
ON THE TWO-VARIABLE IWASAWA MAIN CONJECTURE

TADASHI OCHIAI

Abstract. This paper is a continuation of the papers [O3] and [O4], where we showed
one of the inequalities between the characteristic ideal of the Selmer group and the ideal
of the p-adic L-function predicted by the two-variable Iwasawa Main Conjecture for a
nearly ordinary Hida deformation T (see [O4] and §1 of this paper for the conjecture).
In this paper, we study several properties of the Selmer group and the p-adic L-function
solving some of open questions raised in [O3]. As applications, we examine the Main
Conjecture for certain given cusp forms.

Contents

1. Introduction 1
2. Local monodromy on Tord

F 7
3. Selmer groups for Galois deformations 9
3.1. Selmer groups over discrete valuation rings 9
3.2. Selmer groups over one-variable Iwasawa algebras 10
3.3. Selmer groups over the two-variable Iwasawa algebra 17
3.4. Surjectivity of localization maps 18
4. Control theorem for Greenberg’s Selmer groups 20
4.1. From two-variable to one-variable 20
4.2. From one-variable to discrete valuation case 22
5. Two-variable p-adic L-function 23
5.1. Review on the work on [O3] 24
5.2. p-adic periods at weight two 25
5.3. Beilinson-Kato element 26
6. Iwasawa Main conjectures for various specializations of T 30
7. Pseudo-null submodule 34
8. Examples 38
8.1. Iwasawa Main conjecture for Ramanujan’s cusp form 38
8.2. Ramanujan’s cusp form at p = 11 40
References 42

1. Introduction

In this section, we shall introduce our results for the Iwasawa theory on Hida defor-
mations obtained in [O3] and [O4]. We will also give a slight modification (see Theorem
2 and Remark 1.4) of our Euler system theory to give an application in §8.
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To introduce our results, let us recall briefly Hida’s nearly ordinary modular deforma-
tions.

We fix a prime number p ≥ 3 and a norm compatible system {ζpn}n≥1 of primitive
pn-th roots of unity throughout the paper. Let Γ be the Galois group Gal(Q∞/Q) of
the cyclotomic Zp-extension Q∞/Q of the rational number field Q. We denote by Γ′ the
group of diamond operators for the tower of modular curves {Y1(pt)}t≥1. We have the
canonical isomorphisms:

Γ ∼−→
χ

1 + pZp ⊂ Z×
p , Γ′ ∼−→

κ
1 + pZp ⊂ Z×

p .

Fix a topological generator γ (resp. γ′) of Γ (resp. Γ′). For later convenience, we choose γ
and γ′ so that χ(γ) = κ(γ′). From now on, we fix an embedding of an algebraic closure Q
into the field C of complex numbers and an embedding of Q into a fixed algebraic closure
Qp of the field Qp of p-adic numbers simultaneously. We also fix a natural number N
prime to p.

Let Hord
F be the quotient of the universal ordinary Hecke algebra Hord

Np∞ with tame
conductor N , which corresponds to a certain Λ-adic eigen cusp form F . The algebra
Hord

F is a local domain finite flat over Zp[[Γ′]]. Then (the F-component of) Hida’s nearly
ordinary Hecke algebra Hn.o

F is defined to be the formal tensor product of Hord
F and the

cyclotomic Iwasawa algebra Zp[[Γ]]. By this, Hn.o
F is isomorphic to Hord

F [[Γ]] and is a
local domain finite flat over Zp[[Γ × Γ′]]. Let Σ be the finite set of places of Q consists
of {∞} and the primes dividing Np. In his celebrated paper [H2], Hida constructs a
big continuous Galois representation ρ : G� = Gal(Q/Q) −→ Aut�n.o

F (T (0)
F ) unramified

outside Σ, where T (0)
F is a finitely generated torsion-free module of generic rank two over

Hn.o
F . The representation T (0)

