the projective limit with respect to n ≧ 1 of the cycle class map

cli,r/pn : H i
M (X,Z(r))/pn −→ H i

M (X,Z/pnZ(r))
cli,rZ/pnZ−→

≃
H i(X,Tn(r)).

Since XK is a curve, H i(XK ,Zp(r)) is torsion-free, and

H0(B,Hi(X,Zp(r))) ⊂ H i(XK ,Zp(r))
GK = 0

by Proposition 6.5 (1) and for the reason of weights. We define a p-adic Abel-Jacobi
mapping

aji,rp : H i
M (X,Z(r)) ⊗̂Zp −→ H1(B,Hi−1(X,Zp(r))) (9.1)

as the map induced by cli,rp and an edge map of the spectral sequence

Ea,b2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)).

By Corollary 9.3, the map (9.1) is rewritten as follows:

aji,rp : H i
M (X,Z(r)) ⊗̂Zp −→ H1

f (K,T
i−1(r)). (9.2)

The following proposition is a summary of known facts and results on this p-adic Abel-
Jacobi maps, where the Voevodsky-Rost theorem [V2], [V3] plays a crucial role:

Proposition 9.5 ([Sa5] Corollary 7.7) Assume that r ≧ 2, and that p ≧ 3 or B(R) =
∅. When r ≧ 3, assume further Conjecture 5.15 for T = H1(XK ,Zp(r)) in (3) and (4)
below. Then:

(0) H i
M (X,Z(r)) is uniquely p-divisible for i ≦ 0 and i ≧ 5, and zero for i > r + 2.

(1) cl1,rp and aj1,rp are injective.

(2) cl2,rp is injective, and aj2,rp has finite kernel.

(3) cl3,rp is bijective, and aj3,rp has finite kernel and cokernel.

(4) cl4,rp is bijective, and H4
M (X,Z(r)){p} is finite.

Moreover, we have H4
M (X,Z(r)){p} ∼= H4

M (X,Z(r)) ⊗̂Zp, and aj4,rp is zero.

9.3 Comparison with local-global maps

We recall the local-global map introduced in §5.4

αi,r :
H1(K,T i ⊗Qp/Zp(r))
H1
f (K,T

i ⊗Qp/Zp(r))
−→

⊕
v∈P

H1(Kv, T
i ⊗Qp/Zp(r))

H1
f (Kv, T i ⊗Qp/Zp(r))

. (9.3)
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We put χ(f) := #Coker(f)/#Ker(f) for a homomorphism f :M → N of abelian groups
with finite kernel and cokernel. The following result compares the maps αi,r for i = 0, 1, 2
with the p-adic Abel-Jacobi mappings aji,rp for i = 2, 3.

Theorem 9.6 Assume r ≧ 2, and that p ≧ 3 or B(R) = ∅. Assume further Conjecture
5.15 for T 1(r) and that the group H3

M (X,Z(r)){p} is finite. Then aj2,rp has finite cokernel,
and we have

χ(α1,2)

χ(α0,2)
=
χ(aj3,2p )

χ(aj2,2p )
· #CH0(X){p}
#Pic(OK){p}

·
∏
v∈S′

e2,1,2v ·e3,0,2v

e2,0,2v ·e3,1,2v

(r = 2)

χ(α1,r)

χ(α0,r) ·χ(α2,r)
=

χ(aj3,rp )

χ(aj2,rp )
·#H4

M (X,Z(r)){p} ·
∏
v∈S′

e2,1,rv ·e3,0,rv ·e3,2,rv

e2,0,rv ·e2,2,rv ·e3,1,rv

(r ≧ 3),

where S′ denotes the set of the places of K which divide p or where X has bad reduction;
for each v ∈ S′ and a = 2, 3, we put

ea,i,rv := #Ha(Bv,H
i(Xv,Zp(r))).

See Theorem 7.2 for the finiteness of e2,i,rv and e3,i,rv .

The formulas in this theorem are based on the finiteness stated in Proposition 9.5.

Proof. For (i, r) 6= (2, 2) with r ≧ 2, there is a commutative diagram with exact columns

0

��

0

��
H1(B,Hi(X,Qp/Zp(r)))
H1
f (K,T

i ⊗Qp/Zp(r))
//

��

⊕
v∈B0

H1(Bv,H
i(Xv,Qp/Zp(r)))

H1
f (K,T

i ⊗Qp/Zp(r))

��
H1(K,T i ⊗Qp/Zp(r))
H1
f (K,T

i ⊗Qp/Zp(r))
αi,r //

��

⊕
v∈B0

H1(Kv, T
i ⊗Qp/Zp(r))

H1
f (Kv, T i ⊗Qp/Zp(r))

��⊕
v∈B0

H2
v (B,H

i(X,Qp/Zp(r)))
∼

��

⊕
v∈B0

H2
v (B,H

i(Xv,Qp/Zp(r)))

��

H2(B,Hi(X,Qp/Zp(r))) //

��

⊕
v∈B0

H2(Bv,H
i(Xv,Qp/Zp(r)))

��

H2(K,T i ⊗Qp/Zp(r))
≃

(Jannsen)
//

��

⊕
v∈B0

H2(Kv, T
i ⊗Qp/Zp(r))

��⊕
v∈B0

H3
v (B,H

i(X,Qp/Zp(r)))
∼

��

⊕
v∈B0

H3
v (Bv,H

i(Xv,Qp/Zp(r)))

��
0 0
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This diagram yields an exact sequence of Zp-modules

0→ Ker(αi,r)→ H1
/f (B,H

i(X,Qp/Zp(r)))→
⊕
v∈B0

H1
/f (Bv,H

i(Xv,Qp/Zp(r)))

→ Coker(αi,r)→ H2(B,Hi(X,Qp/Zp(r)))→
⊕
v∈B0

H2(Bv,H
i(Xv,Qp/Zp(r)))→ 0,

where we put

H1
/f (B,H

i(X,Qp/Zp(r))) :=
H1(B,Hi(X,Qp/Zp(r)))
H1
f (K,T

i ⊗Qp/Zp)
,

H1
/f (Bv,H

i(Xv,Qp/Zp(r))) :=
H1(Bv,H

i(Xv,Qp/Zp(r)))
H1
f (Kv, T i ⊗Qp/Zp)

.

