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Overview

The main topics of this course are the following:
e Zeta function and cohomology
e Motivic complexes and its Z/p"Z-variants
e Galois cohomology and Selmer groups of Bloch-Kato
e Etale cohomology of arithmetic schemes

In this course, a ring means a commutative ring with unity, and a scheme means a
locally ringed space which is everywhere locally isomorphic to some affine scheme Spec(R)
(R is a ring), i.e., a pre-scheme in the sense of [GD1]. A wariety over a field k means an
integral scheme which is separated of finite type over Spec(k).
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1 Weil cohomology and congruence zeta function

Let F be a field, and let K be a field of characteristic 0, where F' is independent of K and
ch(F) is arbitrary. Let SmProj(F') be the category whose objects are smooth projective
geometrically integral varieties over F' and whose morphisms are morphisms over F. A
Weil cohomology theory on SmProj(F') is a contravariant functor

H*(~) : SmProj(F)® — {graded commutative}

K-algebras
with the data (D0)—(D2) which satisfy the axioms (A1)—(A6) below:
(DO) (Tate twist) A one-dimensional K-vector space K (1)

(D1) (Trace isomorphisms) For each X € Ob(SmProj(F")), an isomorphism
Trx : H*(X)(d) = K,
where d := dim X and H*(X)(r) := H{(X) ®x K(1)®" for r = 0.

(D2) (Cycle class maps) For each X € Ob(SmProj(F')) and for each ¢ = 0, a homo-
morphism

cyex « Z4(X) — H*(X)(q),
where Z9(X) denotes the group of algebraic cycles on X of codimension q.

(A1) (Finiteness) For any X € Ob(SmProj(F)) and any ¢ = 0, H4(X) is finite-
dimensional over K, and vanishes unless 0 < ¢ < 2dim X.

(A2) (Kinneth formula) For any X,Y € Ob(SmProj(F')), the following map is bijec-
tive:
HY(X) @k H'(Y) = H*(X xY),  a®f+ pri(a) Upry(5),

Here U denotes the cup product, i.e., the product structure of H*(X x Y).

(A3) (Poincaré duality) For any X € Ob(SmProj(F')) of dimension d and any g = 0,
the following pairing given by cup product and trace map is non-degenerate:

HY(X) x H¥ 9 X)(d) — K, (o, B) = Trx (o U B).

(A4) (Rational equivalence) For any X € Ob(SmProj(F)), the map cycy sends
Z9(X)rat to 0, where Z9(X),,; denotes the subgroup of Z9(X) consisting of the
cycles which are rationally equivalent to 0.

(A5) (Functoriality) For any morphism f: X — Y in SmProj(F'), we have

cycx o f* = f*ocycy, cycy o fx = frocycy,

where f* on the left hand side denotes the pull-back of Chow groups modulo rational
equivalence CHY(Y) — CHY(X); f. on the right hand side denotes the dual of f*
under the Poincaré duality for H*(X) and H*(Y).

(A6) (Multiplicativity) For any X,Y € Ob(SmProj(F)), z € Z9(X) and any w €
Z"(Y), cycx(z) ® cycy (w) corresponds to cycy,y (z K w) under the Kiinneth iso-
morphism in (A2), where z X w denotes the outer product of z and w.

(A7) (Normalization) If X = Spec(k), then cycx(X) =1 and Trx(1) = 1.



Example 1.1 (¢-adic étale cohomology) Let F' be an arbitrary field, and let £ be a
prime number different from ch(F"). Fix a separable closure F' of F' and put X := X®p F
for X € Ob(SmProj(F')). Then the ¢-adic étale cohomology

H*(X) := Hi (X7, Qo) = Q ®z, im H (X7, 2/0"Z) (X € Ob(SmProj(F)))
n=1

with Q¢(1) := Q; ®z, @1 wen (F') yields a Weil cohomology theory.

n>1

Example 1.2 (crystalline cohomology) Let F' be a perfect field of characteristic p >
0. Let W(F') be the ring of Witt vectors over F', and let K¢ be the fraction field of W (F').
Then the crystalline cohomology

H*(X) = Hys(X/W(F)) @w(r) Ko (X € Ob(SmProj(F))),

with Ky(1) := Ky yields a Weil cohomology theory.

From the axioms of Weil cohomology theory, one can deduce the following formula by
formal computations, which plays a fundamental role in the study of the zeta function of
projective smooth varieties over finite fields:

Theorem 1.3 (Lefschetz trace formula) Let F' and K be as above, and let H*(—) be
a Weil cohomology theory on SmProj(F). Let X be a d-dimensional variety which belongs
to SmProj(F), and let f : X — X be a morphism over F. Then we have

2d

deg(A-I'y) =) (=1)"-Tx(f*|H'(X)),

1=0
where A denotes the diagonal of X x X, and I'y C X x X denotes the graph of f.

Proof. See e.g. [SS1] §12.7.c, [Y] Theorem 1.75. O

Definition 1.4 Let p be a prime number, and let ¢ be a power of p. For a scheme X
of finite type over F,, we define the congruence zeta function Z(X/F,,t) of X/F, as the
exponential of the generating function of Fyn-valued points of X for n = 1:

#X (Fq" ) m
n

Z(X[Fg 1) = exp (i ) <.

As a direct consequence of the Lefschetz trace formula, we have the following:

Corollary 1.5 Let H*(—) be a Weil cohomology theory on SmProj(F,) with coefficients
in the field K. Then for any X € Ob(SmProj(F,)), we have

B PYX/Fy, t) g« -+ P2 Y X /Py, t) o
Z(X[Fq,t) = POX/Fy, 1)1 P2(X/Fg, O 1- - - P2UX Fyr 1) 11" (d:=dim X)

in K[[t]]. Here for eachi=0,1,...,2d, P(X/F,,t) g+ is defined as
PY(X/Fq,t) g = det(1 — Fr}-t| H'(X)) € K[t],

and Frq denotes the Frobenius morphism X — X over F,.

Proof. By the Lefschetz trace formula over F,», we have

2d

BX(Fp) =3 (1) Te((Fr)"| H' (X))

1=0



On the other hand, we have

det(E — tA)™ = exp (i Tr(f”%ﬂ) i K[t]
n=1

for any square matrix A with entries in K. One obtains the assertion from these facts. [

Theorem 1.6 (Deligne/Katz-Messing) For any X € Ob(SmProj(F,)) and any 0 <
i < 2dim(X), the polynomial P*(X/F,,t)g+ € K[t] is independent of the Weil cohomology
theory H*(—) satisfying weak Lefschetz, and lies in Z[t]. Moreover, the reciprocal zeros of
P{(X/F,,t) := PY(X/F,,t)g- have complex absolute value ¢*/?.

2  Cohomology and zeta values

Throughout this section, let X be a scheme of finite type over Z.

Definition 2.1 We define the zeta function ((X, s) of the scheme X as the Euler product
1
(X8):= 1] ~—==-
z€Xo 1- JV(:E)
Here Xy denotes the set of closed points of X, and .#(z) denotes the order of the residue
field k(z) for each = € Xj.

Example 2.2 When X = Spec(Of), the spectrum of the integer ring O of a number
field K, then we have ((X,s) = (x(s), the Dedekind zeta function.

Proposition 2.3 (1) ((X,s) converges absolutely for Re(s) > dim X. In particular, it
does not have zeros there.

(2) ((X,s) is meromorphically continued to Re(s) > dim X — %, and has a pole of order

m at s = dim X. Here m denotes the number of the irreducible components of X
which have dimension dim X.

Proof. See [Sel] §1.3~§1.4. O

Exercise 1 Let X be a scheme of finite type over Fy. Then show that
((X,s)=Z(X/Fq,q"°) for Re(s)>dimX.

Definition 2.4 For each positive integer m invertible on X, let u,, = pm x be the étale
sheaf of m-th roots of unity on X. For a prime number ¢ invertible on X and an integer
r 2 0, put

H* (X, Zo(r)) = lim H3 (X, ).

n>1
If X is a smooth scheme over Spec(F,), then we put

H*(X, Zp(r)) = ILm He " (X, Wi Q2 og)

n>1

where Wlﬂ’)}’log denotes the étale subsheaf of logarithmic part of the Hodge-Witt sheaf
W, % (cf. (1)

The following theorem is a special case of a theorem of Milne [Mi] Theorem 0.1.



Theorem 2.5 Let X be a proper smooth geometrically integral variety over F,. Then we

have
2d—1 _ R
lim (1 - ¢ (X, 8) = x(X, Ox,d) [[ FH(X,Z(d))) "V #(H* (X, Z(d))1ors).
i=1
2d+1 ' R .
C(Xv 7’) = X(X7 ﬁXJ') H (#H%X?Z(T)))(il)l (T >d, re Z)7
i=1

where H*(X,z(r)) and x(X, Ox,r) are defined as follows:

H(X,2(r) = ] H'(X Zu(r)),
£:prime
XX, O0x,r) = H (#H (X, Q)00 (Milne’s correcting factor)

i,j=0

Theorem 2.5 is based on the finiteness of Hi(X,Z(r)) (i 20, r>d, (i,r) # (2d,d), (2d +
1,d)) and H?¥(X,Z(d))sors, which is a consequence of Theorem 1.6 and a theorem of
Gabber [Ga].

Remark 2.6 In [Mi] Theorem 0.1, Milne describes the behavior of ((X,s) at s — r
(r € Z) by H*(X,Z(r)) and x(X, Ox,r), assuming the projectivity of X over F, and the
1-semi-simplicity conjecture on the action of the Frobenius element ¢, € Gal(IF,/F,) on

H>(X,Qu(r)) = H" (X, Q) ®g, Q(1)*" (X := X @x, F,)

for all prime number ¢, including p (see also [T2] §3 (d)). This 1-semi-simplicity conjecture
obviously holds true for any r 2 d under the properness of X over F,, so do the assertions
in [Mi] Theorem 0.1 under the same assumption.

Definition 2.7 (Deligne cohomology) Assume that X is flat over Z, and that Xg :=
X ®z Q is smooth over Q. We write X(C) for the set of C-valued points of X over Z, and
write X(C)*" for the complex analytic variety associated with X(C). For a subring A C R
and r 2 0, let A(r)y be the following complex of sheaves on X(C)?":

A(r)g + 2nV=1)" A — Oxcpm —5 Qa0 =5 Qs
where (2my/—1)"- A is placed in degree 0. Then we define
H5(Xyc, A(r) := H*(X(C)*™, A(r)2),
Hy(Xr, A(r)) == Hy(X)c, A(r) ™,

where T means the fixed part by the complex conjugation, acting on both X(C)*" and
A(r)g.

Example 2.8 There is a cartesian diagram of sheaves on X(C)?"

27T V -1 Z — ﬁX((C)an

l S

O ﬁ;(c)an 9

which implies that we have Z(1)y = )?((C)an [—1] in D?(X(C)2™).

5



Setting 2.9 In the rest of this section, we put X := Spec(Og), the spectrum of the
integer ring of a number field K. We often write n for [K : Q]. In this case, X(C) is
exactly the set of the ring homomorphisms 7 : Ox — C, i.e., consists of distinct n points.
We write r; (resp. ra, h, R, D) for the number of the real (resp. number of complex places,
class number, regulator, discriminant) of K, and write w for the number of roots of unity
in K.

>~

By the isomorphism Z(1)y = ﬁ;(c)an[—l] in Example 2.8, there is a commutative

diagram
< 11 <c>+ (2.1)

T7€X(C)

B
e ) - (11 @X)f

T7€X(C)

The isomorphism Z(1)y = )?(C)an[—l] also yields a natural homomorphism, called the
regqulator map ' A ‘
regl) : H' ™ (Xjar, 0F) — Hy(Xp, Z(1)).

for each ¢ 2 1. Note that 1regffjj1 is injective for ¢ = 1 and zero otherwise. When we take
the kernel H},(X/g,Z(1)) of the trace map

Trx : Hy(Xp, Z(1)) — R, (2r)rexic) = > Inlz],
T7€X(C)

then reggl(O;é) is a discrete cocompact subgroup of Iflgj(X/R,Z(l)). Moreover, its co-
volume under a natural Haar measure defined in Definition 2.10 below involves several
important invariants of the number field K (see Proposition 2.11 below).

We define the action of Gal(C/R) on the C-vector space K ®g C as
ola®z):=a®o(z) (e € K, z€C, o € Gal(C/R)).
There is a canonical C-linear isomorphism
K®qC= H C, a®zr— (1(a)z),,
T7€X(C)
which is Gal(C/R)-equivariant and induces an isomorphism of R-vector spaces
+
K®QR§( 1T (:). (2.2)
T7€X(C)

This isomorphism and the map ( in (2.1) define a natural continuous and open homo-
morphism from K ®g R — H }J(X /r> Z(1)), whose image is a connected open subgroup of
index 2. Let mg be the Haar measure on HJ,(X/g,Z(1)) with respect to the lattice Ok

of K®@gR. We construct a Haar measure m; on ﬁlg(X/R, Z(1)) from my and the Lebesgue
measure A1 on R as follows.

Definition 2.10 We put n := [K : Q] = #X(C), and fix a continuous section of Trx
s:R— Hé(X/R,Z(l)), T a_l((exp(x/n))T),
which yields a homeomorphism of topological groups

HY(Xp, Z(1)) = HY(X/p, Z(1)) x R.



Under this topological direct decomposition, we define
mo(V x s(2))
M(2)

for any Borel subset V C H 4(X)r,Z(1)), where Z on the right hand side is an auxiliary
bounded (and non-empty) open subset of R.

mq (V) = (23)

Exercise 2 Check that the value on the right hand side of (2.3) is independent of the
choice of a bounded open subset Z # 0, and that my is a Haar measure on Hy,(X /g, Z(1)).

Now we are ready to state the following Proposition 2.11 concerning the reduced reg-
ulator map
wegg’ O — Hiy(Xpp, Z(1)).
Proposition 2.11 Let mo be the quotient Haar measure of my on Coker(r’e\/ggl). Then
2m (27T)T2R
D]
Proof. See e.g. [Sa4], Appendix A. O

(Coker(reg9 ) =

By this formula, the classical class number formula is reorganized as follows:

Corollary 2.12 We have
mg(Coker(ﬁfg;l)) #Ker(regél)
#Ker(re“é%l) #Coker(regél) ’

Res Cxe(s) =

where 1"eg21 denotes Pic(X) — 0.
Remark 2.13 The isomorphism (2.2) is in fact the comparison isomorphism
+
(/@ ok = [T #,(x(©™.0)
T€X(C)

between the algebraic de Rham cohomology of Spec(K) and the singular cohomology of
X(C)*. In short, the measure my on Hy,(X/g,Z(1)) is determined by the lattice O of

HY; (K/Q), and Proposition 2.11 computes the covolume of r/éTg;l(O[X() concerning mj.
Exercise 3 Using classical facts on number fields, show that

(z/22)*"  (i=2)

i oz (i=3)
Hét(SpeC(OK)a Gm) = (Z/Qz)@’/‘l ( 2 4_ ven)
0 (i 25, odd),

where 11 denotes the number of real places of K, and ' := max{r; — 1,0}.

3  Etale motivic complexes

Let X be a noetherian regular scheme. We introduce here a collection of axioms (L0)—(L7)
due to Lichtenbaum [Lil], [Li3] concerning a family {Z(r)},>( of complexes of étale sheaves
on X. This family {Z(r)},>( satisfying the following (L0)—(L7) and good candidates for
them are both called étale motivic complexes on X.