F is presented as Tord
F ⊗̂Zp[[Γ]](χ̃), where Tord

F is a finitely
generated torsion-free module of generic rank two over Hord

F with continuous G�-action,
χ̃ is the universal cyclotomic character G� � Γ ↪→ Zp[[Γ]]× and Zp[[Γ]](χ̃) is a rank one
free Zp[[Γ]]-module on which G� acts via the character χ̃. The trace of the Frobenius
element Frl ∈ G� acting on Tord

F is equal to the Fourier coefficient Al(F) of F for every
primes l �∈ Σ. Let M be the maximal ideal of Hn.o

F and let F be a finite residue field
Hn.o

F /M. The residual representation of T (0)
F is defined to be a rank two F-module with

semi-simple G�-action where the trace of Frl is congruent to Al(F) modulo M for every
primes l �∈ Σ. Such residual representation of T (0)

F is always known to exist by Hida (cf.
[MW, §9]) and is unique up to isomorphism by Chebotarev density theorem. Throughout
the paper, we always assume the following condition unless otherwise stated:

(Ir) The residual representation of T (0)
F is an irreducible G�-module.

The condition (Ir) implies that Tord
F (resp. T (0)

F ) is free of rank two over Hord
F (resp.

Hn.o
F ). Let us recall the following definition:

Definition 1.1. Let w be an integer. A point I ∈ Hom�p(Hord
F ,Qp) is called an arith-

metic point of weight w if there exists an open subgroup U of Γ′ such that the restriction
I|U : U ↪→ Zp[[Γ′]]× ↪→ (Hord

F )× �−→ Q
×
p sends u to κw(u) for any u ∈ U . We denote by

Xarith(Hord
F ) the set of arithmetic points of Hord

F . For an arithmetic point I of Hord
F , we
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will denote by w(I) the weight of I. We define a subset Xarith(Hord
F )≥0 ⊂ Xarith(Hord

F ) to
be Xarith(Hord

F )≥0 = {I ∈ Xarith(Hord
F )|w(I) ≥ 0}.

We briefly recall the properties of T (0)
F (cf. [H2], [Wi2]):

Basic property of nearly ordinary Hida deformations T (0)
F . Assume the condi-

tion (Ir). The deformation T (0)
F (resp. Tord

F ) has the following properties:

1. For each I ∈ Xarith(Hord
F )≥0, there exists a normalized eigen cusp form f� of weight

w(I) + 2 and the quotient Tord/Ker(I)Tord
F
∼= O⊕2

�
with O� := Hord

F /Ker(I) is
isomorphic to Tf�, where Tf� is the unique lattice of Deligne’s Galois representation
associated to f� (cf. [De1]). Thus, T (0)

F /(Ker(I), γ − χj(γ))T (0)
F is isomorphic to

Tf� ⊗ χj for each j ∈ Z and each I ∈ Xarith(Hord
F )≥0.

2. As a representation of the decomposition group G�p ⊂ G� at p, T (0)
F has a filtration

0 −→ F+T (0)
F −→ T (0)

F −→ F−T (0)
F −→ 0 such that the graded pieces F+T (0)

F and
F−T (0)

F are free of rank one over Hn.o
F .

3. Further, F+T (0)
F is isomorphic to Zp[[Γ]](χ̃)⊗̂�pH

ord
F (α̃) as a G�p -module, where α̃

is an unramified character G�p −→ (Hord
F )× such that Ap(F) = α̃(Frobp) ∈ Hord

F
satisfies an interpolation property I(Ap(F)) = ap(f�) for each I ∈ Xarith(Hord

F )≥0

and Hord
F (α̃) is a rank one free Hord

F -module on which G�p acts via the character α̃.