By the isomorphism of finite p-groups

H1
/f (B,H

i(X,Qp/Zp(r))) ∼= H2(B,Hi(X,Zp(r))),

H2(B,Hi(X,Qp/Zp(r))) ∼= H3(B,Hi(X,Zp(r))) under Conjcture 5.15,

H1
/f (Bv,H

i(Xv,Qp/Zp(r))) ∼= H2(Bv,H
i(Xv,Zp(r))),

H2(Bv,H
i(Xv,Qp/Zp(r))) ∼= H3(Bv,H

i(Xv,Zp(r))),

and the above 6-term exact sequence, we obtain

χ(αi,r) =
e3,i,r

e2,i,r
×

∏
v∈S′

e2,i,rv

e3,i,rv

(9.4)

for (i, r) 6= (2, 2), where we put

ea,i,r := #Ha(B,Hi(X,Zp(r))) for a = 2, 3 with (a, i, r) 6= (3, 2, 2).

See also Example 6.4 (1) for the fact that e2,i,rv = e3,i,rv = 1 for v ∈ B0 ∖ S′.
On the other hand, aji,rp for i = 2, 3 is identified with the natural projection

H i(X,Zp(r)) −→ H1(B,Hi−1(X,Zp(r))) ∼= H1
f (K,T

i−1(r))

by Proposition 9.5 (2), (3) and the finiteness assumption on H3
M (X,Z(r)){p}; see also the

short exact sequence of Lemma 9.4. Hence we have

χ(aj3,rp )

χ(aj2,rp )
=

e2,0,r ·e2,2,r ·e3,1,r

e2,1,r ·e3,0,r ·#H4(X,Zp(r))

for r ≧ 2 by the spectral sequence (6.3), and moreover

H2(B,H2(X,Zp(2))) ∼= H2(B,Zp(1)) ∼= Pic(OK)⊗ Zp ∼= Pic(OK){p},

H3(B,H2(X,Zp(r))) ∼= H3(B,Zp(r − 1)) ∼= H3(B[p−1],Zp(r − 1)) = 0 (r ≧ 3).

The assertion follows from (9.4) and these facts. □
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9.4 Zeta values modulo rational numbers prime to p

Put V i := T i ⊗Zp Qp. In this subsection, we relate the formula in Theorem 9.6 with zeta
values assuming Conjecture 9.7 below for the motives H i(XK)(r) with i = 0, 1, 2, that
is, a weak version of p-Tamagawa number conjecture [BK2] §5. Let S′ be a finite set of
closed points of B containing all points of characteristic p, and all points where X has bad
reduction. For i = 0, 1, 2 and r ≧ 2 with (i, r) 6= (2, 2), we put

LS′(H i(XK), r) :=
∏

v∈B0∖S′

det(1− q−rv ·Frv |V i)−1.

This infinite product on the right hand side converges, because i − 2r ≦ −3. Let Z(p) be
the localization of Z at the prime ideal (p).

Conjecture 9.7 (Bloch-Kato) For any i = 0, 1, 2 and r ≧ 2 with (i, r) 6= (2, 2), there
exists a finite-dimensional Q-subspace Φi,r = Φi,rp of the Q-vector space

H i+1
M (XK ,Q(r))Z := Im

(
H i+1

M (X,Q(r))→ H i+1
M (XK ,Q(r))

)
which satisfies the following conditions (i) and (ii):

(i) The p-adic Abel-Jacobi map

H i+1
M (XK ,Q(r)) −→ H1(K,V i(r))

induces an isomorphism Φi,r⊗Qp
∼= H1

f (K,V
i(r)), and Beilinson’s regulator map to

the real Deligne cohomology

H i+1
M (XK ,Q(r)) −→ H i+1

D (X/R,R(r)) (9.5)

induces an isomorphism Φi,r ⊗ R ∼= H i+1
D (X/R,R(r)).

(ii) We define Ai,rp (K), the group of p-global points, as the pull-back of Φi,r under the
natural map

H1
f (K,T

i(r)) −→ H1
f (K,V

i(r)) ∼= Φi,r ⊗Qp,

which is a finitely generated Z(p)-module. We further fix an OK-lattice Li of the

de Rham cohomology H i
dR(XK/K), and define a number Ri,rΦ ∈ R×/Z×

(p) to be the
volume of the space

H i+1
D (X/R,Z(p)(r))/Image of Ai,rp (K)

with respect to Li. See Definition 2.7 (resp. Remark 9.8 (1) below) for the definition
(an explicit description) of H i+1

D (X/R,Z(p)(r)). On the other hand, for each v ∈ B0

we put
Ai,rp (Kv) := H1

f (Kv, T
i(r)),

which we call the group of p-local points at v. Then we have

LS′(H i(XK), r) ≡ III(p)(H i(XK)(r))

#HomGK (T
i,Qp/Zp(1− r))

·Ri,rΦ ·
∏
v∈S′

µiv(A
i,r
p (Kv)) mod Z×

(p),

(9.6)

where µiv for v6 |p means the cardinality, and µiv for v|p denotes the Haar measure
on Ai,rp (Kv) constructed from that on H i

dR(XKv/Kv) such that µiv(L
i ⊗OK Ov) = 1.