(L0) Z(0) = Z, Z(1) = Gp|—1].

(L1) (acyclicity) For r = 2, Z(r) is acyclic outside of [1,7].



(L2) (Hilbert’s Theorem 90) Let € : Xg — X,ar be the natural continuous map of
sites. Then the Zariski sheaf R" e, Z(r) is zero for any r 2 0.

(L3) (Kummer theory) Let m be a positive integer which is invertible on X. Then
there exists a distinguished triangle

Z(r) H Z(r)1]  in D(Xer)

for any r = 0.
(L4) (p-Kummer theory) Let p be a prime number, and assume that X is over F,,.
Then there exists a distinguished triangle

n

Xp

Z(r) Z(r) Wo % 1og[—1] —=2Z(r)[1]  in D(Xe)

for any r 2 0 and n = 1.
(L5) (Products) For each 7,7’ = 0, there exists a product morphism
Z(r) @Y Z(r") —=Z(r +1') in D(Xe).
(L6) (Connection with K-theory) The g-th cohomology sheaf .7#°(Z(r)) is isomorphic
to the étale sheafification of the presheaf
U € Ob(Et/X) — gl Kor—o(U)

up to torsion involving primes < r — 1. Here Ky,_4(U) denotes the (2r — ¢)-th
algebraic K-group associated with the category of vector bundles over U, cf. [Q];
v means the ~-filtration, cf. [Sol]. Moreover, 7" (Z(r)) is isomorphic to the étale
sheafification of the presheaf

U € Ob(Et/X) — KM(I(U, 0y)),
where for a ring R, KM(R) denotes the r-th Milnor K-group of R.

(L7) (Purity) Leti:Z — X be a locally closed immersion with Z regular and of pure
codimension c. Then there exists a canonical isomorphism

i Z(r — ¢)z[-2c] —>7<, Ri'Z(r)x  in D(Zg).
In his paper [Li2|, Lichtenbaum constructed a candidate of Z(2) using algebraic K-groups.
Theorem 3.1 Lichtenbaum’s Z(2) satisfies
(L1) by definition, (L2) for any X up to 2-torsion,
L3) for any X smooth of finite type over a field, and any odd m invertible on X,

L4) for any X smooth of finite type over a field of characteristic p = 3,

(
(
(
(

L5) for any X, (L6) for any X smooth of finite type over a field,
L7) for any X smooth of finite type over a field, and any Z with ¢ = 1, up to
2-torsion.

Proof. See [Li2], [Li3| for details. O



There are other strong candidates of Z(r) for r = 2:
e 7(r) using Bloch’s cycle complex 2" (—, x) ([B12]). See Definition 3.3 below.

e Z(r) for smooth schemes of finite type over a field [SV]. See also Remark 3.4 below.

See Exercise 4 below for (LO) for Bloch’s Z(r). (L0) for Suslin-Voevodsky’s Z(r) is straight-
forward.

Theorem 3.2 For any X smooth of finite type over a field, Bloch’s Z(r) and Suslin-
Voevodsky’s Z(r) agree in D(Xe), and satisfy

(L1) for degrees > r, (L2)—(L5), (L7) for any Z with ¢ = 1.

The former half of (L6) holds for any X smooth of finite type over a field up to torsion,
and the latter half holds for the same X over an infinite field.

Proof. See [V1] for the comparison of the two candidates over a field. (L1) for degrees
> r follows from [SV] Lemma 3.2, or the Gersten conjecture for higher Chow groups
[B12] Theorem 10.1. See [GL2] for (L3) under the Bloch-Kato conjecture for norm-residue
homomorphisms, which has been proved in [V2], [V3]. See [GL1] for (L4); (L5) is obvious
for Suslin-Voevodsky’s Z(r). The assertions on the former half (resp. the latter half) of
(L6) is due to Bloch [Bl2] Theorem 9.1 (resp. Nesterenko-Suslin-Totato [NS], [To] and
Kerz [Ke] Theorem 1.1). See [Ge] Theorem 1.2 (2), (1) for (L2) and (L7). O

In what follows, we review the definitions of Bloch’s cycle complex and Z(r), briefly.
Definition 3.3 (Bloch’s z" (U, ) and Z(r)) For each integer ¢ = 0, put
A% := Spec(Z[to, t1, ..., tq]/(to +t1 + -+ +1t5 —1)).
A face of A7 of codimension ¢ 2 1 is a closed subscheme defined as
tiy =ti,=--+=t,=0 forsome 0= 1i3 <iz<...<i.=gq.

When ¢ = 1, we often identify the face {t; = 0} with the closed immersion A?~1 — A4

given by
t; 0Sj<i
tj — J ( - ] Z)
tion (i<j=q).
For a noetherian uni-codimensional (e.g. integral) scheme U, let 2" (U, q) be the free abelian
group generated by the set of the integral closed subschemes V' C U x A% of codimension

r which meet all faces of U x A4 properly, that is, for any face F C A? and any irreducible
component T of V' Xy aa (U x F), we have

codimyx aq(T) 2 codimyx aa(V) 4+ codimpg (F).

For each face 0; : {t; = 0} — A? of codimension 1 (i = 0,1,...,q), we define the coface
map
of : 2"(U,q) — 2" (U,q— 1)

1

as the pull-back of algebraic cycles along the effective Cartier divisor
idxx&:{ti:O}xXC—>X><Aq.
Taking the alternating sum

q
dg = (=) 07 4" (U,q) — 2" (Ung = 1)
=0



we obtain Bloch’s cycle complex 2"(U,*) = ((2"(U,q))g=0, (dg)g=>1), which is in fact a
complex of abelian groups. We define Bloch’s Z(r) on X (resp. on X,ay) by the assignment

U € Ob(Et/X)
(resp. U C X (open)

— 2" (U, *)[—2r]
— 2"(U, *)[—2r]),
which is a complex of abelian sheaves on Xg; (resp. on X, ).

Exercise 4 Show that Bloch’s Z(r) satisfies (LO) for any regular noetherian scheme X .

Remark 3.4 In [Ge], Geisser proves that for X smooth of finite type over a Dedekind
ring, Bloch’s Z(r) satisfies

(L1) for degrees > r, (L2), (L3), (L7) for any Z with ¢ = 1.

In [CD] §11, Cisinski and Deglise construct a candidate of H}, (X, Z(r)) for any regular
scheme X of finite dimension, generalizing Voevodsky’s construction.

4 Finite-coeflicient variant of Lichtenbaum’s axioms

Setting 4.1 Let O be a Dedekind domain, and let K be its fraction field. Let p be a
prime number, and suppose that 0 ; pO g 9. Let X be an integral regular scheme which
is flat of finite type over B := Spec() and assume that

(x1) the divisor Y := (X ®z Fp)rea has normal crossings on X.
Let ¢ and j be as follows:

Xp N laX <oy
We will often write 7 for the structure morphism X — B.

For a point z € X, we often write ¢, for the natural map x — X (more precisely,
{z} — X) and write Ru}, for i* Ri};, where Z denotes the Zariski closure of {z} in X and
iz (resp. tz) denotes the natural map x < Z (resp. the closed immersion Z < X). Note
that RLEE is not the right adjoint of Riz. unless Z = {z}, i.e., = is a closed point of X.

4.1 Axioms and a solution

We introduce here a collection of axioms (T1)-(T5) on a family {,(r)},>( of complexes
of étale Z/p"Z-sheaves on X.

~Y ®7‘

(T1) (Trivialization) There is an isomorphism ¢ : j*T,, (1) = pi0 .

(T2) (Acyclicity) ¥, (r) is concentrated in [0,r], i.e., the g-th cohomology sheaf is zero
unless 0 < g S r.

(T3) (Purity) For a locally closed regular subscheme ¢tz : Z < X of characteristic p and
of codimension ¢ (2 1), there is a Gysin isomorphism

Wo 6 =1 — o] =Ty Ry Ta(r)  in DY(Ze, Z/p"Z).
(T4) (Compatibility) For any two points z,y € X satisfying ch(z) = p, z € {y} and
¢ := codimy (z) = codimx (y) + 1, the connecting homomorphism

5o Rrtetl, (RL;Tn(r)) — R0 (RULTL(1))

10



in localization theory agrees with the sheafified boundary map of Galois cohomology
groups due to Kato ([KCT])

RT_C+1L M@g—c—&—l (ch(y) — 0)
K y*p s L W2

_ z,log
bWy Qe (ch(y) = p)

up to a sign depending only on (ch(y), c), via the Gysin isomorphisms for ¢, and ¢,.

Here the Gysin isomorphism for ¢, with ch(y) = 0 is defined by the isomorphism ¢

in T1 and Deligne’s cycle class in RQC_ZL;/LS? -1

(T5) (Products) There is a unique morphism
Tp(r) @ Tn(r) — Tu(r+71')  in D™ (X, Z/p"Z)
that extends the natural isomorphism uff{ ® ,uffif = Mfﬁf " on X[pY).

The axioms (T1)—(T3) and (T5) are Z/p"Z-analogue of (L1)-(L5) and (L7); (T4) is not
among Lichtenbaum’s axioms, but a natural property to be satisfied. Concerning these
axioms, we have the following fundamental result:

Theorem 4.2 ([SH], [Sa5]) If 7 : X — B is log smooth around Y, then there exists a
family {T,(r)},>0 of objects in D*(Xe, Z/p"Z) satisfying (T1)~(T5). Moreover, for each
r 2 0, the pair (Tp(r),t) of Tp(r) and t of (T1) satisfying (T2)—(T4) is unique up to a
unique isomorphism in D®(Xg, Z/p" 7).

The complexes {%,,(7)},>0 in Theorem 4.2 are functorial in the following sense:

Theorem 4.3 ([SH], [Sa5]) Let X — B be as in Theorem 4.2. Let O' be a Dedekind
domain which is flat over O, and let X' be an integral reqular scheme flat of finite type
over B' := Spec(D’) such that Y' := (X' ®z Fp)rea has normal crossing on X' and such
that ' : X' — B’ is log smooth around Y'. Let f : X' — X be an arbitrary morphism,
and let ¢« X'[p~] — X[p~Y] be the induced morphism. Put ¢ := dim(X) — dim(X%.),
where K' denotes Frac(9') and we put Xk := X @9 K and X}, := X' @9 K'. Then:

(T6) (Contravariant functoriality) There ezists a unique morphism
PP x — Tulr)x  in DY(XY,Z/p"Z)
RXr ~ Q1

that extends the natural isomorphism *psi = pst on (X'[p~H)e.

(T7) (Covariant functoriality) If f is separated of finite type, then there exists a unique
morphism

try: RAT,(r — ¢)x/[—2d) — Tp(r)x  in D°(X&, Z/p"Z)

that extends the push-forward map try, : Ri/}gufﬁf_c[—Qc] — ,uffnr on (X[p~)et-

Remark 4.4 f%in (T6) is not an isomorphism in genral, unless f is étale. We do not
need the log smoothness of X nor X' for the existence of try in (T7) with 7 = dim X.
4.2 Construction of ¥, (r)

We start the construction of ¥, (r) with the following straight-forward observation, where
we do not need the log-smoothness around Y. For a point z € X, let ¢, be the natural
map ¢ — X.
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Lemma 4.5 Assume that there exists an object T,(r) € D*(X¢i, Z/p"7Z) satisfying (T1)-
(T4). Then:

(1) There is an exact sequence of sheaves on Xe
Rjupgt — P w0 — P 2, (4.1)
yeYo zeYl
where each arrow arises from the boundary maps of Galois cohomology groups.
(2) There is a distinguished triangle in D°(Xe, Z/p"Z) of the form

L = — 1] s T (1) — o e Rl — > v ). (4.2)

Here t' is induced by t of (T1) and the acyclicity property (T2); v 1 denotes the
sheaf on Yz defined as the kernel of the second arrow in (4.1) (restrzcted onto Y'),
and o denotes the morphism induced by the exact sequence (4.1).

Proof. Consider a localization distinguished triangle

T (r) == Rjj*To(r )ﬁb*mz (1)[1] === T (1)[1]. (4.3)

We have ¢ : j*T,.(n) = p5! by (T1). On the other hand, one has
e (1 RETa () [1]) 2 e[
by (T3) and (T4). The map of cohomology sheaves at degree r of (51U°CZ looks like
R jupigd — L*Vg/nl, (4.4)

which is compatible with Kato’s boundary maps up to a sign by (T4). Thus the sequence
(4.1) must be a complex and we obtain the morphism o of (4.2). Finally by (T2), the
map (4.4) must be surjective, which implies the exactness of (4.1) and that we obtain the
triangle (4.2) by truncating and shifting the triangle (4.3) suitably. O

In view of Lemma 4.5, the next step is to show the following proposition without
assuming the existence of ¥,,(r), where we do not need the log-smoothness around Y yet:

Proposition 4.6 The sequence (4.1) is exact étale locally on X.

Proof. The assertion that the sequence (4.1) is a complex follows from a result of Kato
[KCT] Proposition 1.7, and then one can check the exactness of (4.1) using the Gersten
conjecture for logarithmic Hodge-Witt sheaves for regular schemes in characteristic p ([GS],
[Sh]). See [SH] Lemma 3.2.4 and the first part of Theorem 3.4.2 for details. O

By Proposition 4.6, there exists a morphism
o: Tg,.Rj*u?{ — L*V;",nl[ r] in DY(Xg,Z/p"Z)
and the induced homomorphism of cohomology sheaves
r—1

H (o) : Rj*,up — Ly,

is surjective.
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Definition 4.7 For n 2 1 and r = 0, we define the desired complex ¥, (r) as that fitting
into a distinguished triangle of the same form as (4.2):

/

L = = 1] =2 T (r) == 7o Rl — 7 i =] (4.5)

T (r) satisfies (T1) (resp. (T2)) by definition (resp. the surjectivity of " (o)). Since
Hompo(x,, z/prz)(Fn (1), L*I/{,;Ll[—r —1))=0

for the reason of degrees, the pair (T,(r),t) is unique up to a unique isomorphism in
DY X4, 7Z/p"7) and g is determined by (%,(r),t'). See also Exercise 5 (3) below. If the
residue fields of O of characteritic p are perfect, then we have

Ta(r) = Rj*uffif for any r = dim Xx + 1

Exercise 5 Let o/ be an abelian category with enough injective objects, and let N i>
No D N N MI1] be a distinguished triangle in D~ (/). Show the following:

(1) Leti: H — N5 be a morphism with goi = 0, and assume Homp-— .\ (A", A3[—1]) =
0. Then there exists a unique morphism i’ : & — AN that i factors through.

(2) Letp: Mo — K be a morphism with po f =0 and suppose Homp— (o) (M[1], %) =
0. Then there exists a unique morphism p' : N5 — H that p factors through.

(3) Assume that Homp- (A2, 41) = 0. Then relatively to a morphism h : A3 —
MI1], the triple (A2, f, g) is unique up to a unique isomorphism, and f is determined
by the pair (N3, 9).

4.3 Proof of (T3)—(T7)
In our proof of (T3)—(T7), the following fact plays and essential role:

Theorem 4.8 For any r = 0, the sheaf R" '*/L?J on Xg is generated by the image of the
symbol map

(js ﬁ;[p_l})w — Rljapin .