Let ω be the Teichmuller character. We will study the twist T (i)
F = T (0)

F ⊗ ωi for a
fixed integer 0 ≤ i ≤ p − 2, which we call a nearly ordinary deformation. From now on,
we will denote T (i)

F by T if there causes no possibility of confusion. We would like to
study “the Iwasawa theory for T ”. The space of p-adic characters of Hn.o

F is naturally
viewed as a rigid analytic space finite flat over a two dimensional open unit ball in C2

p.
Hence T corresponds to a family of Galois representations over a two dimensional rigid
space. Each “hypersurface” of the space of characters of Hn.o

F is a rigid space of dimension
one, which also interests us from a view point of “the Iwasawa theory for deformation
spaces”. Among infinitely many hypersurfaces, we especially study the following four
types of hypersurfaces TJ = T /JT for hight one primes J of Hn.o

F (see (a), (b), (c) and
(d) below).
(a) Cyclotomic deformations of ordinary cuspforms.
TI = Tf�⊗ωi ⊗�p Zp[[Γ]](χ̃) for a cuspform f�⊗ωi of weight k = w(I)+2, which is free of
rank two over O�[[Γ]]. Here, I ∈ Xarith(Hord

F )≥0 and I is a height-one ideal Ker(I)Hn.o
F of

Hn.o
F . This is the case called “the cyclotomic deformation” and was developed by many

people since Mazur [Mz] started the Iwasawa theory for the cyclotomic deformation of
an ordinary elliptic curve. (see [Gr1], [Gr4] and [MTT], for example)
(b) Ordinary deformation twisted by χ.
T(γ−χ(γ)) = Tord

F ⊗ χωi, which is free of rank two over Hord
F . For each I ∈ Xarith(Hord

F )≥0,
T(γ−χ(γ))/Ker(I)T(γ−χ(γ)) is isomorphic to Tf� ⊗ χωi. Hence T(γ−χ(γ)) is the interpo-
lation of the Zp(1)-twists of the Galois representations for f� ⊗ ωi−1 when I varies in
Xarith(Hord

F )≥0.
(c) Ordinary deformation twisted by Zp[[Γ]](χ̃)⊗ χ.
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T(γ−κ(γ′)γ′) = Tord
F ⊗�p[[Γ′]] Zp[[Γ]](χ̃) ⊗ χωi, which is free of rank two over Hord

F . Note
that T = Tord

F ⊗̂�pZp[[Γ]](χ̃)⊗ωi and that the tensor product is taken through canonical
isomorphism Γ ∼−→ Γ′. For each I ∈ Xarith(Hord

F )≥0, T(γ−κ(γ′)γ′)/Ker(I)T(γ−κ(γ′)γ′) is iso-
morphic to Tf� ⊗ χw(�)+1ωi. Hence T(γ−κ(γ′)γ′) is the interpolation of Z(1)⊗w(�)+1-twists
of the Galois representations of f� ⊗ ωi−1−w(�) when I varies in Xarith(Hord

F )≥0.
(d) One-variable deformation at the diagonal line.
T(γ2−κ2(γ′)γ′) = Tord

F ⊗�p[[Γ′]] Zp[[Γ]](χ̃
1
2 ) ⊗ χωi, which is free of rank two over Hord

F .
Similarly as above, T(γ2−κ2(γ′)γ′) is the interpolation of Z(1)⊗k(�)/2-twists of the Galois
representations of f�⊗ωi−k(�)/2 when I runs arithmetic points of Hord

F with k(I) ∈ 2Z≥0,
where k(I) = w(I) + 2 is the weight of the cuspform f�. Note that the representations
with the above twist correspond to the special value of L(f� ⊗ ωi−k(�)/2, s) at the center
of the functional equations when I varies.

Some of the Iwasawa theoretic properties of TJ ’s are deduced by the method of “special-
ization” from those of T (see §4 for such technique and also §6 for results and conjectures
in these cases).

In the rest of this section, we will recall the results for the Iwasawa main conjecture
principally in the case of T . By Combining [O3, Theorem 3.14] and an optimal nor-
malization of Beilinson-Kato elements done in this paper (Theorem 5.10), we have the
following theorem:

Theorem 1 (Corollary 5.16). Let i be an integer such that 0 ≤ i ≤ p− 2. We assume
the condition (Ir) for a nearly ordinary deformation T = T (i)

F . Assume also the following
condition:
(Nor) Hn.o

F is integrally closed in its fraction field Frac(Hn.o
F ).