37



Remark 9.8 (1) The map Ai,rp (K)→ H i+1
D (X/R,Z(p)(r)) induced by the regulator map

is injective, by the condition (i) for Φi,r and [BK2] Lemma 5.10. Here

H i+1
D (X/R,Z(p)(r)) =

(
H i

dR(X/Z)⊗ C
H i

sing(X ⊗Z C, (2π
√
−1)r ·Z(p))

)+
for any i = 0, 1, 2 and r ≧ 2, by definition.

(2) The product on the right hand side of (9.6) is independent of the choice of Li.

(3) Conjecture 9.7 for i = 0 (resp. i = 2) implies that

ζK(r) ≡ χ(α0,r)−1 ·R0,r
Φ (resp. ζK(r − 1) ≡ χ(α0,r−1)−1 ·R0,r−1

Φ )

modulo Z×
(p) if r ≧ 2 (resp. r ≧ 3) and p is unramified in K.

(4) We have Ri,rΦ = 1 for any i ≧ 3, because H i+1
D (X/R,Z(p)(r)) is zero for such i’s.

(5) For (i, r) = (2, 2), we will use the classical class number formula instead of (9.6) in
Proposition 9.9 below.

Assuming Conjecture 9.7, we relate the formula in Theorem 9.6 with the residue or
value at s = r of the zeta function ζ(X, s).

Proposition 9.9 ([Sa5] Proposition 9.3) Assume r ≧ 2 and the following conditions:

(i) p ≧ r + 2.

(ii) For any v ∈ B0 with v|p, v is absolutely unramified and X has good reduction at v.

(iii) Conjecture 5.15 holds for T 1(r), and Conjecture 9.7 holds for i = 0, 1 (resp. i =
0, 1, 2) if r = 2 (resp. r ≧ 3).

Then H3
M (X,Z(r)){p} is finite, and we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

mod Z×
(p) (r = 2)

ζ(X, r) ≡
χ(aj3,rp ) ·#H4

M (X,Z(r)){p}·R0,r
Φ ·R

2,r
Φ

χ(aj2,rp ) ·R1,r
Φ

mod Z×
(p) (r ≧ 3)

where Z(p) denotes the localization of Z at (p); Ri,rΦ ∈ R×/Z×
(p) is defined for the lattice

Li := H i
dR(X/Z)/H i

dR(X/Z)tors. See Conjecture 9.7 for the definition of Ri,rΦ .

Proof. The assertion is deduced from Theorem 9.6 and the equality

µ1v(H
1
f (Kv, T

1(r)))∣∣ζ(Yv, r)(1− q1−rv )(1− q−rv )
∣∣−1

p

=
e2,1,rv ·e3,0,rv

e2,0,rv ·e3,1,rv

,

which holds true unconditionally (resp. under (i) and (ii)) if v6 |p (resp. if v|p). See [Sa5]
Theorems 8.4 and 8.5 and Proof of Proposition 9.3 for details. □

Theorem 9.10 ([Sa5] Theorem 9.6) Under the same assumptions as in Proposition
9.9, assume further that

(iv) H i+1
M (X,Z(r)) is finitely generated for any i = 0, 1, 2 and r ≧ 2.

Then the regulator map

regi+1,r
D : H i+1

M (X,Z(r)) −→ H i+1
D (X/R,Z(r))
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has finite kernel for i = 0, 1, 2, 3, and we have

ζ∗(X, r) ≡
3∏
i=0

(
Ri,rM

#Ker(regi+1,r
D )

)(−1)i

mod Z×
(p),

where ζ∗(X, r) denotes the residue (resp. the value) at s = r if r = 2 (resp. r ≧ 3), and
Ri,rM ∈ R×/Z×

(p) denotes the volume of the spaceH
i+1
D (X/R,Z(p)(r))/Im(regi+1,r

D ) (for (i, r) 6= (2, 2))

H̃3
D(X/R,Z(p)(2))/Im(reg3,2D ) (for (i, r) = (2, 2))

with respect to Li fixed in Proposition 9.9 ; H̃3
D(X/R,Z(p)(2)) denotes the kernel of the

canonical trace map
TrX : H3

D(X/R,Z(p)(2)) −→ R.

Proof. The map Ai,rp (K) → H i+1
D (X/R,Z(p)(r)) induced by the map (9.5) is injec-

tive, and the assumption (iv) implies that H i+1
M (X,Z(r)) ⊗ Zp ∼= H i+1

M (X,Z(r)) ⊗̂Zp ∼=
H i+1(X,Zp(r)) for 0 ≦ i ≦ 3. The first assertion follows from these facts and (iii). The
second assertion is deduced from Proposition 9.9 and the equality

Ri,rM

#Ker(regi+1,r
D )

=



R0,r
Φ (i = 0)

χ(aj2,rp ) ·R1,r
Φ (i = 1)

χ(aj3,2p ) ·m2(Coker(%K)) ((i, r) = (2, 2))

χ(aj3,rp ) ·R2,r
Φ (i = 2, r ≧ 3)

(#CH0(X){p})−1 ((i, r) = (3, 2))