Proof. See [BK1] Corollary 6.1.1, [H] Theorem 1.6 (1) and [SS2] Theorem 1.1 (see also
[Sab] Remark 2.4). O

Proof of (T5), (T6). Put U'OY := Ker(0F — 1.6y) (in the étale topology). We
define a filtration
0 C U'R"juplt C FRjupiil C R juptin

on the sheaf Rrj*uff[ as

U 1Rrj*ufﬁf := the subsheaf generated étale locally by symbols of the form

{a,br,...,by_1} with a € U0 and b; € j*ﬁ;[p_l],

F RTj*uff’{ := the subsheaf generated étale locally by UlRTj*/,L?J and the symbols

{al, as, ... ,ar} with a; € ﬁ;
We have Rrj*ul?f/FRTj*uf?J = L*V;_nl by Theorem 4.8 and [SH] Theorem 3.4.2. Hence
A" (Tn(r)) = FRjopin . (4.6)
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Now (T5) follows from (4.6) for r = r,7" and the following diagram:

0 by (4.6)

To(r) @ T (') o 7 RSl @ 72y RSl

Exercise 5 (1) iproduet
\
/ 13 . @rr o r+r'—1 /
T+ 7 e RIS T gy )

(T6) also follows from (4.6) and a similar argument. O

Proof of (T3). Let Z be a closed subscheme of Y of pure codimension, and let vz : Z <
X be the natural closed immersion. For s = 0, let Cf;, 5 be the Gersten complex on Zg:

. (71)s—laval . 1 (71)8_18"&1 ) 9 (71)5_16"&1
@ ZZ*WLQ;log @ ZZ"‘V[/;LQj,log; @ ZZ*MQZlOg T

2€20 zez! 2€72

where 7, denotes the natural map z < Z for each z € Z; Z9 denotes the set of the points
on Z of codimension ¢ for each ¢ =2 0, and the first term is placed in degree 0. Now put
¢ := codimx (Z). To prove (T3), we consider a composite morphism

Lz LzsVig , [—1 — C] AN L*V;/;Ll[—T' —1] LN To(r) in D°(Xg,Z/p"7),
where we define the left arrow ~ as the following zig-zag of complex homomorphisms
LZ*VE;ZC[—T —c — LZ*C:;TZC[—T‘ —c — L*Cfb}l[—r —1] il L*V;/jnl [—7r — 1]

where we have used a result of Gros-Suwa [GS] to verify that the most right arrow is a
quasi-isomorphism [Sal] Corollary 2.2.5 (1). Since « induces an isomorphism

Vg -7 — ] & T§T+CRL!Z(L*V;7_”1[—T‘ —1]) in D% Z,Z/p"Z)
by [Sal] Theorem 2.4.2, it remains to check that
TerpeRiz (L [=r = 1]) 2 72, Rz T (r) (4.7)
via Ril,(g). To prove (4.7), it is enough to show that
Tepye Ry (T, Rjupiin) = 0. (4.8)
(4.8) is reduced to the n =1 case by a distinguished triangle
Tep Rty — T<p Rijsptpn — 1<, Rjupy)” — (1<, Rjspiy 1 )[1],
and then further reduced to showing that
Terpe 1 RUy (Tor 1 Rispt™) = 0 (4.9)
by a distinguished triangle

Tger*Mf?r — Rj*u? — Tgr+1Rj*M§T — (T§er*M§T)[1]7
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Finally the vanishing (4.9) is due to Hagihara [SH] Theorem A.2.6 (see also [Sa5] Proof of
Proposition 2.6). O

Proof of (T4), (T7). See [SH] §6 and [Sab] Lemma 2.8 for the proof of (T4). The
property (T4) is a key ingredient of (and closely related to) the proof of (T7). (T7) is
proved mainly in the following three steps (cf. Exercise 5 (1)):

Step 1. Show the existence (and the uniqueness) of trg, when f: Z — X is isomorphic
to the projective space P¥ — X. This step is in fact a part of the final step of the proof
of (T4). See [SH] Lemma 6.4.1 for details.

Step 2. Show that

Hompo(x,, 7/pn2) (RAZ,(r — ¢)z]—2¢], L*RL!‘IH(T‘)X) =0.
See [SH] (7.2.1) and [Sa5] Proof of Proposition 2.9 (1) for details.
Step 3. Show that the composite morphism

Rj* (tI‘w )

RATo(r — c)z[-20] Rjopil = 0 RS (1) x 1

is zero in D®(Xg;, Z/p"Z). We use Step 1 to prove this in the general case. See [SH] (7.2.2)
for details. O

Remark 4.9 Assume that the residue field of £ of characteritic p are perfect. When
r 2 d:= dim Xy + 1, one can construct a canonical trace morphism

try : RmT,(r)x[2(d—1)] — T(r+1—d)p

using the arguments in [JSS] §5.4; we do not need the log smoothness of 7 there. It is not
so difficult to see the uniqueness of tr.

The following relative duality theorem is a consequence of Gabber’s absolute purity
[FG] and duality results of [JSS] Theorems 4.6.1, 4.6.2, where de Jong’s alteration theorem
[dJ] plays an important role.

Theorem 4.10 Assume that w : X — B is separated, and that any residue field of O
of characteristic p is perfect. Then (without log smoothness assumption) the adjunction
morphism of try is an isomorphism for any r 2 d = dim X + 1:

Tu(r)x[2(d = 1)) =2 Ra'S,(r+1—d)p  in DY (Xe, Z/p" 7).

4.4 Comparison with other complexes

Theorem 4.11 ([Sa3], [Sa5]) Let Z(r) be Bloch’s Z(r) considered on Xg. If m: X — B
1s log smooth around Y, then there exists a canonical morphism

cyc 1 Z(r)QL/p"L — Tp(r) in D™ (X, Z/p"7Z)
which agrees with Bloch’s cycle morphism [Bl3] restricted onto X[p~!].

To construct this cycle morphism, we need the following improvements on T, (r):

e We extend ¥,(r) to a complex of sheaves on a big étale site 6z whose underlying
category € is the category of schemes X over B which satisfies (x1) of Setting 4.1
and which is log smooth over B around Y.
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e We introduce T,,(r) for r < 0 to formulate a projective bundle formula correctly.

Tn(r) = jlifom(ufn(*r),Z/p”) for r < 0.

e Because T, (r) is not homotopy invariant for r =2 0, we introduce a version of the
complex T, (r) with log poles along a nice divisor D C X which is flat over B, and
formulate a certain homotopy invariance using this new complex. See Lemma B.5
below.

e We further prove purity of T,,(r)(x,p) along log poles. See (B9) of Appendix B below.

Let € : G — % ar be the natural continuous map of big sites. We apply the framework
of Appendix B to the complexes {Re, T, (r)}rez on €,ar to obtain cyc” of Theorem 4.11
for each X € Ob(%), where we need the property (T4) of T(r) for r = 0 to verify that
{Re %y, (1) }rez satisfies the axiom (B4).

Exercise 6 Show that cyc” of Theorem 4.11 is an isomorphism for r =0, 1.
Conjecture 4.12 ([SH| Conjecture 1.4.1) cyc” is an isomorphism for any r = 2.

This conjecture is equivalent to another conjecture that Z(r) @ Z/p"Z is acyclic at degrees
> r. See [Sa3] Remark 7.2 and [Z] Theorem 1.3. If X is smooth over B then this last
acyclicity conjecture holds true by Geisser [Ge] Theorem 1.2 (5).

Proposition 4.13 If O is a complete d.v.r. and X is smooth over B, then we have
UT(r) 2 Sp(r)  in D™ (Ye,Z/p"7Z)

for any 0 < r < p—2, where the right hand side denotes the syntomic complex of Fontaine-
Messing.

Proof. The assertion follows from a result of Kurihara [Ku] Theorem 1 and the definition
of Tp(r). O

5  Selmer group of Bloch-Kato

For a profinite group G and a topological G-module M, let H*(G, M) be the continuous
Galois cohomology in the sense of Tate [T3]. For example, H*(G, M) = MY and
{¢: G — M continuous map | "z, "y € G, p(zy) = p(z) + z-¢(y)}

{¢: G — M continuous map | Ja € M,z € G, p(z) =x-a —a}
by definition. For a field K, we fix a separable closure K of K and put Gg := Gal(K /K).
For a topological Gx-module M, we write H*(K, M) for H*(Gg, M). In this section, we

introduce the Selmer group of Bloch-Kato [BK2| associated with ¢-adic representations of
G for local and global fields K.

HYG,M) =

5.1 Selmer group of local Galois representations

In this subsection, let K be a p-adic field, i.e., a finite field extension of Q,. Let Bggr, Bs;
and By be Fontaine’s period rings of de Rham, semistable and crystalline representa-
tions, respectively [F1], [F2]. Let ¢ be a prime number, and let V' be a finite-dimensional
Qg-vector space endowed with a continuous Qg-linear Gi-action. Recall that V' is called
a de Rham (resp. semistable, crystalline) representation, if £ = p and

dim(@p V = dimK(BdR ®qQ, V)GK
(resp. dimg, V = dimg,(Bs ®g, V)%, dimg, V = dimg,(Bays ®g, V)),
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where K\ denotes the maximal unramified extension of Q, in K.
Definition 5.1 (1) If £ # p, then we define
H} (K,V) :=Ker(Res : H'(K,V) — H'(K™,V)),
where K™ denotes the maximal unramified extension of K (in K).
(2) If £ = p, then we define
H} (K, V) :=Ker(H'(K,V) = H'(K, Beys ®g, V).

DR(V) := (Bar ®g, V)9, and Crys(V) := (Buys ®g, V).

Example 5.2 We have
H'(K, Q) = Homeons (G, Qo). H'(K,Qu(1)) 2 Q¢ ®z, im K*/(K*)"".

n>1
If ¢ # p, then we have
H} (K, Q) = Homeont (G, Qr) = Qp,  Hj (K, Qu(1)) = 0.
If ¢ = p, then
Hj (K, Qp) = Homeont (Gr, Qp) = Qp,  Hf (K, Qp(1)) = Q, @3, lim OF /(OF)"",

n=1

where Ok denotes the valuation ring of K. The last isomorphism can be explained by an
exponential map.

Exercise 7 Let ¢ € HY(K, V) correspond to an extension of {-adic representations of G
00—V —>FE—Q,—0.
Then show the following:
(1) If £ # p, then & belongs to Hf1 (K,V) if and only if the induced sequence
0— Vik 5 Blx 5 QX(=Q) —0
18 exact.
(2) If £ = p, then & belongs to HJ} (K, V) if and only if the induced sequence
0 — Crys(V) — Crys(E) — Crys(Qp)(= Ko) — 0
18 exact.

Exercise 8 Let G be a profinite group and let N be a closed normal subgroup of G. Let
M be a topological G-module, and put

ZYN,M) = {p: N — M continuous map|vx,vy € N, p(zy) = p(z) +z-9(y)},
BY(N,M) := {¢: N = M continuous map’zla e M,"z e N,o(x)=z-a— a}.
Then show the following:
(1) For ¢ € ZY(N, M) and g € G, define a map g- : N — M by
(g-9)(x) == g-(p(g™ " 29)).
Then g- belongs to Z'(N, M), and the map
v:GxZY N, M) = Z' (N, M), (g.0) = g-¢
defines a left G-action on Z'(N,M).
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(2) BY(N,M) is a left G-submodule of Z'(N, M).
(3) N acts trivially on H*(N, M) via v, i.e., HY(N, M) is a left G/N-module.

Exercise 9 Let G be a profinite group and let N be a closed normal subgroup of G. Put
I' :== G/N. Let M be a topological G-module. Then show that there is an inflation-
restriction exact sequence

0—— HYI, MYy 2 5@, M) B gY(N, M) (5.1)

Let k be the residue field of K, and let Iy = Gal(K/K™) be the inertia subgroup of
Gg. We have Gi /I = Gy.
Proposition 5.3 (1) If { # p, then we have
H'(k, V) = H} (K, V).
(2) If £ = p, then we have
H'(k, V) C H} (K, V).

I learned the following proof of (2) from Kentaro Nakamura.

Proof. (1) follows immediately from the exact sequence (5.1) for (G,I, M) = (Gk, Ik, V).
(2) follows from a commutative diagram

H' (k, V1) = H'(K,V)
| |
Inf e
Hl(Ka VIK) - HI(K7 Bcrys ®Qp (VIK)) - Hl (Ka Bcrys ®Qp V)
and the fact that the unramified representation is crystalline [FO] Proposition 9.3. O
Theorem 5.4 ([BK2]| Proposition 3.8) Put V* := Homg,(V,Qy). If ¢ = p, assume
that V is a de Rham representation. Then under the non-degenerate pairing
HY(K,V) x H'(K,V*(1)) — H*(K,Q(1)) = Q,
the subspaces H]} (K,V) and H}(K, V*(1)) are the exact annihilators of each other, where
V(1) :=V*®q, Qp(1).
Example 5.5 In the case V = Q,, under the non-degenerate pairing
Homcont(GK7 Qp) X (Qp ®Zp @n KX/(KX)pn) — Qp’
Homcont (Gk, Qp) and Q, @z, lim OF /(Op)P" are the exact annihilators of each other.

5.2 Sketch of Theorem 5.4

We omit the case ¢ # p and include a sketch of the case ¢ = p. Note first that DR(V*) =
DR(V)* by [F1] 3.10 Théoreme (v), so that V* is also de Rham. Our task is to check

(a) dimg, Hf (K, V) + dimg, H} (K, V*(1)) = dimg, H'(K, V),
, X , goes to 0 under the pairing.
b) H}(K,V) x H}(K,V*(1 0 under the pairi

We omit (b) and explain (a) in what follows. There is a short exact sequence of topological
Gr-modules

B
0 —— Qp —*> Barys ® Bj —— Barys @ Bar — 0,
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where a(z) = (z,z) and B(z,y) = (z — ¢(z),z — y) ((BK2] Proposition 1.17), and By
denotes the valuation ring of Bgr. Tensoring this exact sequence with V' and taking
continuous Galois cohomology, we obtain the following exact sequence of finite-dimensional
Qp-vector spaces:

0 — VE* — Crys(V) @ DR(V)® — Crys(V) & DR(V) = HHK,V) — 0, (5.2)

where DR(V)? := (B3 ®g, V)%, and we have used the assumption that V is de Rham
to verify the surjectivity of . See [BK2] Lemma 3.8.1 for details, and see also loc. cit.
Remark 1.18 for a topological remark. By the exact sequence (5.2), we have

dimg, H} (K, V) = dimg, V< + dimg, (DR(V)/DR(V)"). (5.3)
Applying this formula for V*(1), we obtain
dimg, H}f (K, V*(1)) = dimg, V*(1)°% + dimg, (DR(V*)/DR(V*)"),
where
DR(V*)! := (Bjx ®q, V*(1))%¥
On the other hand, by Tate’s formula, we have
dimg, VK — dimg, H'(K,V) + dimg, V*(1)% = —[K : Q,]- dimg, V.
Since V' is de Rham by assumption, the right hand side agrees with —dimg, DR(V).
Therefore in order to prove (a), it remains to check that
dimg DR(V)? + dimgx DR(V*)! = dimg DR(V).
Indeed, we have
dimg DR(V) =Y dimg H(K, C,(i) ®g, V)
1EL
= dimg H(K,Cy(i) ®g, V) + Y dimg H(K, Cy(i) ®g, V)
i20 i<—1
£ dimg HY(K,Cp(i) ®g, V) + Y _ dimg HO(K, Cyli) ®g, V™)
i20 i21
= dimg DR(V)? 4 dimg DR(V*)!,
where the first and the last equality is explained in [BK2] Proof of Lemma 3.8.1.
Exercise 10 Show the equality *.