Then we have an Euler system {Z(r) ∈ H1(Q(µr),T ∗(1))} whose first layer Z = Z(1)
satisfies the equality

length�n.o
F,�

(
H1

/f (Qp,T ∗(1))
/
loc/f (Z)Hn.o

F

)
�

= ord�(LKi
p (T ))

for each height one prime l ⊂ Hn.o
F , where LKi

p (T ) is the Kitagawa’s two-variable p-adic
L-function [Ki] (see also Theorem 5.7 for the interpolation property of Kitagawa’s p-adic
L-function).

Remark 1.2. In the above theorem, the condition that Hn.o
F is integrally closed is neces-

sary only to assure that the image of Ξd is contained in Hn.o
F . Without this condition, the

image of Ξd is in the fraction field Frac(Hn.o
F ) of Hn.o

F and that the localization Ξd(C)� of
Ξd(C) is contained in Hn.o

F ,� for each height one prime l ⊂ Hn.o
F . All interpolation properties

as above hold without this condition (see the arguments in [O3, §5]).

On the other hand, we associate the Selmer group SelT to T . Let A = T ⊗�n.o
F

Hom�p(Hn.o
F ,Qp/Zp). SelT is defined as a subgroup of H1(QΣ/Q,A) (see §3.3 for the

precise definition). The Pontryagin dual (SelT )∨ of SelT is a finitely generated torsion
Hn.o

F -module (cf. Proposition 3.9). We propose the following conjecture:

Conjecture 1.3 (Two-variable Main Conjecture). We assume the condition (Ir). We
have the equality length�n.o

F,�
(SelT )∨

�
= ord�(Lp(T )) for each height one prime l of Hn.o

F .
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In [O4], we proved that the ideal associated to the (localization of) Beilinson-Kato
element for T is contained in the characteristic ideal of (SelT )∨. We restate the result,
but with slight modification of the assumptions (see Remark 1.4 below):

Theorem 2 . We assume that Hn.o
F is isomorphic to a two-variable power series algebra

O[[X1,X2]] over the ring of the integers O of a certain finite extension of Qp. Let us
assume the condition (Ir) for T = T (i)

F and the existence of the elements τ ∈ G�(µp∞ )

and τ ′ ∈ G� which satisfy the following properties:
(i) The image of τ under the representation G� −→ Aut(T ) ∼= GL2(Hn.o

F ) has a presen-

tation
(

1 Pτ

0 1

)
under certain choice of basis T ∼= (Hn.o

F )⊕2, where Pτ is a non-zero

element of Hn.o
F .

(ii) The element τ ′ ∈ G� acts on T /MT via the multiplication by −1.
Then there exists an integer m ≥ 0 such that we have the following inequality for each
height one prime l of Hn.o

F :

length�n.o
F,�

(SelT )∨
�
≤ length�n.o

F,�

(
H/f (Qp,T ∗(1))

/
loc/f (Z)Hn.o

F

)
�

+ ord�(Pm
τ ).

Remark 1.4. In the paper [O4], we assumed the following condition (ii′) in place of the
above condition (ii) :

(ii′). The element τ ′ ∈ G� acts on T via the multiplication by −1.
However, the condition (ii) and (ii′) are equivalent to each other by the following lemma:

Lemma 1.5. Let R be a complete Noetherian local ring whose residue field R/M is a
finite field of characteristic p > 2 and let G be a subgroup of GL2(R). We denote by
G ⊂ GL2(R/M) the image of G under the reduction map GL2(R) −→ GL2(R/M).
Then G contains a scalar matrix of multiplication by −1 if and only if G contains the
multiplication by −1.

We omit the proof of this rather elementary lemma, but we remark that the condition
(ii) is easier to check than (ii′) (cf. §8 and Claim 8.11).

Finally, our results combining Theorem 1 and Theorem 2 are summarized as follows.