(#H4
M (X,Z(r)){p})−1 (i = 3, r ≧ 3),

where %K (resp. m2) denotes the regulator map (resp. the Haar measure) considered in
Proposition 2.11. See [Sa5] Proof of Theorem 9.6 for details. □

Example 9.11 Let E be an elliptic curve over Q with complex multiplication, Let X be
a regular model of E which is proper flat over Z. Let p be a prime number which is prime
to 6, regular for E in the sense of Soulé [So2] 3.3.1, and good for X in the sense that X
has good reduction at p. Then we obtain an unconditional formula

Res
s=2

ζ(X, s) ≡
π2 ·χ(aj3,2p ) ·#CH0(X)

χ(aj2,2p ) ·R1,2
Φ

mod Z×
(p)

from Proposition 9.9 and [BK2] Propositions 7.4 and 7.5 (see also Example 5.18 above).
If we assume further that H i+1

M (X,Z(2)) is a finitely generated abelian group for i = 1, 2,
then we have

rankZH
2
M (X,Z(2)) = 1, rankZH

3
M (X,Z(2)) = 0

by Theorem 8.3, and obtain a stronger formula

Res
s=2

ζ(X, s) ≡
π2 ·#Ker(reg2,2D ) ·#CH0(X)

R1,2
M ·#H3

M (X,Z(2))
mod Z[T−1]×

from Theorem 9.10. Here T denotes the set of all prime numbers which divide 6 or which
are non-regular for E or bad for X.
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A Purity of Gm

Exercise 13 Let X be a scheme, and let i : Z ↪→ X be a closed subscheme. Let j : V :=
X ∖ Z ↪→ X be the open immersion from the open complement of Z. Let F be an étale
sheaf on X. For each U ∈ Ob(Ét/X), we put

ΓZ×XU (U,F ) := Ker(Γ (U,F )→ Γ (U ×X V,F ))

(1) Show that the assignment

ΓZ(X,F ) : U ∈ Ob(Ét/X) 7−→ ΓZ×XU (U,F )

is an étale sheaf on X.

(2) Show that the following sequence of sheaves is exact on Xét:

0 −→ ΓZ(X,F ) −→ F −→ j∗j
∗F .

(3) Show that ΓZ(X,F ) ∼= i∗i
∗ΓZ(X,F ) for any étale sheaf on X.

(4) Put i!F := i∗ΓZ(X,F ) for an étale sheaf F on X. Then show that the functor
i! : Shv(Xét)→ Shv(Zét) is right adjoint to i∗ : Shv(Zét)→ Shv(Xét).

(5) Show that the functor

ΓZ(X,−) : Shv(Xét) −→ Ab, F 7−→ ΓZ(X,F )

is left exact. Let H∗
Z(X,−) be its right derived functor.

(6) For each q ≧ 0 and each sheaf F ∈ Shv(Xét), let H
q
Z(X,F ) be the sheaf on Xét

associated with the presheaf

U ∈ Ob(Ét/X) 7−→ Hq
Z×XU (U,F ).

Then show that the functor

i∗Hq
Z(X,−) : Shv(Xét) −→ Shv(Zét), F 7−→ i∗Hq

Z(X,F )

agrees with the q-th right derived functor Rqi! of i!.

Theorem A.1 (Purity of Gm) Let X be a locally noetherian scheme, and let i : Z ↪→ X
be a closed subscheme.

(0) If X is reduced and codimX(Z) ≧ 1, then we have i!Gm = 0.

(1) If X is normal and codimX(Z) ≧ 2, then we have R1i!Gm = 0.

(1+) If X is regular and codimX(Z) ≧ 1, then we have

R1i!Gm
∼=

⊕
x∈Z∩X1

ix∗Zx,

where x on the right hand side runs through all points of Z which has codimension
1 in X, and ix denotes the natural map x ↪→ Z.

(2) If X is regular and codimX(Z) ≧ 1, then we have R2i!Gm = 0.

(3) If X is regular and codimX(Z) ≧ 2, then we have R3i!Gm = 0.
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Remark A.2 The vanishing of (3) is called the purity of Brauer groups [G], [FG], [Če].
We do not explain any more about (3) in what follows.

Proof. The following fact is useful [GD2] Propositions 17.5.7, 17.5.8:

• Let U → X be a smooth morphism of schemes. If X is reduced (resp. normal,
regular), then U is also reduced (resp. normal, regular).

Since the problems are local, we suppose that X is an affine scheme with affine ring A.

(0) Assume that A is a noetherian ring whose nilpotent radical is 0. Let p1, . . . , pr be the
minimal prime ideals of A and put S := A∖ (p1 ∪ . . .∪ pr). Then S agrees with the set of
all non-zero-divisors in A [GD2] Remark 20.2.13 (ii). The assertion follows from this fact.

(1) If A is a noetherian integrally closed domain, then we have

A =
⋂

p :height1

Ap, (A.1)

where p on the right hand side runs through all prime ideals of A of height 1, and the
intersection is taken in the fraction field of A. The assertion follows from this fact.

(1+) Assume that A is a regular local ring, and let Z ′ ⫋ Spec(A) = X be a proper closed
subset. Our task is to show that there is a short exact sequence

0 // A× // Γ (Spec(A)∖ Z ′,Gm)
(ordx)x //

⊕
x∈Z′∩Spec(A)1

Z // 0.