5.3 Selmer group of global Galois representations

In this subsection, let K be a number field, i.e., a finite field extension of Q. Let P be
the set of the places of K. For each place v of K, let K, for the completion of K at v;
we fix a K-homomorphism K — K,. Let p be a prime number, and let V be a finite-
dimensional Q,-vector space endowed with a continuous Q,-linear Gx-action. We assume
the following:

Condition 5.6 There exists a finite set S of places of K including {v € P |v|p or v|oo}
such that V' is unramified outside of S, i.e., for any place v € S, the inertia subgroup I,
of the decomposition group D, = Gal( U/K ) acts trivially on V.

Definition 5.7 We fix a finite set S of places of K as in Condition 5.6, and define

YK, V) >

1
H}K,V) —Ker<H (Gs,V —>@ K V)
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Here Gg := Gal(Kg/K) with Kg the maximal extension of K which is unramified outside
of S. The space H(Gg, V) is finite-dimensional over Q,, so is Hf1 (K, V).

Exercise 11 Show that H]} (K, V) is independent of the choice of S as in Condition 5.6.
Example 5.8 We have
H}(Kva) =0, Hfl(K7@p(1)) ng(g)O;(("

Exercise 12 Let E be an elliptic curve over K, and let Sel(E/K)(p) be the p-primary
Selmer group:

1
I PR T 1
vEP v P/ “p

where E{p} denotes the p-primary torsion part of E(K). Put
VE = Qp ®Zp m an,

n=1
where y;n E denotes the p"-torsion part of E(K). Is there a natural map
H} (K, V) — Sel(B/K)®)?
If so, is the cokernel finite?

Proposition 5.9 ([J] Lemma 4) Let Xx be a proper smooth variety over K and put
V= Hét(XF, Qp). Let S be the set of the places v € P which divides p or oo, or at which
Xk has bad reduction. Then the inflation map

Inf: H'(Gs, Vi(r)) — HY (K, V(r))

is bijective for any (i,r) withi—2r # —2. In particular, H*(K,V*(r)) is finite-dimensional
over Qp for the same (i,r).

Proof. Consider the inflation-restriction exact sequence
0 —— H'(Gs, Vi(r)) = H'(K, Vi(r)) == H'(Ks, V' (r))%.

Noting that Gk, = Gal(K/Kg) is the smallest closed normal subgroup of Gk containing
I, for all v € S, we have

HY(Ks,Vi(r))% = Homeont(Greg, Vi(r))% < T Homeont (I, VV(r))™.
vgS

where I, := D, /I,. For any v € S, we have v/p and
Homeont (I, V(1)) 2 Homeont (Zy (1), V() 2 Vi(r — 1)1,
which is zero by Deligne [D] Corollary 3.3.9 and the assumption that i # 2(r — 1). O

Remark 5.10 By Proposition 5.9, we have

L i H'(Ky, V'(r))
H}(K,V (r) = Ker(Hl(K7V (r) — U@ H]}(Kv,vi(T)) )

if 2r—i—1+# 1, i.e., i—2r # —2. This fact corresponds to the conjecture that CH" (Xx )hom
(resp. CH"(Xg,2r — ¢ — 1)) is finitely generated modulo torsion if 2r — i — 1 = 0 (resp.
% —i—122).
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Conjecture 5.11 ([BK2] Conjecture 5.3) Let Xi be a proper smooth variety over K.
Then the p-adic Abel-Jacobi maps

aj?"" : CH" (X )hom — HY (K, V" ~1(r))

aj?" i CH" (Xg, i) — HY (K, V1) (i21)

induce isomorphisms
CH' (X Jhom ® Qp = H} (K, V2 71(r)
CH (Xk,i)z ® Qp 2 Hf (K,V¥ "M r))  (i21),
where CH" (X, 1)z denotes the integral part of CH" (Xk,1) ® Q 2 K;(Xg )™, cf. [Sch].

Conjecture 5.11 extends the Tate conjecture to ‘higher extensions’, and the first part of
the Tamagawa number conjecture.

5.4 Local-global maps

In this subsection, K remains to be a number field. Let P be the set of all places of K.

Setting 5.12 Let T be a free Zy-module of finite rank on which Gk acts continuously.
Put V := Q, ®z, T, and assume

(i) There exists a finite set S of places of K containing all places dividing p - oo such
that the action of Gx is unramified outside of S.

Put
H (K, T ®Qp/Zy) :==Im(H} (K,V) = H'(K, T ® Qp/Zy)).

For each v € P, put
H]}(KvaT ® Qp/Zyp) == Im(Hfl(Kva V)= H(K,, T ® Qp/Zyp)),

and let D, C Gk be the decomposition group of v, which is dependent on the (fixed)
K-homomorphism K — K,. Let k, be the residue field of K,. Let « and /3 be as follows:

: HY (K, T ® Q,/Z,) N @ H'(Ky, T ® Qp/Zy)
' H}(K7T®Qp/2p) H}(vaT@)Qp/Zp)’

veP

B: H (K, T®Qy/Z,) — P H (K, T ©Qy/Zy),
vEP

where we have to note that H}(KU,T ® Qp/Zyp) = H' (ky, T ® Qp/Zy) for any v ¢ S, to
verify the well-definedness of «.

Proposition 5.13 ([BK2] Lemma 5.16) Ker(«) is finite, Coker(3) = 0, and Coker(«)
and Ker(B) are cofinitely generated over Z,. Assume further that

(ii) V is a de Rham representation of D, at any v € S with v|p.

(iii) VP» =0 for any v € S with v)p - 0o, and Crys(V|p,)¥*=! = 0 for any v € S with
v|p. Here for each vlp, Crys(V|p,) denotes (Beys ®q, V)P* and ¢, denotes the
Frobenius operator.

(iv) V(=1)P» =0 for anyv € P~ S.
Then we have
dimg, Hf (K,V) = [K : Q]- dimg, V — dimg, DR(V)° — dimg, V*
+ corankz,, Coker(c) + corankz, Ker (),
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where DR(V)? denotes the direct sum of (Biz ®q,V)P¥ for all v|p and V't denotes the
direct sum of VPv for all v|oo.

Proof. Take an open subset U C B \. 5, and consider restriction homomorphisms

HY(U,T ® Q,/Z,) HY (K, T ® Qp/Zy)
" HHK, T ©Qy/Zy) — @D HH (Ko, T ®Qp/Zy)

veEP\U

Bu: HA(U,T®Qy/Zy) — @ H* (KT @Qy/Ly).
veEP\U

Note that Sy (hence [3) is surjective by Tate duality [T1]. We first claim that we have
Ker(ay) = Ker(a) and an exact sequence

0 — Coker(ay) — Coker(a) — Ker(fy) — Ker(8) — 0. (5.4)

Indeed, there is a commutative diagram with exact columns

0 1)
HY\(U, T ®Q,/Z,) HY(K,,T ® Q,/Zy,)
Ker(ay) HJ}(K,T ©Q,/Z,) @ Hfl Ko, T ® Q,/Z,) Coker(agr)
HYK,T®Qy/Zp) o HYK,, T @ Qp/Zy)
Ker(a) H}(K,T@ Q,/Z,) G?) H]} Ko, T ® Qp/Z,) Coker(«)
HYK,, T ®Q,/Z,)
H2(U,T Zy) PP
1@ U( ) ®Qp/ 6@ Hfl K07T®Qp/Zp)
0
Ker(8y) HA(U,T © Q,/Z,) —2~ P H(K,, T ©Q,/Z,) 0
vgU
Ker(5) HA(K, T ® Qy/Z,) —— @) HA(K,.T © Q,/Z,) 0
veP
@ HS(U7T®QP/ZP) (Kv,T@Qp/Zp)
velU velU
0 0

We obtain the above claims by a diagram chase on this diagram. Since H}(U,T ® Q,/Z,)
is cofinitely generated over Z,, we see that Ker(ay) = Ker(«) is finite by the definition of
Hfl(K, V) and that Coker(ay) and Ker(Sy) (hence Coker(a) and Ker(8)) are cofinitely
generated over Z,. See [BK2] Proof of Lemma 5.16 for the dimension formula. O
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Definition 5.14 Let Xx be a proper smooth variety over K. When T' = fIi(Xf, Lp(r)):=
HY( Xz, Zy(r))/H (X5, Zy(r)){p}, then Ker(«a) is called the p-Tate-Shafarevich group of
the motive H'(Xg )(r) and often denoted by III®) (H*(Xg)(r)).

Conjecture 5.15 ([BK2] Proposition 5.14 (2)) Assume thatT = f[i(Xf, Ly (1)) with
i —2r < —3. Then Coker(a) is finite and isomorphic to Home, (T, Q,/Z,(1))".

By Jannsen [J] p. 337 Theorem 3 (d), this conjeture for 7' is equivalent to the following
conjecture for 7*(1) = Homg, (T, Z,(1)):

Conjecture 5.16 ([F1] Conjecture 1.6) Assume that T = ﬁi(Xf,Zp(r)) with i —2r 2
0. Then we have H}(K, V) =0.

Example 5.17 Conjecture 5.15 holds true for 7' = Z,(2) (Moore 1968, Garland 1971),
and T = Z,(r) with » 2 3 (Borel 1974, Soulé 1979, Kahn unpublished).

Example 5.18 Let FE be an elliptic curve over Q with complex multiplication, and assume
that p is regular for E in the sense of Soulé [So2] 3.3.1. Then Conjecture 5.15 holds true
for T = Hl(E@7 Zp(2)) by [BK2] Propositions 7.4 and 7.5.

6  Filtration on the direct image

The sections 6-8 are devoted to the proof of Theorem 8.2 below.

Setting 6.1 Let O, B, K,p, X,Y,. and j be as in Setting 4.1. In this section we further
assume that

(x2) the structure morphism 7 : X — B is separated and surjective, and any residue field
of O of characteristic p is perfect.

We do not assume the log smoothness of 7 in this section. Unless indicated otherwise, all
cohomology groups of schemes are taken over the étale topology.

6.1 The complex $H*(X,%,(r))
Lemma 6.2 For any r 2 d := dim X, we have
R, % (r)x & RjiﬂomBz/an(Ran(d —7r)x,%n(1)B)[2 — 2d]
in DV (Be, Z/p"7Z), where Tp(s) := jgt%”om(ufn(_s),Z/p”) for s <O0.
Proof. Since r 2 d, there exists a canonical isomorphism
Tn(r)x = RA-omy 7/yn7(Tn(d —1r)x,Tn(d)x) in DY (X, Z/p"Z),
which is obvious if » = d. Otherwise, this isomorphism follows from the isomorphism
Tn(r)x = Rjepsn (for r > d, by the assumption (x3))
and the adjunction between j; and Rj.. Hence we have
Rm.Ty(r)x = Rm.RAomy 7/,n7(Tn(d — 1) x, R7'T, (1) p[2 — 2d])
= RAomp 7/pmz(RmTn(d — 1) x, Tn(1)B)[2 — 2d]
in DV (Bg, Z/p"Z) by Theorem 4.10 and the adjunction between Rm and Rr.. O
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Definition 6.3 For cach r = d and 7 € Z, we define
HUX, D0 (r)) 1= RAOM 2z (7230 1) - BMTn(d = 7)x, Tn(1)5)[2 — 2d],
H'(X, Tn(r)) 1= RAomp 7z (R* 7 m T, (d — 1) x, Tn(1)B),
which are objects of DT (Bg, Z/p"Z). See §4.4 for the definition of T,,(s) for s < 0.

Note that $(X,T,(r)) is not the sheaf R'm,T,(r), but a complex of sheaves. These
objects are related by a distinguished triangle of the form

HFHX, Tn(r) — 95X, Tu(r) — H'(X, Tu(r))[=i] — 55X, Tu(r)[1].
By Lemma 6.2 and the proper base change theorem (for Rm), we have
_1)
(d
(d

0 (i
Rm % (r)x (i
HY(X,Tu(r)) = 0 unless 04

A

I

H(X, Tu(r))

1\

1))
1).

Thus the data {H=(X, Tn(r)) bi<a(a—1) forms a finite ascending filtration on the complex
H=24-1)(X T, (r) = Rm%,(r)x, and yield a spectral sequence

2
2

[IA

ESY = HY(B, (X, Ta(r) = H(X, Tu(r)), (6.1)

which relates the étale cohomology of B with coefficients in $*(X, %, (r)) to the étale
cohomology of X with coefficients in T, (7).

Example 6.4 ([Sa5] Proposition 3.4) Assume that 7 : X — B is proper and that the
generic fiber Xk is geometrically connected over K. Let U C B[p~!] be an open subset
for which Xy = X xg U — U is smooth. Then

(1) (X, Tn(r))|v is the locally constant constructible sheaf placed in degree 0, associ-
ated with the 1 (U,7)-module H' (X7, p?f), where 7 := Spec(K).

(2) The trace morphism trx/p : RmT,(r)x[2(d — 1)] — T, (r + 1 — d)p induces an
isomorphism
H2@D(X T, (r) 2 Tu(r+1—d)p.
6.2 Local structure of $H*(X, T, (r))

For a closed point v € B, we often write Y, (resp. Y5, Xz) for (X Xp v)peq (resp. X xp 7,
X xXp B%h), where B%h denotes the spectrum of the strict henselization of O, = Op, at
its maximal ideal.

Proposition 6.5 Let v be a closed point on B, and let ¢ and m be integers. We write

Ly for the closed immersion v — B and j, for the open immersion B~v — B. Assume
r=2d. Then

(1) We have R4\ $H*(X, T, (r)) = 0 unless ¢ = 2, and a canonical isomorphism
(R20, 99" (X, Tu(r))o = Hy  (Xo, Tn(r)).

(2) We have | |
(R%uxd3 9" (X, Ta(1))5 = HU(L, HY (Xgz, g1,
which is zero unless ¢ = 0 or 1 by the fact that cdy(I,) = 1.
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Proof. (1) By the adjunction between t,,, we have
Ru,H (X, Tn(r)) = RiyRAomp 7/pn7(R* D7 im T, (d — ) x,Tu(1)B)
= R omy, 7z (0 R* D' T,(d — ) x, Ri,T,(1)p)
= R oMy, 7z (R 7y 10 (63, T(d — 1) x), Z/p"Z)[-2],
where vy, denotes the closed immersion Y,, < X, and we have used the proper base change
theorem for Rm and the purity for ¥,,(1)p in the last isomorphism. The assertion now
follows from the fact that there is a canonical non-degenerate pairing of finite groups
H2D 7Y, i Tod — 1)) % Ht (X, (1)) — HE (X5, Tu(d) — Z/p"Z
([Sab] Corollary 2.11) and the fact that Z/p"Z is an injective Z/p"Z-module, where the
subscript ¢ means the étale cohomology with compact support.

(2) We may assume that B is local with closed point v, without loss of generality. Put
n := B~ v, which is the generic point of B. The sheaf j*R2(@~D=in T, (d — r)x is locally
constant on 7, and the object

529 (X, T (1)) = RAomy, 7z (o R¥ D7 m T (d — 1), prpe)

is isomorphic to the sheaf (on 74) associated with H' (X7, uf?{ ) placed in degree 0 by the
Poincaré duality. The assertion follows from this fact. U

Corollary 6.6 $'(X,T,(r)) is concentrated in [0,2], and Rm,T,(r)x is concentrated in
[0, 2d).