Theorem 3 . Let us assume the condition (Ir). Assume further that Hn.o
F is isomorphic

to a two-variable power series algebra O[[X1,X2]]. Then
(1) The Pontryagin dual (SelT )∨ of SelT is a finitely generated torsion Hn.o

F -module.
(2) Suppose that we have elements τ ∈ G�(µp∞ ) and τ ′ ∈ G� satisfying the conditions

(i) and (ii) in Theorem 2. Then, there exists an integer m such that we have the
following inequality for each height one prime l of Hn.o

F :

length�n.o
F,�

(SelT )∨� ≤ ord�n.o
F,�

(LKi
p (T )) + ord�(Pm

τ ).

So far, we gave results on the two-variable Iwasawa main conjecture for nearly ordinary
deformations T . The above results are applied to the Iwasawa theory for one-variable
specializations T /JT for height one ideals J of Hn.o

F . In §3.2, Selmer group for T /JT are
studied using Bloch-Kato’s method or Greenberg’s one and we have certain comparison
between two-definitions. The specialization technique from two-variable to one-variable
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is discussed in §4.1. Under these preparation, we discuss the one-variable Iwasawa theory
for the deformations (a), (b), (c) and (d) above. For example, by applying Lemma 6.2
to the case (a), we have the following corollary to Theorem 3 (see Corollary 6.4):

Corollary . Under the same assumption as that of Theorem 2 with Pτ a unit in Hn.o
F ,

the cyclotomic Iwasawa Main conjecture (I.M.C.) by Mazur-Tate-Teitelbaum for one of
arithmetic specializations f�0 of F with w(I0) ≥ 0 is true if and only if the cyclotomic
I.M.C. is true for every specializations f� of F with I ∈ Xarith(Hord

F )≥0.

Thus we have an infinite p-adic family of modular forms where the cyclotomic I.M.C.
is true. Note that under the assumption with µ = 0, a recent preprint [EPW] also proves
such a p-adic family of modular forms where the cyclotomic I.M.C. is true. Though our
corollary does not recover all the results of [EPW], we have an advantage that we do not
need any assumption on µ-invariants.

As far as we know, the one-variable Main conjecture in the cases (b), (c) and (d)
are not known nor formulated previously. According to the discussion in the preceding
sections, we formulate these conjecture in §6. We refer the reader to §6 for the detail on
these new conjectures and our results.

Since only few things are known for the two-variable Iwasawa theory, we would like
explicit examples which help us to develop our future perspective. As an attempt, we
will start from the case of Ramanujan’s cuspform ∆ = q

∏
n≥1(1− qn)24 ∈ S12(SL2(Z)).

For each prime number p such that p � ap(∆), we have a unique Λ-adic newform F(∆)
which contains ∆ at weight 12. For each integer i with 0 ≤ i ≤ p − 2, we have a nearly
ordinary deformation T (i)

F(∆).

Proposition 1.6. Let p ≥ 11 be a prime number with p � ap(∆). Assume that 1 ≤ i ≤ 11
and p ≤ 10, 000. Let T be T (i)

F(∆).

1. Except for (p, i) = (11,1), (23,1) and (691,1), we have SelT = 0 and Lp(T ) is a
unit.

2. When p = 11 and i = 1, Sel∨T is isomorphic to Zp[[Γ × Γ′]]/(γ2 − κ2(γ′)γ′) and we
have the equality of ideal (γ2 − κ2(γ′)γ′) = (Lp(T )).

Remark 1.7. Thus, especially the two-variable Main conjecture of ∆ holds for all p ≤
10, 000 and 0 ≤ i ≤ 10 except for (p, i) = (23,1) and (p, i) = (691,1). For (p, i) = (23,1),
it is easy to see that LKi

p (T ) is not a unit by the interpolation property in Theorem 5.7
since ap(∆) − 1 ≡ 0 modulo 23. The image of mod 23 representation for ∆ is dihedral
and thus the condition (ii) in Theorem 2 is not satisfied. It is our future project to
generalize the results in [O4] so that Theorem 2 is true in the case p = 23. For p = 691,
the residual representation is not irreducible any more (the condition (Ir) is not satisfied)
and the choice of lattice T is not unique for a given F . We treat the Main conjecture for
residually reducible deformations in a forthcoming paper [O5].