Indeed, we may replace Z ′ with the union of its irreducible components Z1, Z2, . . . , Zr
which have codimension 1 in X, by (0) and (1). Since A is regular local, each Zj endowed
with the reduced structure is principal and defined by some prime pj ∈ A, and the above
sequence is identified with the exact sequence

0 // A× // A[p−1
1 , . . . , p−1

r ]×
(ordpj )j //

r⊕
j=1

Z // 0,

whose exactness at the middle follows from (A.1). Thus we obtain the assertion.

(2) Assume that A is a strict henselian regular local ring, and let Z ⫋ X := Spec(A) be
a proper closed subset. Put U := X ∖ Z. Then there is an exact sequence

H1(X,Gm)
(⋆)−→ H1(U,Gm) −→ H2

Z(X,Gm) −→ 0.

Since we have

H1(X,Gm)
(H)∼= Pic(X) ∼= CH1(X) and H1(U,Gm)

(H)∼= Pic(U) ∼= CH1(U),

the map (?) is surjective (and in fact, these group are all zero because H1(X,Gm) = 0),
where the isomorphisms (H) follow from Hilbert’s Theorem 90. Hence H2

Z(X,Gm) = 0. □

Exercise 14 Let X be a proper smooth geometrically integral curve over a field k.

(1) Assume that k is algebraically closed. Then show that H i(X,Gm) = 0 for any i ≧ 2,
using Tsen’s theorem: the function field k(X) is a C1-field.

(2) Assume that k is a finite field. Then show that

H i(X,Gm) ∼=

{
Q/Z (if i = 3)

0 (if i = 2 or i ≧ 4).
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B Higher cycle class map for regular schemes

Let Reg be the category of all noetherian regular schemes and all morphisms of schemes.
Let C be a full subcategory of Reg satisfying the following conditions:

• If f : X → Y is a smooth morphism with Y ∈ Ob(C ), then X ∈ Ob(C ).

Let Λ be a commutative ring with unity, and let {Λ(r)}r∈Z be a family of complexes of
sheaves of Λ-modules on Czar. We are concerned with the following data (D1)–(D5) and
the axioms (B0)–(B9) below:

(D1) (First Chern class) A morphism % : O×[−1] −→ Λ(1) in D(Shv(Czar)) is given,
where O× denotes the sheaf U ∈ Ob(C )→ Γ (U,OU )

× on Czar.

(D2) (Product structure) For each pair of integers r, r′ ∈ Z, a morphism

Λ(r)⊗L Λ(r′) −→ Λ(r + r′) in D(Shv(Czar), Λ)

(D3) (Push-forward along regular divisors) For each closed immersion i : D ↪→ X
of pure codimension 1 in C and each r ≧ 0, a morphism

i∗ : i∗Λ(r − 1)D[−2]→ Λ(r)X in D(Shv(Xzar), Λ)

is given, where Λ(r − 1)D (resp. Λ(r)X) denotes the restriction of Λ(r − 1) to Dzar

(resp. Λ(r) to Xzar).

(D4) (Cycle classes) For each X ∈ Ob(C ) and each irreducible closed subset V ⊂ X of
codimension c, a cycle class

cycX(V ) ∈ H2c
V (Xzar, Λ(c))

(D5) (Λ(r) with log poles) For each n, r ≧ 1, any X ∈ Ob(C ) and each relative
hyperplane H ⊂ P := X×Pn over X, a complex Λ(r)(P,H) of sheaves on Pzar is given
and contravariantly functorial in (P,H). Here a morphism f : (Y,E) → (Y ′, E′) of
pairs is a morphism f : Y → Y ′ of schemes satisfying f(Y ∖ E) ⊂ Y ′ ∖ E′.

(B0) The 0-th cohomology sheaf H 0(Λ(0)) is a sheaf of commutative rings with unity.

(B1) The product structure of (D2) is commutative, associative and compatible with the
product structure on H 0(Λ(0)) mentioned in (B0).

(B2) (Fundamental class) For any integral X ∈ Ob(C ), the unity of H0(Xzar, Λ(0))
agrees with cycX(X).

(B3) (Compatibility of D1 and D4: first Chern class) For any X ∈ Ob(C ) and
any prime divisor D on X, cycX(D) agrees with the first Chern class cX1 (D), i.e.,
the value of the class of OX(D) under the map

% : H1
D(Xzar,O

×
X) −→ H2

D(Xzar, Λ(1))

(B4) (Compatibility of D2 and D4: intersection formula) For any X ∈ Ob(C ),
any prime divisor D on X and any irreducible closed subset V ⊂ X of codimension
r, we have

cycX(D · V ) = cycX(D) ∪ cycX(V ) in H2r+2
D∩V (Xzar, Λ(r + 1)).
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(B5) (Compatibility of D3 and D4) For any i : D ↪→ X as in (D3) and any r ≧ 0,
the following diagram commutes in D(Shv(Xzar), Λ):

i∗ΛD ⊗L Λ(r)X

cycX(D)ad⊗id
��

id⊗i∗ // i∗ΛD ⊗L i∗Λ(r)D
prod // i∗Λ(r)D

i∗
��

Λ(1)X [2]⊗L Λ(r)X
∼

Λ(1)X ⊗L Λ(r)X [2]
prod

// Λ(r + 1)X [2],

where cycX(D)ad in the left downarrow denotes the morphism i∗ΛD → Λ(1)X [2]
corresponding to cycX(D) ∈ H2

D(Xzar, Λ(1)) ∼= HomD(Shv(Xzar),Λ)(i∗ΛD, Λ(1)X [2]).