6.3 Standard finiteness

Proposition 6.7 Let m and n be positive integers. Then:
(1) There exists a unique morphism p™ : Tp(r) = Tpim(r) in D*(Xe) that extends the

natural inclusion u?[ — u§[+m on X[p~ ).

(2) There exists a unique morphism Z™ : Tpim(r) — Tp(r) in D(X¢) that extends the
natural surjection /,L?[+m —» u?f on X[p~ -

(3) There exists a canonical Bockstein morphism 8y m @ Tn(r) — T (r)[1] in D*(Xg)
satisfying
(3.1) 6p,m extends the Bockstein morphism /,Lffif — u?ﬁ[l] in D*(X[p~Ys) associated
with the short exact sequence 0 — uf?ﬁ — ,ufmﬁn — uf,%f — 0 on X[p~ Y.
(3.2) bpm fits in to an anti-distinguished triangle

n

T (1) = T (1) 20 T (1) 222 T, (1) 1],

Proof. See [SH] Proposition 4.3.1 and [Sa5] Proposition 2.5. O

Setting 6.8 In what follows, we assume that © and K = Frac(9) satisfy either of the
following conditions:

(L) K is a non-archimedean local field of characteristic 0, i.e., a finite field extension of
Qg for some prime number ¢, and O is the valuation ring of K.

(G) K is an algebraic number field, i.e., a finite field extension of Q, and B = Spec(9)
is an open subset of Spec(Ok ), where Ok denotes the integer ring of K.
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Proposition 6.9 There is a canonical isomorphism

HY(B, $(X,%,(r))) = ExtL(R?4D=n%, (d — 7), Gy) (6.2)
for any q,i 20, n =1 and r = d. Moreover, H1(X, %, (r)) and H1(B,$H'(X,%T,(r))) are
finite for the same (q,i,n,r).
Proof. The first assertion follows from the definition of $%(X,%,(r)) and the canonical

isomorphism
RAomp(Z/p"Z,Gy) = T,(1),

which is a variant of Exercise 6 for r = 1. The finiteness of Ext%(R?@=D=imT, (d—r), Gy,)
follows from the constructibility of R2@—1)~imT, (d — r) and the finiteness of Ext-groups
in the Artin-Verdier duality [Ma] (2.4). The finiteness of H4(X, %, (r)) follows from the
spectral sequence (6.1). O

For r 2 d, we introduce the following groups:
HY(X, Zp(r)) :=Tm HY(X,Tn(r)),  HYX,Qp(r)) := HI (X, Zp(r)) @z, Qp,
n=1

HY(X,Qp/Zy(r)) =1

n

Hq<B7~6i(szp(r))) =1 Hq<B7~6i(X7(Zn(T)>)7

n

H(B,$'(X,Qy(r))) = H(B, (X, Zy(r))) ®z, Qp,

=

HA(X, % (1),

v

Vg

HY(B, %' (X, Qp/Zp(r))) := lig HY(B,$'(X, Tn(r))).

n=1

Here the transition maps in the definition of H(B, (X, Z,(r))) are defined by the com-
mutative diagram

HY(B, 95X, Tps1(r))) == HI(B, §(X, Tp(r)))
(6~2)l%’ (6.2)l%
ExtL(RMV=m T, 1 (d — 1), G) —= ExtL(R?V=m T, (d — 1), Gyy)

with the bottom arrow induced by p : T,,(d — r) < T,,11(d — ) of Proposition 6.7. The
transition maps in the definition of H?(B, $%(X, Qp/Z,(r))) are defined by the commuta-
tive diagram

HIBS(X. T, () = HIBS (X, T ()
(6.2)i~ (6.2)i~
Ext%(R2(d_1)_i7r!Tn(d —7),Gyp) — Exth(Rz(d_l)_ianH(d —7),Gp)

with the bottom arrow induced by #! : T,.1(d —r) - T,(d — r) of Proposition 6.7.
Taking the projective limit of the spectral sequence (6.1) with respect to n = 1, we obtain
a convergent spectral sequence of Z,-modules

a,b a a
Ey® = HY(B,$"(X,Zy(r))) = H*™(X,Zy(r)). (6.3)
This spectral sequence yields a spectral sequence of Q,-vector spaces:
a,b a a
Ey” = H(B,$"(X,Qp(r))) = H**"(X,Qy(r)). (6.4)

Theorem 6.10 (1) HY(X,Zy(r)) and HY(B,$H"(X,Zy(r))) are finitely generated over
Zy for any q,i € Z and any r 2 d.
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(2) HY(X,Qp/Zy(r)) and HY(B,$H'(X,Qp/Zy(r))) are cofinitely generated over Z, for
any q,i € Z and any r = d.

(3) We have rankz, HY(B,$'(X,Zy(r))) = corankz, HY(B,H'(X,Qp/Zy(r))) for any
q,1 € Z and any r 2 d.

Proof. We explain only the case (G); the case (L) is similar and left to the reader.
The assertions for H4(X,Z,(r)) and HY(X,Q,/Z,(r)) follow from a standard argument
using Propositions 6.7 and 6.9. By the Artin-Verdier duality ([Ma], [KCT] §3), the as-
sertions for HY(B,$'(X,Zy(r))) and H(B,$H'(X,Qp/Z,(r))) are reduced to those for
HY (B, R'mQ,/Z,(d—1)) and HS %(B, R'mZ,(d —r)) with i’ := 2(d — 1) — 4, which are
standard and omitted. O

7  Comparison over local fields

Setting 7.1 Let O, B, K,p and X be as in Setting 4.1. Fix another prime number ¢
independently of p. In this section, we assume [K : Q] < co and that O is the valuation
ring of K. Let k be the residue field of K, and let I = Gal(K/K™) be the inertia
subgroup of Gg. Put Y := (X ®¢ k)req and Y := Y ®; k. Note that Y defined here is
different from that in Setting 4.1 unless £ = p. We often write v for the closed point of B,
i.e., v = Spec(k).

We assume that 7 : X — B is proper and that Xx = X ®p K is geometrically
connected over K. We assume further that = : X — B is log smooth around Y, if { = p
and r = d. Unless indicated otherwise, all cohomology groups of schemes are taken over

the étale topology. For each i,q = 0 and r < 0, we put

Vii=H'(Xz Q) and  HYB,R'mQy(r)) = Qp®z, im HI(B, R'm,Ty(r)).

n>1
For i 2 0 and r € Z, we put
HJ, (K, V'(r)) :== H'(K,V'(r))/H} (K, V(r)).
Theorem 7.2 For anyi 2> 0 and r 2 d := dim X, we have

H{ (K, Vi(r)  (¢=1)
0 (¢ #1).

Moreover, if ¢ # p, then we have H' (B, $(X,Q,(r))) =0 for any r = d and i = 0.

H(B, 5" (X,Qy(r))) =

Corollary 7.3 The spectral sequence (6.4) degenerates at Es, and we have
H'(X,Qy(r)) = Hy (K, V'H(r))
for any i =0 and r 2 d.

Remark 7.4 If ¢ # p, then we obtain H'(X,Q,(r)) = 0 for any r = d and i = 0, from
the proper base change theorem and a theorem of Deligne [D] Corollary 3.3.4. Theorem
7.2 refines this fact.

7.1 Reduction to dual statements

We first check that Theorem 7.2 is reduced to the following:
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Theorem 7.5 Assume that m : X — B is log smooth around Y, if ¢ =p and s = 0. Then
for any i 20 and s <0, we have Vi(d — 5)°5 =0 and

| Vi(s)Cx (if4=0)
HY(B, R'm.Qp(s)) = { Hp (K, V(s))  (fq=1)
0 (otherwise)

In the case s < 0, it is easy to see that H?(B, R'm.Q,(s)) = 0 for any ¢ and 4. In this case
Theorem 7.5 asserts that the groups on the right hand side are zero.

“Theorem 7.5 = Theorem 7.2”. Consider the localization long exact sequence with
(¢,i',s):=B8—-¢,2d—2—1i,d—r)

. —— HY(B, R'm.Qy(s)) —= HY(B, R'1.Qy(s)) —= H(K,V(s)) —=--- .
By this exact sequence and Theorem 7.5, we have

0 (¢ #2,3)

HY(B. R'mQy(s)) = { HY(K.V(s) (it ¢ =2)
H2A(K,Vi(s))  (if ¢ = 3).

The first assertion of Theorem 7.2 follows from this fact, Theorem 5.4 and the local Tate
duality for cohomology of B:

HY(B,R'7.Q(s)) x HU(B,S' (X, Qp(r))) — HI(B.9* (X, Q,(d))) = Q.

where the last isomorphism is obtained from the relative trace isomorphism in Exam-
ple 6.4 (2) and the trace isomorphism H2(B,%,(1)) & Z/p"Z. The second assertion of
Theorem 7.2 follows from the vanishing V?(r)% = 0 and the equality

dimg, (V¥ (r)9%) = dimg, H" (k, V' (r)'x).
Thus Theorem 7.2 is reduced to Theorem 7.5. O

Because R'm, T, (s)y & HY(Y,T,(s)|y), we see that the second assertion of Theorem 7.5
is reduced to the computations on the cospecialization map

cosp™® H’(?, Qp(s)) == Qp ®z, 1&1 H’(?, Tn(s)ly) — Vi(s)[K.

7.2 The case £ #p

In this subsection, we give an outline of a proof of Theorem 7.5, assuming ¢ # p.
Proposition 7.6 Let i 2 0 be an integer.
(1) We have Vi(r)%< =0 for any r 2 d.
(2) The cospecialization map
cosp™® : H'(Y,Qp(s)) — Vi(s)
induces an isomorphism
H(k, H'(Y,Qy(s))) = H(k, V' (s)'¥)
for g =0,1 and any s £ 0.
Outline of Proof. When X has good reduction, the assertions of Proposition 7.6 follows
from the proper smooth base change theorem and a theorem of Deligne [D] 3.3.9. The

general case is reduced to the case that X has strict semi-stable reduction by the alteration
theorem of de Jong [dJ] and a standard norm argument using the absolute purity [FG].
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To explain the outline of our proof of the strict semi-stable case, we introduce some
notation. Let j be the canonical map Xi — X" = X ®p O™, and let 7 be the closed
immersion ¥ — X™. By the properness of 7 : X — B, we have the following Leray
spectral sequence for any n = 1:

EYY = HY(Y, 7 RY} Z/p"Z) = H*( Xy, Z/p"Z). (7.1)
By Rapoport-Zink [RZ] Theorem 2.23, we have the following facts:
o The Ey-terms of are finite.

o Ix acts trivially on the Eo-terms.
We obtain a spectral sequence
EYY = HY(Y,7* R}, Q,) = H*'(Xg,Q,) = VO (7.2)

from (7.1) by taking the projective limit with respect to n 2 1 and the tensor product
with Q, over Z,. Note that the canonical map EZ 0 = H(Y, Qp) — E' = V' agrees with
the cospecialization map cosp’)’(o.

Lemma 7.7 In the spectral sequence (7.2), we have Eg’b =0 unless0<a<2(d—b—1)
and 0 £ b = d—1. Moreover, for a pair (a,b) with0 < a <2(d—b—1) and0 < b<d—1,
the weights of E;’b are at least max{2b,2(a +2b+ 1 —d)} and at most a + 2b.

Proof. See [Sa5] Lemma 5.9. O

By this lemma, the kernel and the cokernel of the cospecialization map cospé’(s have only
positive weights for any s < 0, which implies Proposition 7.6 (2). One can also derive
Proposition 7.6 (1) from Lemma 7.7 easily. O

7.3 Thecase £ =p

In this subsection, we prove Theorem 7.5, assuming ¢ = p. Note that H (Y, Q,(s)) = 0 if
s < 0 by the definition of T, (s).

Proposition 7.8 Let i > 0 be an integer, and put V := V.
(1) We have V(r)'c =0 unless 0 < r < d — 1 = dim(Xx).
(2) We have H'(k,V (s)'x) = Hfl(K,V(s)) as subspaces of H'(K,V (s)) for any s < 0.
In particular, we have H]}(K, V(s))=0ifs<0.
(3) If m: X — B is log smooth around Y, then the cospecialization map
cosp™’ : HY(Y, Qp) — Vi
is bijective.
Proof. The assertions (1) and (2) are reduced to the case where X has semi-stable

reduction by the alteration theorem of de Jong [dJ] and a standard norm argument. So
we prove (1)—(3) in the semi-stable case and then prove (3) in the log smooth case.

(I) Proof of (1)—(3) in the semi-stable reduction case. Let Beys, Bst, Bz and Bgr be

Fontaine’s rings as in §5.1. Put D := Hfog erys(Y/W(k)). By the Fontaine-Jannsen conjec-

ture ([Ts]), there is a canonical isomorphism

By ®Qp V = By ®W(k) Dv (73)
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which preserves the Frobenius operator ¢, the monodromy operator N, the action of G,
and the Hodge filtration F§; after taking ® g, Bqr. By the isomorphism (7.3), we have
V(r) = (Bs @iy D) " NFYy (Bar @wiry D)
and
V()% C (Higgerys (Y /W(K))g, )P, (7.4)
for any r € Z. Here ¢ denotes the Frobenius operator acting on Hf;)g_crys(Y/ W(k)), and

we have used the fact that (Bg)'® = Frac(W(k)) ([F2] 5.1.2, 5.1.3). Proposition 7.8 (1)
follows from (7.4) and the fact that

(s (V/W(E))g, )7 =0 unless 0 r<d—1.

Proposition 7.8(3) is due to Wu [W] Theorem 1. Recall that we have H'(k,V(s)x) C
H}(K, V(s)) by Proposition 5.3 (2). To prove Proposition 7.8 (2), it remains to show the
following claim:

Claim. We have dimg, H*(k,V (s)'%) = dimg, HJ}(K, V(s)) for any s < 0.
Proof. Since V is a de Rham representation, we have
dimg, H} (K, V (s)) = dimg, (DR(V)/DR(V (s))") + dimg, V (s)“¥
by (5.3). Since s < 0, we have DR(V) & Hig(Xk/K) = F; Hig (Xk/K) = DR(V (s))°,
so the claim follows from the equalities
dimg, H} (K, V (s)) = dimg, V(s)°¢ = dimg, H' (k,V (s)™).

This completes the proof of Proposition 7.8 in the semi-stable reduction case.

(Il) Proof of (3) in the log smooth reduction case. By the alteration theorem of de Jong
[dJ] Theorem 6.5, there exists a proper generically étale morphism f : X’ — X such that
X' is regular and flat over B and has (strict) semi-stable reduction over the normalization
B’ of B in X'. Let L (resp. k') be the function field of B’ (resp. the residue field of L'),
Y’ for the special fiber of 7’ : X’ — B’. Let v : B’ — B be the canonical map. We derive
the bijectivity of cosp”” for X from that for X’. There exists a trace homomorphism

try: V*Riw;Z/p”Z — Riﬂ'*Z/an

on Bg; for each n = 1 by (T7) of Theorem 4.3, which yields a commutative diagram

K [L(X"):K (X))
iy f i (v iy
H (Yva) —H (Y 7Qp) —H (YﬂQp)
COSpi’(Ol COSP?(O/ \L COSpi)’(O\L

Vi

, t
— - HY(X}, Q) — L= VK,

X[L(X7): K (X)]

Since cospg’(o, is bijective by (I), we see that cospé’(0 is bijective as well by a diagram chase.
This completes the proof of Proposition 7.8 and Theorems 7.5, 7.2. O

By Proposition 7.8 (1) and the exact sequence (5.2) for Vi(r) = H'(Xz, Q,(r)), we
obtain the following corollary:

Corollary 7.9 The exponential map of Bloch-Kato induces an isomorphism

exp : Hig(Xg/K) — HJ}(K, Vir)) forany i20 and r=d.
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8  Comparison over global fields

Setting 8.1 Let O, B, K,p, X and Y be as in Setting 4.1. In this section, assume that K
is a number field and that © is the integer ring of K. For a place v of K, we write K, for
the completion of K at v.