Notations. For an integer r, we denote by µr the group of r-th roots of unity and
denote by Q(µr) the field obtained by adjoining µr to the rational number field Q. We
often denote by Q(µp∞) the field obtained by adjoining all p-power roots of unity to the
rational number field Q. For any Galois extension L/Q and a prime number q which is
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unramified in L/Q, we denote by Frobq ∈ Gal(L/Q) (resp. ϕq ∈ Gal(L/Q)) (a conjugate
class of) a geometric (resp. arithmetic) Frobenius element at q.

Acknowledgements. The author would like to thank Ralph Greenberg, Yoshitaka
Hachimori and Kazuo Matsuno for stimulating discussion.

2. Local monodromy on Tord
F

For later use in §3 and §4, we study the action ρF of the inertia group Iv at v ∈
Σ \ {p,∞} on the Hida deformation Tord

F associated to a Λ-adic newform F introduced
in §1. We will keep the notations in the previous section. The result of this section is
summarized in Theorem 2.3. The reader who is mainly interested in the Selmer group
or in the p-adic L-function can skip this section by admitting Theorem 2.3.

We prepare the following lemma:

Lemma 2.1. Let G ⊂ Aut�ord
F

(Tord
F ) be a finite subgroup. For each I ∈ Xarith(Hord

F )≥0,
G is mapped into AutO�

(Tf�) under the specialization Aut�ord
F

(Tord
F ) � AutO�

(Tf�).

Proof. By fixing a basis of Tord
F , we have isomorphisms Tord

F
∼= (Hord

F )⊕2 and Tf�
∼=

(O�)⊕2. Suppose that there exists an element g ∈ G which is mapped to a trivial
element on AutO�

(Tf�) ∼= GL2(O�). Since the order of g is finite, by extending the
coefficients of Hord

F if necessary, we may assume that g is conjugate to a diagonal matrix(
u 0
0 u′

)
∈ GL2(Hord

F ) with u and u′ roots of unity. This completes the proof since the

roots of unity in (Hord
F )× is disjoint from Ker[(Hord

F )× � (O�)×].

Since v ∈ Σ \ {p,∞}, the action of Iv on Tord
F is non-trivial. By the above lemma, we

consider the following case:
(A) The image ρF (Iv) in Aut�ord

F
(Tord

F ) is a finite subgroup.
In this case, the action of Iv on (Tord

F )∗ = Hom�ord
F

(Tord
F ,Hord

F ) also factors through a finite
quotient of Iv. Hence there exist a finite flat extension O of Zp contained in Hord

F and a
finite type O-module M with rankFrac(O)(M ⊗O Frac(O)) ≤ 1 such that the coinvariant
quotient ((Tord

F )∗)Iv is isomorphic to M ⊗O Hord
F .

Next, we discuss the following case:
(B) The image ρF (Iv) in Aut�ord

F
(Tord

F ) is an infinite subgroup.
In this case, it is not difficult to see that there exists an arithmetic point I ∈ Xarith(Hord

F )≥0

such that the action of Iv on Tf�
∼= Tord

F /Ker(I)Tord
F does not factor through a finite quo-

tient of Iv. Let us fix one such I0 ∈ Xarith(Hord
F )≥0 for a while. We note that the action

of Iv on Tf�0
can be infinite only when the local automorphic representation πv(I0) of

GL2(Qv) associated to f�0 is a special representation. Hence the local Galois representa-

tion G�v −→ GL2(O�) for f�0 is represented by a matrix
(
χ ∗
0 χ′

)
such that χ|Iv = χ′|Iv

and χ′χ−1 = | |±, where | | is the absolute value character G�v −→ Gab
�v

∼−→ Q×
v −→ | |v.