(B6) (Projective space) For any X ∈ Ob(C ) and any n, r ≧ 0, the morphism

n⊕
i=0

Λ(r − i)X [−2i] −→ Rπ∗Λ(r)P , (αi)
n
i=0 7→

n∑
i=0

π∗(α) ∪ ξi

is an isomorphism in D(Shv(Xzar), Λ). Here π denotes the natural projection P :=
X×Pn → X, and ξ ∈ H2(Pzar, Λ(1)) denotes the first Chern class of the tautological
line bundle over P .

(B7) (Weak purity) For any X ∈ Ob(C ), any integer c ≧ 0 and any closed subscheme
i :W ↪→ X of codimension ≧ c, we have τ≦2c−1Ri

!Λ(c)X = 0.

(B8) (Compatibility of D3 and D5) For any pair (P,H) as in (D5) and any r ≧ 1,
the complex Λ(r)(P,H) fits into a distinguished triangle in D(Shv(Pzar), Λ)

Λ(r − 1)H [−2]
i∗ // Λ(r)P // Λ(r)(P,H)

// Λ(r − 1)H [−1] .

(B9) (Purity along log poles) For any pair (P,H) as in (D5) and any closed subscheme
i :W ↪→ P of codimension ≧ c with W ⊂ H, we have τ≦2cRi

!Λ(c)(P,H) = 0.

Remark B.1 The axiom (B5) for r = 0 implies that i∗ : Γ (D,Λ)→ H2
D(Xzar, Λ(1)) sends

1 to cycX(D). Using this fact, one can further deduce the following projection formula
from (B5) for any r ≧ 0 and j ∈ Z:

i∗(α) ∪ β = i∗(α ∪ i∗β) (∀α ∈ Γ (D,Λ), ∀β ∈ Hj(Xzar, Λ(r))).

Example B.2 Let n be a positive integer, and let C ⊂ Reg be the full-subcategory
consisting of all regular noetherian schemes over Z[n−1]. Put Λ := Z/nZ and

Λ(r) :=


Rε∗µ

⊗r
n (r > 0)

Rε∗Λ (r = 0)

Rε∗H omShv(Cét),Λ

(
µ
⊗(−r)
n , Λ

)
(r < 0),

where ε denotes the continuous map Cét → Czar of big sites. We define the morphism
% : O×[−1] → Λ(1) of (D1) as the connecting morphism associated with the Kummer
exact sequence

1 // µn // Gm
n-th power // Gm

// 1

on Cét. We define the product structure (D2) on {Λ(r)}r∈Z as the natural one, and define
the cycle class (D4) as Gabber’s cycle class

cycX(V ) ∈ H2r
V (Xét, µ

⊗r
n ) ∼= H2r

V (Xzar, Λ(r)) (for r = codimX(V )).
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We define the push-forward morphism (D3) by the cup product with cycX(D) = cX1 (D).
Then these data satisfy the axioms (B0)–(B3) and (B5) obviously. See [SS1] Theorem
12.5.1 (resp. loc. cit. Proposition 12.2.1) for (B4) (resp. (B6)). For a pair (P,H) as in
(D5) and r ≧ 1, we define

Λ(r)(P,H) := ε∗j∗JP∖H ,

where j (resp. ε) denotes the natural open immersion P ∖H → P (resp. the continuous
map Pét → Pzar of small sites), and JP∖H denotes the Godement resolution of µ⊗rn on
(P ∖H)ét. One can check (B7)–(B9) by the absolute purity [FG] ([SS1] Theorem 12.2.15).

Setting B.3 In the rest of this appendix, we are given a family {Λ(r)}r∈Z of complexes of
sheaves of Λ-modules on Czar with data (D1)–(D5) satisfying (B0)–(B9). See also Setting
B.6 below.

Lemma B.4 Let (P,H) be a pair as in (D5), and let W be a closed subset of P of pure
codimension c. Then we have

Hq
W (Pzar, Λ(c)(P,H)) ∼=

{
0 (q < 2c)

H2c
W∖H((P ∖H)zar, Λ(c)) (q = 2c).

Consequently, for each irreducible component V of W ∖H, we define a cycle class

cycP (V ) ∈ H2c
W (Pzar, Λ(c)(P,H))

as the element corresponding to cycP∖H(V ) ∈ H2c
Z∖H((P ∖H)zar, Λ(c)).

Proof. The assertion follows mainly from (B7), (B8), (B9). The details are left to the
reader as a report exercise. □

Lemma B.5 For any X ∈ Ob(C ) and any pair (P,H) over X as in (D5), the composite

Λ(r)X
π∗
−→ Rπ∗Λ(r)P −→ Rπ∗Λ(r)(P,H)

is an isomorphism in D(Shv(Xzar), Λ), where π denotes the projection P → X.

Proof. The assertion follows mainly from (B3), (B5), (B6), (B8). The details are left to
the reader as a report exercise. □

Exercise 15 Deduce Lemma B.5 from the axioms (B0)–(B9) of {Λ(r)}r∈Z.

Setting B.6 We fix a projective completion ∆q of ∆q (cf. Definition 3.3) as follows:

∆q := Proj(Z[T0, T1, . . . , Tq, T∞]/(T0 + T1 + · · ·+ Tq = T∞)).

Let Hq ⊂ ∆q be the hyperplane at infinity, i.e., Hq = {T∞ = 0}.

The following proposition will be useful in our construction of a cycle class morphism.