We assume that 7 : X — B is proper and that X = X ®o K is geometrically
connected over K. We assume further that 7 : X — B is log smooth around Y, if r = d.
We fix a finite set S of places of K including all places which divide p-oco or where X has
bad reduction. We put Gg := Gal(Kg/K), where Kg denotes the maximal extension of
K which is unramified outside of S. Unless indicated otherwise, all cohomology groups of
schemes are taken over the étale topology. For each i > 0, we put 7% := H "(Xf, Zy) and
Vi.=T" Rz, Qp.

Theorem 8.2 Let q,i and r be integers with r = d := dim X and i = 0. Assume Conjec-
ture 5.15 for T%(r) if ¢ =2 and i — 2r < —3. Then we have

| HNEV)  (fg=1)
HY(B,$'(X,Q(r))) = Qp (if (g,i,r) = (3,2d — 2,d))
0 (otherwise).

Corollary 8.3 Assume Conjecture 5.15 for T*=2(r), if (i,7) # (2d+1,d). Then we have

Qp (if (i,7) = (2d + 1,d))

Hi (X, Qp(r)) = {Hfl (K, Vifl(r)) (Otherwise)

for any r = d and any i 2 0.

8.1 Proof of Theorem 8.2
We first check the assertions other than the vanishing of H?(B, (X, Q,(r))).
Proposition 8.4 Assume r = d. Then:

(1) HY(B,$H(X,Zy(r))) is finite in each of the following cases:

(i) i<0 (i) i>2d-2 (iii)) ¢<0 (iv) ¢>3 (v) ¢q=3, (i,r) # (2d—2,d)
(2) For anyi =0, we have
H'(B,$'(X,Q,(r)) = H} (K, V(7).

Proof. (1) The cases (i) and (ii) are clear by the definition of $¢(X, %, (r)) (see Definition

6.3). The case (iii) with ¢ < 0 follows from the fact that $°(X,T,(r)) is concentrated in
degrees = 0 (see Corollary 6.6). When g = 0, the restriction map

H(B, 5 (X, Zy(r))) — H'(Xg, Zy(r))9x

is injective by Proposition 6.5 (1) and the last group is finite by [D] Corollary 3.3.9. Hence
HY(B,$%(X,Zy(r))) is finite as well. See [Sa5] Proposition 6.1 for the cases (iv) and (v).

(2) Let S be a finite set of places of K including all places with v|p-oco and all finite places
where X has bad reduction. To prove the assertion, it is enough to check that there is an
exact sequence of Q,-vector spaces

0 — H'(B,9(X,Qy(r))) — H'(Gs,VI(r) *3 B  HY(K,, Vi(r),
vESNBy
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where By denotes the set of the closed points of B. One obtains this exact sequence by a
standard localization argument on étale cohomology and the isomorphisms

(if ¢ # 2,3, by Proposition 6.5 (1))
H{(By, ' (X0, Qp(r))) = { HYy(Ky,, Vi(r))  (if ¢ = 2, by Theorem 7.2)
H?(K,,Vi(r)) (if ¢ = 3, by Theorem 7.2)
Here B, denotes Spec(O,) with O, the valuation ring of K, and X, := X xpg B,. O

[an}

Proposition 8.5 Let o™t be the following local-global map:

iy HK H (X, Qp/Zy (1)) H (Ko, H' (Xg, Qp/Zy(1)))
. H}(K, H' (X, Qp/Zy(r))) H(By, 51X, Qp/Zy(r)))

Then for any i =2 0 and r = d, there is a canonical map

Coker(a"T) — H*(B,H(Xy, Qp/Zy(r))),

veEP

which has finite kernel and cokernel. Consequently, under Conjecture 5.15 for T%(r) with
i—2r < =3, the group H*(B, (X, Zy(r))) is finite and we have H*(B, (X, Q,(r))) = 0.
See also Theorem 6.10(3).

Proof. 1f (i,r) = (2d — 2,d), then we have

H*(B, 5" (X, Qp/Zy(2))) = H*(B, Qy/Zy(1))) = Br(Ok)[p™],

which is zero (if p # 2) or finite 2-torsion (if p = 2) by the classical Hasse principle for
Br(K). Assume (i,7) # (2d—2,d) in what follows and consider the following commutative
diagram with exact rows, where both rows are obtained from localization sequences of étale
cohomology, and the coefficients $"(X,Q,/Z,(r)) (resp. H*(X,, Q,/Zy(r))) in the upper
row (resp. the lower row) are omitted:

HY(K) —— P H}(B) — H*(B) H*(K) — P HJ(B)

D s (K) = @ HXB,) — P HAB,) — P HA(K,) — D HI(B,).

vEBy vEBy vE By vE DBy vEBy

Here for each v € By, we put

 HY(Ky, H (X7, Qu/Zy(r)))
Hp (o) := H(Bv,ﬁi(Xprl/)Zpl()T))) '

We have the following facts concerning this diagram:

e The arrows § are bijective by étale excision (and a rigidity lemma in [Sa5] 3.9).

e The arrow ~ has finite kernel and cokernel by a Hasse principle of Jannsen in [J] p.
337, Theorem 3 (c).

e The arrow (%) is injective by the defition of H/1 ().

e H?(B,) is finite for any v € By by Theorem 7.2, and zero for any v € By \. S by
Example 6.4 (1).

Hence we see that there is a canonical map
Coker(a’" ") — H*(B,H'(X, Qp/Zy(r)))
and that this map has finite kernel and cokernel. ]
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9 The case of arithmetic surfaces

Setting 9.1 Let the notation be as in Setting 8.1. We assume further that X is an
arithmetic surface, i.e., d = 2. For i 2 0, put 7" := Hi(Xf, Lp).

For a finite place v of K, we write k, (resp. Y,, Y%) for the residue field at v (resp.
X ®0y kv, X ®0y kv), and B, (resp. X,, Xg) for Spec(O,) (resp. X ®@o, Ou, X @0, OL),
where O, (resp. OS") denotes the completion of Ok at v (resp. the strict henselization of
O, at its maximal ideal). We put g, := #k,.

9.1 Integral comparison
Lemma 9.2 We have
H'(Bu, $5'(Xo, Zy(r))) = Hf (K, T'(r))
as subgroups of H'(K,,T™(r)), for any finite place v of K, i >0 and r = 2.

Proof. Consider the following commutative diagram:

d

Hg(Bv,ﬁi(Xm Zp(r)))

I

(Ko, Vi(r) s H2(By, $'(X,, Qp(1))),

HY Ky, ' (Xo, Zy(r)))

HY(K,,T'(r)) a4 H/}

where the arrows d and d’ are connecting maps of localization sequences of cohomology of
B, and the existence and the injectivity of d’ is a consequence of Theorem 7.2 for ¢ = 1.
The arrow «a is the natural map, and we have Ker(a) = H]}(Kv, T%(r)) by definition. On

the other hand, since H_(By,$H(Xy,Z,(r))) = 0 by Proposition 6.5 (1), we have
Ker(d) = H'(By, 5'(Xy, Zy(r))).
Thus it remains to check that the arrow b is injective, which follows from the facts that
H2(By, 9(Xy,Zy(r))) =0  if v|p and r =3
and that otherwise
H3(By, ' (X0, Zy(r))) = H' (ko, H (Y, Qp/Zp(2 — 7))
is torsion-free, because dim(Y,) =1 and cd(k,) = 1. O
As a corollary of Lemma 9.2, we obtain
Corollary 9.3 We have
H'(B,$'(X,Zy(r))) = Hf (K, T'(r))

for any i =0 and r = 2.

9.2 p-adic Abel-Jacobi maps
Let r be an integer with r = 2. We define the motivic cohomology of X as
Hy (X, Z(r)) = Hypp (X, Z(1)),

and define the motivic cohomology with Z/p™Z-coefficients as

Hy(X,Z/p"L(r)) := H (X, Z(r)  Z/p"Z)  (n 2 1).
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Lemma 9.4 Assume that r = 2, and that p = 3 or B(R) = (. Then the cycle class map
clyng, + Hy (X, Z/p"L(r)) — H'(X, T (1))

is bigective for any i € Z with (i,7) # (5,2) and any n = 1. Consequently, there exists a

short exact sequence

0— H'Yy(X,Z(r))/p" — H'(X,Tp(r)) — pnH' S (X, Z(r)) — 0
for the same (i,n), where for an abelian group M, ,nM (resp. M/p™) denotes the kernel
(resp. cokernel) of the map M XV
Proof. See [Sa5] Lemma 7.1 (3). O
We define a p-adic cycle class map
b HYy(X,Z(r) ® Zp — H' (X, Zy(r))

as the projective limit with respect to n = 1 of the cycle class map

i ] ; b )
It s Hiy (X, 20) /" — Hig (X, 2/p"2(r) 557 H'(X, (7).

Since X7 is a curve, H' (X7, Zy(r)) is torsion-free, and
H(B,%'(X,Zy(r))) € H'(Xgg, Zp(r)) < =0
by Proposition 6.5 (1) and for the reason of weights. We define a p-adic Abel-Jacobi

mapping ‘ A R A
ajy"  Hy (X, 2(r)) @ Zy — H' (B, 9™ (X, Zy(1))) (9.1)

as the map induced by clj;r and an edge map of the spectral sequence
Ey" = H"(B,$"(X, Z,(r))) = H*™(X, Z,(r)).
By Corollary 9.3, the map (9.1) is rewritten as follows:
ajy’ : H'y(X, Z(r) ® Zy, — Hf (K, T (r)). (9.2)

The following proposition is a summary of known facts and results on this p-adic Abel-
Jacobi maps, where the Voevodsky-Rost theorem [V2], [V3] plays a crucial role:

Proposition 9.5 ([Sa5] Corollary 7.7) Assume that r = 2, and that p =2 3 or B(R) =
0. When r = 3, assume further Conjecture 5.15 for T = H'(Xg,Zy(r)) in (3) and (4)
below. Then:

(0) H',(X,Z(r)) is uniquely p-divisible for i <0 and i 2 5, and zero for i > r + 2.

1r

1 Ip

clzl,”" and aj,;)" are injective.

2 clf;’“ 1$ injective, and aj?o”’ has finite kernel.

3 clz”" 1s bijective, and ajg’r has finite kernel and cokernel.

(
(
(
(4

)
)
)
) 01140”“ is bijective, and H?,(X,Z(r)){p} is finite.

Moreover, we have Hf‘//(X, Z(r){p} = Hf//(X,Z(r)) ®Zp7 and aj;l),r is zero.

9.3 Comparison with local-global maps

We recall the local-global map introduced in §5.4

ir . Hl(KaTi@’Qp/Zp(r)) @ Hl(vaTi@’Qp/Zp(T))
. H}(KvTi@’Qp/Zp(r)) H}(vaTi(X’Qp/Zp(T)) .

(9.3)
veP
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We put x(f) := # Coker(f)/#Ker(f) for a homomorphism f : M — N of abelian groups
with finite kernel and cokernel. The following result compares the maps o" for i = 0, 1,2
with the p-adic Abel-Jacobi mappings ajgr for ¢ = 2, 3.

Theorem 9.6 Assume r = 2, and that p = 3 or B(R) = (). Assume further Conjecture
5.15 for T'(r) and that the group H;[(X,Z(T)){p} is finite. Then ajg’r has finite cokernel,
and we have

X(Oél’Q) X ajg’Q #CHO {p} H 2,1,2 302
2

(a3?) -
x(a0:2) X(aJp’Q) #Pic(Ox){p} 202 3,1,2 =
(aj,")
(aj;

21r 30'r 63,2,7‘
v
- # Hy (X, Z(r)){p} - H 207» 2,2,r PENE (rz3),

ves: Gv v

ves v
xebn) o x(agp”
X(@@) - x(a2) ~ y(aj2")

:3,
aJp

where S" denotes the set of the places of K which divide p or where X has bad reduction;
for each v € S" and a = 2,3, we put

= g HY(By, (X0, Z(17))-
See Theorem 7.2 for the finiteness of 612)’i’r and 63’”.

The formulas in this theorem are based on the finiteness stated in Proposition 9.5.

Proof. For (i,r) # (2,2) with r = 2, there is a commutative diagram with exact columns

0

|

HY(B,5"(X, Qp/Zy(r)))

0

|

H]}(K, T" @ Qp/Zp(r))

|

HY(K, T* © Qp/Zy(r))

® HY(By, 9" (Xu, Qp/Zy(r)))
H} (K, T"® @p/Zp(r))

|

vEBg

Hfl(K7 T" @ Qp/Zp(r))

|

P HI (B, H(X,Qp/Zy(r)))

vE By

H?(B, $'(X, Qp/Zy(r

HYK,, T'® Q,/Zy(r))
@ HI(K,, Tt ® Qp/Z,(r))

|

2(B,9'(Xy,Qp/Zy(r)))

€By

vE By

@ H? Bvaﬁl(va Qp/zp<7”)))

vE By

HY K, T ® Qp/Zy (1) — o= e €D H (Ko, T © Qp/Z(17))

P HIB, H(X,Qy/Zy(r)))

vE By

|

0

vEBo

|

3(Bu, 9'(Xv,Qp/Zy(r)))

;

vE By



This diagram yields an exact sequence of Z,-modules

0 — Ker(a"") — H/ﬁc(B,ﬁ"(X, Qp/Zy(r))) — @ H/}(vaﬁi(Xva@p/Zp(T)))
vE By

— Coker(a”") = H*(B, $'(X, Qp/Zy(r))) = €D H*(Bu, $'(Xy,Qp/Zy(r))) — 0,
vEBy

where we put

H'(B,5"(X, Qp/Zy(r)))

H}(K,T' @ Qy/Z,)

Hl(Bmﬁi(Xm QP/ZP("")))
H} (K, T'© Qp/Z,)

H} (B, 9(X,Qp/Zy(r))) =

H}(By, §'(Xy, Qp/Zy(r))) 1=

By the isomorphism of finite p-groups
~ H?(B, %' (X Zy(r))),

r))

HY (B, (X, Qp/Z,(r ( ()
(B, p(7)))
=~ H%(By, 5" (Xu, Zp(r))),
( Zyp(r)

()

H*(B, $'(X,Qp/Zy(r))
H}; (B, 9" (X, Qp/Zy(r))
H*(By, ' (X, Qp/Zp(r))

under Conjcture 5.15,

gH?’ Bvasj(XQN pr))

and the above 6-term exact sequence, we obtain

30T 2,4,r

X(aiﬂ‘) = 627i,r X H 3,%,1 (94)

for (i,7) # (2,2), where we put
¥ = #HY(B, 9" (X, Zy(r))) for a=2,3 with (a,i,7) # (3,2,2).

See also Example 6.4 (1) for the fact that e = es™" =1 for v € By~ 9.
On the other hand, aJ;)" for ¢ = 2,3 is identified with the natural projection

H'(X,Zp(r)) — H' (B9 (X, Zy(r))) = Hp (K, T} (r))

by Proposition 9.5 (2), (3) and the finiteness assumption on H3,(X,Z(r)){p}; see also the
short exact sequence of Lemma 9.4. Hence we have

X(ajg’r) 207 . 22,1 3,11
X(ai27) LT 30T HA(X 2, (1))

for r = 2 by the spectral sequence (6.3), and moreover

H?(B,$*(X,Z,(2))) & H*(B,Z,(1)) = Pic(Ox) ® Z, = Pic(Ox){p},
H*(B,$*(X,Zy(r))) = H*(B, Zy(r — 1)) 2 H*(B[p~ '], Zp(r —1)) =0 (r = 3).

The assertion follows from (9.4) and these facts. O
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9.4 Zeta values modulo rational numbers prime to p

Put Vi :=T" ®z, Qp. In this subsection, we relate the formula in Theorem 9.6 with zeta
values assuming Conjecture 9.7 below for the motives H'(Xy)(r) with i« = 0,1,2, that
is, a weak version of p-Tamagawa number conjecture [BK2| §5. Let S’ be a finite set of
closed points of B containing all points of characteristic p, and all points where X has bad
reduction. For i =0,1,2 and r = 2 with (i,7) # (2,2), we put

Ls/(H'(Xi),r) =[] det(1—q,"-Fr, | V)"
vEBo\.S’!

This infinite product on the right hand side converges, because i — 2r = —3. Let Z, be
the localization of Z at the prime ideal (p).

Conjecture 9.7 (Bloch-Kato) For any i = 0,1,2 and v = 2 with (i,r) # (2,2), there
ezists a finite-dimensional Q-subspace ®" = &, of the Q-vector space

I (X, Q(r)z = T (HEFL(X, Q(r) — HiF (Xic, Q(r)
which satisfies the following conditions (i) and (ii):
(i) The p-adic Abel-Jacobi map
Hf N (X, Q(r)) — HY(K,V'(r))

induces an isomorphism ®" @ Q,, Hfl (K,Vi(r)), and Beilinson’s regulator map to
the real Deligne cohomology

H (X, Q(r) — H (X)p, R(7)) (95)
induces an isomorphism ®" ® R & ngl(X/R, R(r)).

(ii) We define A;;T(K), the group of p-global points, as the pull-back of ®" under the
natural map A ‘ '
H} (K, T'(r)) — H}(K,V'(r)) = 2" 0 Q,,
which is a finitely generated Z,)-module. We further fix an Ok-lattice L? of the

de Rham cohomology H'n(Xk/K), and define a number Rﬁff € RX/Z(XP) to be the
volume of the space

HZFI(X/R, Zp(1))/Image of A;;T(K)

with respect to L'. See Definition 2.7 (resp. Remark 9.8 (1) below) for the definition
(an explicit description) of H?ﬁH(X/R,Z(p) (r)). On the other hand, for each v € By
we put

AT (Ky) = Hf (Ko, T'(r)),
which we call the group of p-local points at v. Then we have

L) (1 (Xic) (1)

Lg/(H' (X)) = #Homey (%, Qp/Zp(1 = 1))

.Rf{. H Mf}(A;;’”(KU)) mod Z(Xp),
veS’
(9.6)

where pi for v/p means the cardinality, and pt for v|p denotes the Haar measure
on Ay"(Ky) constructed from that on Hig(Xk,/Ky) such that pt (L' @, O,) = 1.
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Remark 9.8 (1) The map A5"(K) — ngl(X/R, Zp)(r)) induced by the regulator map
is injective, by the condition (i) for ®*" and [BK2] Lemma 5.10. Here

Hip(X/Z)®C >+
Hio(X ®2,C, 20/ =1)" L))

for any ¢ = 0,1,2 and r = 2, by definition.

ng&mz@vnz(

(2) The product on the right hand side of (9.6) is independent of the choice of L*.
(3) Conjecture 9.7 for i = 0 (resp. i = 2) implies that
Cre(r) = x(a®") L RY" (resp. Cx(r — 1) = x (¥ 1)~L. R
modulo Z(Xp) if r =2 2 (resp. r 2 3) and p is unramified in K.
(4) We have RfI;T =1 for any ¢ = 3, because HEH(X/R, Zp)(r)) is zero for such i’s.

(5) For (i,7) = (2,2), we will use the classical class number formula instead of (9.6) in
Proposition 9.9 below.

Assuming Conjecture 9.7, we relate the formula in Theorem 9.6 with the residue or
value at s = r of the zeta function ((X, s).

Proposition 9.9 ([Sa5] Proposition 9.3) Assume r = 2 and the following conditions:
(0) p=r+2.
(ii) For any v € By with v|p, v is absolutely unramified and X has good reduction at v.

(iii) Conjecture 5.15 holds for T(r), and Conjecture 9.7 holds for i = 0,1 (resp. i =
0,1,2) if r =2 (resp. r 2 3).

Then H3,(X,Z(r)){p} is finite, and we have
x(ajy?)-# CHo(X) - Ry’

Res ((X,s) = Res 5)- mod Z* r=2
ey 009 =1 ) 2% e pic(On) RL ) =2
13,7 . H4 )(7 7, _RO,T 'RQJ’
C(X,T‘) — X(a.]p ) # %/( ~ (T)i{rp} () (6] mod Z();) (7" 2 3)
\(a27) R

where Z,) denotes the localization of Z at (p); Rﬁff € RX/Z(XP) is defined for the lattice
L' := H!y (X/Z)/H! g (X/Z)sors. See Conjecture 9.7 for the definition of Ry .
Proof. The assertion is deduced from Theorem 9.6 and the equality

po (H (Ko, T (r))) ey' e

- - -1 2707 3717 ’
|C(YU7T)(1_q% T)(l_QUT)‘p €y T'ev "

which holds true unconditionally (resp. under (i) and (ii)) if v/p (resp. if v|p). See [Sa5]
Theorems 8.4 and 8.5 and Proof of Proposition 9.3 for details. O

Theorem 9.10 ([Sa5] Theorem 9.6) Under the same assumptions as in Proposition
9.9, assume further that

(iv) HZH(X, Z(r)) is finitely generated for any i =0,1,2 and r = 2.
Then the requlator map

reg M HAY (X, Z(r)) — HG (X )R, Z(r))
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has finite kernel for i =0,1,2,3, and we have

3 R/i/v/?“ (1) 5
(X,r) = L mod Z7 .,
¢ ( ) g (#Ker(reggl’r)> (p)

where (*(X,r) denotes the residue (resp. the value) at s =1 if r = 2 (resp. © 2 3), and
RZ/; € RX/Z(XP) denotes the volume of the space

H (X/m, Zip) (7)) /Tm(regyy ") (for (i,r) # (2,2))
H)(X/R, L) (2))/Tm(regsy’) (for (i,7) = (2,2))

with respect to L' fized in Proposition 9.9; ﬁ%(X/R,Z(p)(Q)) denotes the kernel of the
canonical trace map
Try : H%(X/R,Z(p)(Q)) — R.

Proof. The map A;,’T(K) — Hijl(X/R,Z(p)(r)) induced by the map (9.5) is injec-
tive, and the assumption (iv) implies that H'}'(X,Z(r)) ® Z, = H'J' (X, Z(r)) ® Z, =
H™Y(X,Z,(r)) for 0 < i < 3. The first assertion follows from these facts and (iii). The
second assertion is deduced from Proposition 9.9 and the equality

Ry (i=0)
NO R (t=1)
R ~ J x(ajy?) my(Coker(ox)) () = (2,2))
#Ker(reggl’r) B X(ajz’r) -Rijr (i=2,7r23)
(# CHo(X){p}) ™ ((i,r) = (3,2))
(# H 'y (X, Z(r)){p}) ! (i=3,123),

where pg (resp. mg) denotes the regulator map (resp. the Haar measure) considered in
Proposition 2.11. See [Sa5] Proof of Theorem 9.6 for details. O

Example 9.11 Let F be an elliptic curve over Q with complex multiplication, Let X be
a regular model of E which is proper flat over Z. Let p be a prime number which is prime
to 6, regular for E in the sense of Soulé [So2] 3.3.1, and good for X in the sense that X
has good reduction at p. Then we obtain an unconditional formula

72 x(aj>?) - #CHo(X
x( J;u.z)2 # 12o( ) mod 7,
X(aﬂ]]f )Rq;

R:er ((X,s) =

from Proposition 9.9 and [BK2] Propositions 7.4 and 7.5 (see also Example 5.18 above).
If we assume further that Hj/;l(X ,Z,(2)) is a finitely generated abelian group for i = 1,2,
then we have

ranky H%(X,Z(2)) =1,  rankz H>,(X,Z(2)) =0

by Theorem 8.3, and obtain a stronger formula
2. #Ker(reggz) -#CHp(X)
R, #H3 (X, Z(2))

R_er (X, s) mod Z[T1]*

from Theorem 9.10. Here T' denotes the set of all prime numbers which divide 6 or which
are non-regular for £ or bad for X.
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A Purity of Gy,

Exercise 13 Let X be a scheme, and let v : Z — X be a closed subscheme. Let j:V :=
X N Z < X be the open immersion from the open complement of Z. Let F be an étale
sheaf on X. For each U € Ob(Et/X), we put

I'yw u(U, 7)) :=Ker(I'U,.7) = I'(U xx V,.%))
(1) Show that the assignment
I',(X,.7):U € Ob(Et/X) — I'zw v(U,.7)
is an étale sheaf on X.
(2) Show that the following sequence of sheaves is exact on Xg:

0 — I, (X, F)— F — j.j*F.

(3) Show that I’ ,(X,.7) 2 i,i* [ ,(X,.F) for any étale sheaf on X.

(4) Put i'F = i*L 4(X,.F) for an étale sheaf F on X. Then show that the functor
i' : Shv(Xg ) — Shv(Ze) is right adjoint to i, : Shv(Zg) — Shv(Xyg).

(5) Show that the functor
Fz(X, —) :ShV(Xét) —>¢Ab7 y'—>Fz(X,y)
is left exact. Let H}(X,—) be its right derived functor.

(6) For each ¢ =2 0 and each sheaf F € Shv(Xg), let HL(X, F) be the sheaf on Xg
associated with the presheaf

U € Ob(Et/X) — HY, (U, F).
Then show that the functor
*H%(X,—) : Shv(X¢) — Shv(Zg), F — "H} (X, F)
agrees with the q-th right derived functor R%i' of i'.

Theorem A.1 (Purity of Gy,) Let X be a locally noetherian scheme, and leti: Z — X
be a closed subscheme.

(0) If X is reduced and codimx(Z) = 1, then we have i'Gy, = 0.
(1) If X is normal and codimy (Z) = 2, then we have R'i'Gy, = 0.

(17) If X is regular and codimy(Z) = 1, then we have

Ri'Gn= @ izl

reZNX1

where x on the right hand side runs through all points of Z which has codimension
1 i X, and i, denotes the natural map x — Z.

(2) If X is reqular and codimyx (Z) > 1, then we have R*'Gy, = 0.
(3) If X is regular and codimx (Z) = 2, then we have R3i'Gy, = 0.
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Remark A.2 The vanishing of (3) is called the purity of Brauer groups [G], [FG], [Ce].
We do not explain any more about (3) in what follows.

Proof. The following fact is useful [GD2] Propositions 17.5.7, 17.5.8:

o Let U — X be a smooth morphism of schemes. If X is reduced (resp. normal,
reqular), then U is also reduced (resp. normal, regular).

Since the problems are local, we suppose that X is an affine scheme with affine ring A.

(0) Assume that A is a noetherian ring whose nilpotent radical is 0. Let py,...,p, be the
minimal prime ideals of A and put S : = A~ (p1U...Up,). Then S agrees with the set of
all non-zero-divisors in A [GD2] Remark 20.2.13 (ii). The assertion follows from this fact.

(1) If A is a noetherian integrally closed domain, then we have
A— ﬂ Ay, (A.1)
p:height 1

where p on the right hand side runs through all prime ideals of A of height 1, and the
intersection is taken in the fraction field of A. The assertion follows from this fact.

(1") Assume that A is a regular local ring, and let Z’ & Spec(A) = X be a proper closed
subset. Our task is to show that there is a short exact sequence

rdz )z
0 —> AX — = I'(Spec(A) ~ 7', Gyy) — 2 B z—o
x€Z'MSpec(A)!

Indeed, we may replace Z’ with the union of its irreducible components Zi, Zs, ..., Z,
which have codimension 1 in X, by (0) and (1). Since A is regular local, each Z; endowed
with the reduced structure is principal and defined by some prime p; € A, and the above
sequence is identified with the exact sequence

(ordyp); r
0—= A% — = Alp;',. .. pr Y Pz 0,
j=1

whose exactness at the middle follows from (A.1). Thus we obtain the assertion.

(2) Assume that A is a strict henselian regular local ring, and let Z G X := Spec(A) be
a proper closed subset. Put U := X \ Z. Then there is an exact sequence

HY(X,Gp) 5 HY (U, Gu) — HZ(X, G) — 0.

Since we have
1 H) 1 1 H 1
H (X,Gy) = Pic(X)=2CH(X) and H (U,G,) = Pic(U) = CH (D),
the map () is surjective (and in fact, these group are all zero because H'(X,Gy,)

=0),
where the isomorphisms (H) follow from Hilbert’s Theorem 90. Hence HZ(X, Gy,) = 0. O

Exercise 14 Let X be a proper smooth geometrically integral curve over a field k.

(1) Assume that k is algebraically closed. Then show that H (X, Gy,) = 0 for any i = 2,
using Tsen’s theorem: the function field k(X) is a C1-field.

(2) Assume that k is a finite field. Then show that

Q/Z (if i = 3)

Hl(X,Gm)g{o (ifi=2 oriz=4).
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B  Higher cycle class map for regular schemes

Let Reg be the category of all noetherian regular schemes and all morphisms of schemes.
Let & be a full subcategory of Reg satisfying the following conditions:

o If f: X — Y is a smooth morphism with ¥ € Ob(%), then X € Ob(%).

Let A be a commutative ring with unity, and let {A(r)},cz be a family of complexes of
sheaves of A-modules on %,,,. We are concerned with the following data (D1)-(D5) and
the axioms (B0)—(B9) below:

(D1) (First Chern class) A morphism p: 0*[—1] — A(1) in D(Shv(%,a)) is given,
where 0 denotes the sheaf U € Ob(%¢) — I'(U, Oy )* on 6 ar.

(D2) (Product structure) For each pair of integers r,r’ € Z, a morphism

A(r) @ A’y — A(r ++')  in D(Shv(€ar), A)

(D3) (Push-forward along regular divisors) For each closed immersion i : D — X
of pure codimension 1 in ¢ and each r = 0, a morphism

st A(r — 1)p[—2] = A(r)x  in D(Shv(X,ar), A)

is given, where A(r — 1)p (resp. A(r)x) denotes the restriction of A(r — 1) to Dyay
(resp. A(r) to Xgar).