Proposition B.7 Let q and r be integers with q, r ≧ 0, and let X ∈ Ob(C ). Let U be
a scheme which is étale of finite type over X. Let Σr,q be the set of all closed subsets on
U ×∆q of pure codimension r which meet all faces of U ×∆q properly (cf. Definition 3.3).
For W ∈ Σr,q, let W be the closure of W in U ×∆q. Then:

(1) There is a canonical Λ-homomorphism

cycr,q : zr(U, q)⊗ Λ −→ lim−→
W∈Σr,q

H2r
W

(
U ×∆q

zar, Λ(r)(U×∆q ,U×Hq)

)
sending a cycle C ∈ zr(U, q) to the cycle class cycU×∆q(C), the linear extension of
the cycle class of Lemma B.4.
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(2) For each W ∈ Σr,q, the natural morphism

τ≦2r RΓW

(
U ×∆q

zar, Λ(r)(U×∆q ,U×Hq)

)
−→ H2r

W

(
U ×∆q

zar, Λ(r)(U×∆q ,U×Hq)

)
[−2r]

is an isomorphism in the derived category of Λ-modules.

(3) Let C be a cycle which belongs to zr(U, q), and let W ∈ Σr,q be the support of C.
Let i : U ×∆q−1 ↪→ U ×∆q be the closure of a face map i : U ×∆q−1 ↪→ U ×∆q.
Then the pull-back map

i∗ : H2r
W

(
U ×∆q

zar, Λ(r)(U×∆q ,U×Hq)

)
−→ H2r

i−1(W )

(
U ×∆q−1

zar, Λ(r)(U×∆q−1,U×Hq−1)

)
sends the cycle class cycU×∆q(C) to cyc

U×∆q−1(i
∗C), where i∗C denotes the pull-back

of the cycle C along i.

Proof. (1) and (2) follow from Lemma B.4. The assertion (3) follows from (B4). □

Theorem B.8 For any X ∈ Ob(C ) and r ≧ 0, there exists a canonical morphism

cycr : Z(r)X ⊗ Λ −→ Λ(r)X in D(Xzar, Λ),

where Z(r)X denotes Bloch’s Z(r) considered on Xzar (see Definition 3.3).

Proof. Let U be étale of finite type over X. For each q ≧ 0, let G(r)•
(U×∆q ,U×Hq)

be the

Godement resolution on (U×∆q)zar of the complex Λ(r)(U×∆q ,U×Hq) = Λ(r)•
(U×∆q ,U×Hq)

.

There is a diagram of cochain complexes concerning •:

zr(U, q)⊗ Λ[−2r]
cycr,q

−−−−−→ lim−→
W∈Σr,q

H2r
W

(
U ×∆q

zar, Λ(r)(U×∆q,U×Hq)

)
[−2r]

αr,q

←−−−−− lim−→
W∈Σr,q

τ≦2r ΓW

(
U ×∆q, G(r)•

(U×∆q,U×Hq)

)
βr,q

−−−−−→ Γ
(
U ×∆q, G(r)•

(U×∆q,U×Hq)

)
.

Here αr,q and βr,q are natural maps of complexes, which are contravariant for the face
maps U × ∆q−1 ↪→ U × ∆q. The arrow cycr,q is contravariant for these face maps by
Proposition B.7 (3). Hence we get homomorphisms of double complexes concerning (?, •)

zr(U, ?)⊗ Λ[−2r]
cycr,⋆

−−−−−→ lim−→
W∈Σr,⋆

H2r
W

(
U ×∆⋆

zar, Λ(r)(U×∆⋆,U×H⋆)

)
[−2r]

αr,⋆

←−−−−− lim−→
W∈Σr,⋆

τ≦2r ΓW

(
U ×∆⋆, G(r)•

(U×∆⋆,U×H⋆)

)
βr,⋆

−−−−−→ Γ
(
U ×∆⋆, G(r)•

(U×∆⋆,U×H⋆)

)
←−−−−− Γ (U,G(r)•U ),

where the differentials in the ?-direction are alternating sums of pull-back maps along the
faces of codimension 1, and the last arrow is the inclusion to the factor of ? = 0. The
arrow αr,⋆ (resp. the last arrow) is a quasi-isomorphism on the associated total complexes
by Proposition B.7 (2) (resp. Lemma B.5). We thus obtain the cycle class morphism in
D(Xzar, Λ) by sheafifying the diagram of total complexes. □

45



C Report exercises

Exercise 1 (§2) Let X be a scheme of finite type over Fq. Then show that

ζ(X, s) = Z(X/Fq, q−s)

for Re(s) > dimX.

Exercise 2 (§2) Check that the value on the right hand side of (2.3) is independent of the
choice of a bounded open subset Z 6= ∅, and that m1 is a Haar measure on H̃1

D(X/R,Z(1)).

Exercise 3 (§2) Using classical facts on number fields, show that

H i
ét(Spec(OK),Gm) ∼=


(Z/2Z)⊕r′ (i = 2)

Q/Z (i = 3)

(Z/2Z)⊕r1 (i ≧ 4, even)

0 (i ≧ 5, odd),

where r1 denotes the number of real places of K, and r′ := max{r1 − 1, 0}.

Exercise 4 (§3) Show that Bloch’s Z(r) satisfies (L0) for any regular noetherian scheme.

Exercise 5 (§4) Let A be an abelian category with enough injective objects, and let N1
f→

N2
g→ N3

h→ N1[1] be a distinguished triangle in D−(A ). Show the following:

(1) Let i : K → N2 be a morphism with g◦i = 0, and assume HomD−(A )(K ,N3[−1]) =
0. Then there exists a unique morphism i′ : K → N1 that i factors through.

(2) Let p : N2 → K be a morphism with p ◦ f = 0 and assume HomD−(A )(N1[1],K ) =
0. Then there exists a unique morphism p′ : N3 → K that p factors through.