(D4) (Cycle classes) For each X € Ob(%) and each irreducible closed subset V' C X of
codimension ¢, a cycle class

cyex (V) € HE(Xyar, Ac))

(D5) (A(r) with log poles) For each n,r = 1, any X € Ob(%) and each relative
hyperplane H C P := X xP" over X, a complex A(r)p, fr) of sheaves on P,a, is given
and contravariantly functorial in (P, H). Here a morphism f : (Y, E) — (Y, E’) of
pairs is a morphism f : Y — Y’ of schemes satisfying f(Y N\ E) CY'\ E'.

(B0O) The 0-th cohomology sheaf J#Y(A(0)) is a sheaf of commutative rings with unity.

(B1) The product structure of (D2) is commutative, associative and compatible with the
product structure on ##°(A(0)) mentioned in (B0).

(B2) (Fundamental class) For any integral X € Ob(%), the unity of H°(X, A(0))
agrees with cycy (X).

(B3) (Compatibility of D1 and D4: first Chern class) For any X € Ob(%) and
any prime divisor D on X, cycy(D) agrees with the first Chern class ¢;* (D), i.e.,
the value of the class of Ox (D) under the map

0 Hh(Xyar, OF) — HpH(Xyar, A(1))
(B4) (Compatibility of D2 and D4: intersection formula) For any X € Ob(%),

any prime divisor D on X and any irreducible closed subset V' C X of codimension
r, we have

cycx (D V) =cycx (D) Ucyex (V) in HpytH( Xoar, Alr +1)).
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(B5) (Compatibility of D3 and D4) For any i : D — X as in (D3) and any r = 0,
the following diagram commutes in D(Shv(Xyar), A):

i Ap @A) x —927 i Ap @ i A(r)p —2 i A(F)p
cycy (D)ad®idl lz*
A x[2] &5 Ar)x === A(1)x ©" A()x[2] —— Alr + 1)x[2],

where cycy (D) in the left downarrow denotes the morphism i,Ap — A(1)x[2]

corresponding to cycy (D) € H%(X,ar, A(1)) = Hom p(shv(xX,a),4) (84D, A(1) x [2]).

(B6) (Projective space) For any X € Ob(%) and any n,r = 0, the morphism
P Alr —i)x[-2i] — RmA(r)p,  (ai)jg > Y 7 (a) UL
i=0 =0

is an isomorphism in D(Shv(X,;), A). Here m denotes the natural projection P :=
X xP" — X, and & € H?(P,ar, A(1)) denotes the first Chern class of the tautological
line bundle over P.

(B7) (Weak purity) For any X € Ob(%), any integer ¢ = 0 and any closed subscheme
i: W — X of codimension = ¢, we have T§2071RZ’!A(C)X =0.

(B8) (Compatibility of D3 and D5) For any pair (P, H) as in (D5) and any r = 1,
the complex A(r)(p g fits into a distinguished triangle in D(Shv(Pyar), A)

)

A(r = 1) g[-2| —— A(r)p — A(r)(p, ) — A(r — 1)g[-1] .

(B9) (Purity along log poles) For any pair (P, H) as in (D5) and any closed subscheme
i : W — P of codimension = ¢ with W C H, we have TEQCRZ'!A(C)(P,H) =0.

Remark B.1 The axiom (B5) for r = 0 implies that i, : I'(D, A) — H%(Xar, A(1)) sends
1 to cycx (D). Using this fact, one can further deduce the following projection formula
from (B5) for any r = 0 and j € Z:

i(@)UB =1i(aUi*B)  ("aeI'(D,A), "8 e H (X, Ar))).

Example B.2 Let n be a positive integer, and let ¥ C Reg be the full-subcategory
consisting of all regular noetherian schemes over Z[n~!]. Put A := Z/nZ and

Re " (r>0)
A(r) :== § Re, A (r=20)
RG*%OmShV(%ét),A (Hg(ir)v A) (T < 0)7

where € denotes the continuous map % — %,ar of big sites. We define the morphism
0: 0*[-1] — A(1) of (D1) as the connecting morphism associated with the Kummer
exact sequence

n-th power

on %y. We define the product structure (D2) on {A(r)},ecz as the natural one, and define
the cycle class (D4) as Gabber’s cycle class

cyex (V) € HE (Xg, p&7) =2 HY (Xyar, A(1)) (for r = codimx (V).
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We define the push-forward morphism (D3) by the cup product with cycy (D) = cf (D).
Then these data satisfy the axioms (B0)-(B3) and (B5) obviously. See [SS1] Theorem
12.5.1 (resp. loc. cit. Proposition 12.2.1) for (B4) (resp. (B6)). For a pair (P, H) as in
(D5) and r = 1, we define

A(r)(p,py = €I Pt
where j (resp. €) denotes the natural open immersion P~ H — P (resp. the continuous

map Py — P, of small sites), and Jp. gy denotes the Godement resolution of ,u%”” on
(P~ H)g. One can check (B7)—(B9) by the absolute purity [FG] ([SS1] Theorem 12.2.15).

Setting B.3 In the rest of this appendix, we are given a family {A(r)},cz of complexes of
sheaves of A-modules on ., with data (D1)—(D5) satisfying (B0)-(B9). See also Setting
B.6 below.

Lemma B.4 Let (P,H) be a pair as in (D5), and let W be a closed subset of P of pure
codimension c. Then we have

0 (g < 2¢)

Hiy (Par, Al€)p10) = {H%\H((P\H)zar,/l(c)) (g = 20).

Consequently, for each irreducible component V- of W ~. H, we define a cycle class
cycp(V) € Hif (Puar, A(C)(p, 1))

as the element corresponding to cycp (V) € HE (P~ H)gar, A(c)).

Proof. The assertion follows mainly from (B7), (B8), (B9). The details are left to the

reader as a report exercise. O

Lemma B.5 For any X € Ob(%) and any pair (P, H) over X as in (D5), the composite

A(r)x = Rr, A(r)p — RmoA(r)(p.a)
is an isomorphism in D(Shv(X,.,), A), where © denotes the projection P — X.

Proof. The assertion follows mainly from (B3), (B5), (B6), (B8). The details are left to
the reader as a report exercise. O

Exercise 15 Deduce Lemma B.5 from the azioms (B0)—(B9) of {A(r)}rez.
Setting B.6 We fix a projective completion A4 of A? (cf. Definition 3.3) as follows:
A1 = Proj(Z[To, Th, ..., Ty Too) /(To + Ty + -+ + Ty = To))-
Let H? C A4 be the hyperplane at infinity, i.e., H? = {T,, = 0}.
The following proposition will be useful in our construction of a cycle class morphism.

Proposition B.7 Let q and r be integers with q,r = 0, and let X € Ob(%). Let U be
a scheme which is étale of finite type over X. Let X9 be the set of all closed subsets on
U x A? of pure codimension r which meet all faces of U x A? properly (cf. Definition 3.3).
For W € X4, let W be the closure of W in U x A4. Then:

(1) There is a canonical A-homomorphism

cyc": 2" (U,q) @ A — lim H% (U X ﬂzar’A(T)(UxvaXHq))
wexma

sending a cycle C € 2"(U,q) to the cycle class cycy, 7(C), the linear extension of
the cycle class of Lemma B.4.
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(2) For each W € X1, the natural morphism

T§2T RFW <U X Ezar, A<T)(UXE,U><H‘Z)>
— HZ (U X Ay, A 38,0100 ) [~27]
is an isomorphism in the derived category of A-modules.

(3) Let C be a cycle which belongs to z"(U,q), and let W € X4 be the support of C.
Leti: U x A4=1 — U x A4 be the closure of a face map i : U x AT™1 — U x A4,
Then the pull-back map

i H% (U X ﬂzaraA(T)(Uxﬂ,UxHq))

—»Hgff(UxA%%mA&)

(W) (Uqufl,Uxqul))

sends the cycle class cycy;, 73(C) to cyc (t*C), where i*C denotes the pull-back

of the cycle C' along i.
Proof. (1) and (2) follow from Lemma B.4. The assertion (3) follows from (B4). O

UxAg—1

Theorem B.8 For any X € Ob(%) and r 2 0, there exists a canonical morphism
cyc" 1 Z(r)x @ A — A(r)x  in D(Xzar, A),
where Z(r)x denotes Bloch’s Z(r) considered on X,ar (see Definition 3.3).
Proof. Let U be étale of finite type over X. For each ¢ = 0, let G(r)? be the

(UxA4,UxHY)

Godement resolution on (U x A9),,, of the complex A(r)(x a7, UxHey = A(T)ZUxE U Ha):

There is a diagram of cochain complexes concerning e:
cyc™? . . __
S0 @ A2 ——— Tt HZ (U X Dy, A 37,0 110) ) [-27]
Wezra

™4q

« . —_— °
el T, Ty (U X A5G0V )
Wezra

pra A7 (e
. A (U X Aq’G(T)(Uxﬂ,UxHq))'

Here a™? and B™9 are natural maps of complexes, which are contravariant for the face
maps U x A9™1 < U x A?. The arrow cyc™? is contravariant for these face maps by
Proposition B.7(3). Hence we get homomorphisms of double complexes concerning (*, )

cyc™* . - -
(U ) @ A[-2r] ——— iy HZ (U % B par, AT sz, ) [-27]
Wex

« . —_— °
— lim 7o, Iy (U X A*’G(r)(Ux?,UxH*J
wexr

. (U x A%, G(?”)EUXW,UxH*))

A — F(U7 G(r).U)7

where the differentials in the x-direction are alternating sums of pull-back maps along the
faces of codimension 1, and the last arrow is the inclusion to the factor of x = 0. The
arrow o’* (resp. the last arrow) is a quasi-isomorphism on the associated total complexes
by Proposition B.7(2) (resp. Lemma B.5). We thus obtain the cycle class morphism in
D(X,ar, A) by sheafifying the diagram of total complexes. O

45



C Report exercises

Exercise 1 (§2) Let X be a scheme of finite type over F,. Then show that
(X, ) = Z(X/Fyq™)

for Re(s) > dim X.

Exercise 2 (§2) Check that the value on the right hand side of (2.3) is independent of the
choice of a bounded open subset Z # 0, and that my is a Haar measure on Hi,(X /g, Z(1)).

Exercise 3 (§2) Using classical facts on number fields, show that

(Z/22)%"  (i=2)

i L)z (i=3)
Hét(Spec(OK), Gm) = (Z/Qz)@rl (Z >4, eU@TL)
0 (i =5, odd),

where r1 denotes the number of real places of K, and r' := max{r; — 1,0}.

Exercise 4 (§3) Show that Bloch’s Z(r) satisfies (LO) for any regular noetherian scheme.
Exercise 5 (§4) Let </ be an abelian category with enough injective objects, and let N i)
A N MI1] be a distinguished triangle in D~ (7). Show the following:

(1) Leti: # — N5 be a morphism with goi = 0, and assume Homp- (. (A, A3[-1]) =
0. Then there exists a unique morphism i’ : & — AN that i factors through.

(2) Letp: A2 — X be a morphism with po f =0 and assume Homp-— (o (AM[1], Z) =
0. Then there exists a unique morphism p' : N5 — & that p factors through.

(3) Assume Homp- () (A2,41) = 0. Then relatively to a morphism h : A3 — MI1],

the triple (s, f,g) is unique up to a unique isomorphism, and f is determined by
the pair (N2, 9).

Exercise 6 (§4) Show that cyc” of Theorem 4.11 is an isomorphism for r =0, 1.
Exercise 7 (§5) Let £ € HY(K,V) correspond to an extension of {-adic representations

of Gx
0—V —F—Q,—0.

Then show the following:
(1) If £ # p, then & belongs to Hf1 (K, V) if and only if the induced sequence
0— VK — Blx QX (=Qy) — 0
15 exact.
(2) If £ = p, then & belongs to Hf1 (K, V) if and only if the induced sequence
0 — Crys(V) — Crys(E) — Crys(Qp)(= Ko) — 0

18 exact.
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Exercise 8 (§5) Let G be a profinite group and let N be a closed normal subgroup of G.
Let M be a topological G-module, and put

ZY(N, M) :={¢: N = M continuous map|"z,"y € N, p(zy) = p(z) + z-¢(y)},
BY(N,M) := {¢: N — M continuous map‘aa eM,"zeN,p(z)=xza— a}.
Then show the following:
(1) For p € ZY(N,M) and g € G, define a map g-¢ : N — M by
(9-9)() = g- (o9~ zg)).
Then g- o belongs to Z'(N, M), and the map
V:GxZY N, M) = Z' (N, M), (g.0) = g-¢
defines a left G-action on Z1(N, M).
(2) BY(N, M) is a left G-submodule of Z'(N, M).
(3) N acts trivially on H(N, M) via vy, i.e., HY(N, M) is a left G/N-module.

Exercise 9 (8§5) Let G be a profinite group and let N be a closed normal subgroup of G.
Put I' :== G/N. Let M be a topological G-module. Then show that there is an inflation-
restriction exact sequence

0—— HY (I, MN) 2 5Y(G, M) B gY(N, M)
Exercise 10 (85) Show the equality * in the last display of §5.2.

Exercise 11 (85) Show that HJ}(K, V') is independent of the choice of S as in Condition
5.6.

Exercise 12 (§5) Let E be an elliptic curve over K, and let Sel(E/K)®) be the p-primary
Selmer group:

Sel(E/K)®) := Ker (Hl(K,E{p}) — 11
veP

H'(K,, E{p}) >
E(Ky) @ Qp/Zy )’

where E{p} denotes the p-primary torsion part of E(K). Put

VE = Qp ®Zp m an,

n=1
where ,n ' denotes the p"-torsion part of E(K). Is there a natural map
H} (K, Vg) — Sel(E/K)®)?

If so, is the cokernel finite?
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Exercise 13 (§A) Let X be a scheme, and let i : Z — X be a closed subscheme. Let
j: V=X Z < X be the open immersion from the open complement of Z. Let ¥ be
an étale sheaf on X. For each U € Ob(Et/X), we put

v (U, F) = Kex(D(U, F) » [(U xx V, 5))
(1) Show that the assignment
I'y(X,.7):U € Ob(Et/X) — I'yw (U, )
is an étale sheaf on X.
(2) Show that the following sequence of sheaves is exact on Xg:
0—I,(X,7)— F — j.jF.
(3) Show that " ,(X,.F) =2 i,i* (X, F) for any étale sheaf on X.

(4) Put i'.F = i*[ ,(X,.F) for an étale sheaf F on X. Then show that the functor
i' : Shv(X¢;) — Shv(Zy,) is right adjoint to i, : Shv(Zs) — Shv(Xe).

(5) Show that the functor
I'7(X,—): Shv(Xe) — Ab,  F s I'y(X, F)
is left exact. Let H(X,—) be its right derived functor.

(6) For each ¢ = 0 and each sheaf F € Shv(Xg), let HY(X,.F) be the sheaf on X
associated with the presheaf

U € Ob(Et/X) — HY, ,(U,.F).
Then show that the functor
i*H% (X, —) : Shv(Xg) — Shv(Zg), Fr— i"HL (X, F)
agrees with the q-th right derived functor R%i' of i'.
Exercise 14 (§A) Let X be a proper smooth geometrically integral curve over a field k.

(1) Assume that k is algebraically closed. Then show that H' (X, Gy,) = 0 for any i > 2,
using Tsen’s theorem: the function field k(X) is a Ci-field.

(2) Assume that k is a finite field. Then show that

Q/zZ (if i = 3)

H'(X,Gy) = {0 (ifi =2 or i=4).

Exercise 15 (§B) Deduce Lemma B.5 from the axioms (B0)—(B9) of {A(r)}rez.
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