(3) Assume HomD−(A )(N2,N1) = 0. Then relatively to a morphism h : N3 → N1[1],
the triple (N2, f, g) is unique up to a unique isomorphism, and f is determined by
the pair (N2, g).

Exercise 6 (§4) Show that cycr of Theorem 4.11 is an isomorphism for r = 0, 1.

Exercise 7 (§5) Let ξ ∈ H1(K,V ) correspond to an extension of `-adic representations
of GK

0 −→ V −→ E −→ Qℓ −→ 0.

Then show the following:

(1) If ` 6= p, then ξ belongs to H1
f (K,V ) if and only if the induced sequence

0 −→ V IK −→ EIK −→ QIK
ℓ (= Qℓ) −→ 0

is exact.

(2) If ` = p, then ξ belongs to H1
f (K,V ) if and only if the induced sequence

0 −→ Crys(V ) −→ Crys(E) −→ Crys(Qp)(= K0) −→ 0

is exact.
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Exercise 8 (§5) Let G be a profinite group and let N be a closed normal subgroup of G.
Let M be a topological G-module, and put

Z1(N,M) :=
{
ϕ : N →M continuous map

∣∣ ∀x, ∀y ∈ N,ϕ(xy) = ϕ(x) + x ·ϕ(y)
}
,

B1(N,M) :=
{
ϕ : N →M continuous map

∣∣ ∃a ∈M, ∀x ∈ N,ϕ(x) = x ·a− a
}
.

Then show the following:

(1) For ϕ ∈ Z1(N,M) and g ∈ G, define a map g ·ϕ : N →M by

(g ·ϕ)(x) := g ·(ϕ(g−1xg)).

Then g ·ϕ belongs to Z1(N,M), and the map

γ : G× Z1(N,M)→ Z1(N,M), (g, ϕ) 7→ g ·ϕ

defines a left G-action on Z1(N,M).

(2) B1(N,M) is a left G-submodule of Z1(N,M).

(3) N acts trivially on H1(N,M) via γ, i.e., H1(N,M) is a left G/N -module.

Exercise 9 (§5) Let G be a profinite group and let N be a closed normal subgroup of G.
Put Γ := G/N . Let M be a topological G-module. Then show that there is an inflation-
restriction exact sequence

0 // H1(Γ,MN )
Inf // H1(G,M)

Res // H1(N,M)Γ .

Exercise 10 (§5) Show the equality ? in the last display of §5.2.

Exercise 11 (§5) Show that H1
f (K,V ) is independent of the choice of S as in Condition

5.6.

Exercise 12 (§5) Let E be an elliptic curve over K, and let Sel(E/K)(p) be the p-primary
Selmer group:

Sel(E/K)(p) := Ker

(
H1(K,E{p}) −→

∏
v∈P

H1(Kv, E{p})
E(Kv)⊗Qp/Zp

)
,

where E{p} denotes the p-primary torsion part of E(K). Put

VE := Qp ⊗Zp lim←−
n≧1

pnE,

where pnE denotes the pn-torsion part of E(K). Is there a natural map

H1
f (K,VE) −→ Sel(E/K)(p)?

If so, is the cokernel finite?
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Exercise 13 (§A) Let X be a scheme, and let i : Z ↪→ X be a closed subscheme. Let
j : V := X ∖ Z ↪→ X be the open immersion from the open complement of Z. Let F be
an étale sheaf on X. For each U ∈ Ob(Ét/X), we put

ΓZ×XU (U,F ) := Ker(Γ (U,F )→ Γ (U ×X V,F ))

(1) Show that the assignment

ΓZ(X,F ) : U ∈ Ob(Ét/X) 7−→ ΓZ×XU (U,F )

is an étale sheaf on X.

(2) Show that the following sequence of sheaves is exact on Xét:

0 −→ ΓZ(X,F ) −→ F −→ j∗j
∗F .

(3) Show that ΓZ(X,F ) ∼= i∗i
∗ΓZ(X,F ) for any étale sheaf on X.

(4) Put i!F := i∗ΓZ(X,F ) for an étale sheaf F on X. Then show that the functor
i! : Shv(Xét)→ Shv(Zét) is right adjoint to i∗ : Shv(Zét)→ Shv(Xét).

(5) Show that the functor

ΓZ(X,−) : Shv(Xét) −→ Ab, F 7−→ ΓZ(X,F )

is left exact. Let H∗
Z(X,−) be its right derived functor.

(6) For each q ≧ 0 and each sheaf F ∈ Shv(Xét), let H
q
Z(X,F ) be the sheaf on Xét

associated with the presheaf

U ∈ Ob(Ét/X) 7−→ Hq
Z×XU (U,F ).

Then show that the functor

i∗Hq
Z(X,−) : Shv(Xét) −→ Shv(Zét), F 7−→ i∗Hq

Z(X,F )

agrees with the q-th right derived functor Rqi! of i!.

Exercise 14 (§A) Let X be a proper smooth geometrically integral curve over a field k.

(1) Assume that k is algebraically closed. Then show that H i(X,Gm) = 0 for any i ≧ 2,
using Tsen’s theorem: the function field k(X) is a C1-field.

(2) Assume that k is a finite field. Then show that

H i(X,Gm) ∼=

{
Q/Z (if i = 3)

0 (if i = 2 or i ≧ 4).

Exercise 15 (§B) Deduce Lemma B.5 from the axioms (B0)–(B9) of {Λ(r)}r∈Z.
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