Since a finite-order character of G�v is always the localization of a finite-order character
of G� , we have a Dirichlet character η0 with v-primary conductor such that the action
of Iv on Tf�0

⊗ η0 = Tf�0
⊗η0 is unipotent. Let us now recall the structure on the inertia
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group Iv. The group Iv has the filtration P ⊂ Q ⊂ Iv such that P is the maximal pro-v
subgroup of Iv and Iv/Q is isomorphic to Zp. Since Q/P is isomorphic to

∏
l 	=v,p Zl, Q

has no non-trivial p-primary subquotient. This immediately implies the following lemma:

Lemma 2.2. Let v ∈ Σ \ {p,∞}.
1. The image ρF (Q) is a finite subgroup of Aut�ord

F
(Tord

F ).
2. For each I ∈ Xarith(Hord

F )≥0, the group ρF (Q) is mapped into AutO�
(Tf�) under the

specialization Aut�ord
F

(Tord
F ) � AutO�

(Tf�).

Proof. For the proof, we note that the prime-to-p part of Aut�ord
F

(Tord
F ) is finite and that

the kernel of Aut�ord
F

(Tord
F ) � AutO�

(Tf�) is a pro-p group.

Since the action of Iv on Tf�⊗η0 is unipotent, the subgroup Q acts trivially on Tf�⊗η0 . By
Lemma 2.2, Q acts trivially on Tord

F ⊗ η0 = Tord
F⊗η0

, where F ⊗ η0 is the Λ-adic newform
obtained as the twist of F by η0. Let γ be a topological generator of Iv/Q ∼= Zp. By
assumption, the action of γ on Tf�0

⊗η0 is represented by a non-trivial unipotent matrix.
Let (Tord

F ⊗ η0)ss be the semi-simplification of as an Iv-module. Then, the action of γ

on (Tord
F⊗η0

)ss = (Tord
F ⊗ η0)ss is represented by a matrix

(
a 0
0 a′

)
with a, a′ ∈ (Hord

F )×.

If a or a′ is not a root of unity, there exists I ∈ Xarith(Hord
F )≥0 such that the action

of Iv on (Tord
F⊗η0

)ss/Ker(I)(Tord
F⊗η0

)ss = (Tf�)ss is of infinite order. It is impossible for a
representation of Iv associated to a cuspform. Hence a and a′ are roots of unity. Since a
and a′ are congruent to 1 modulo Ker(I0), we show that a = a′ = 1 by similar discussion
as Lemma 2.1 for (Tord

F⊗η0
)ss. Thus, the action of γ on Tord

F⊗η0
is represented by a unipotent

matrix
(

1 b
0 1

)
∈ GL2(Hord

F ). Recall that the v-order of the tame conductor of f�⊗η0 is

constant when I varies in Xarith(Hord
F )≥0 by applying [H1, Corollary 3.7] to F ⊗ η0. Thus

I(b) are not zero for every I ∈ Xarith(Hord
F )≥0. We conclude that ((Tord

F )∗)Iv is isomorphic
to Hord

F /(1−u)⊕Hord
F /(b, 1−u), where u is a root of unity which generates the group of

the values of η0.
Summarizing the above argument, we have the following theorem.

Theorem 2.3. Let v ∈ Σ \ {p,∞}.
1. If the image of Iv on Aut�ord

F
(Tord

F ) is finite, there exist a finite flat extension O of Zp

contained in Hord
F and a finite type O-module M with rankFrac(O)(M⊗OFrac(O)) ≤ 1

such that the coinvariant quotient ((Tord
F )∗)Iv is isomorphic to M ⊗O Hord

F .
2. If the image of Iv on Aut�ord

F
(Tord

F ) is infinite, ((Tord
F )∗)Iv is isomorphic to Hord

F /(1−
u) ⊕ Hord

F /(b, 1 − u) where b is an element in Hord
F such that I(b) �= 0 for every

I ∈ Xarith(Hord
F )≥0 and u is a certain root of unity in (Hord

F )× (u = 1 is possible).

The following remark explains Theorem 2.3 from the theory of admissible representa-
tions and the local Langlands correspondence for GL2.

Remark 2.4. In the case (A) of this section, the admissible representation πv(I) of
GL2(Qp) corresponding to f� is a supercuspidal representation or a principal series at
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each I ∈ Xarith(Hord
F )≥0. Further, if πv(I) is a supercuspidal representation (resp. a

principal series) at one of I ∈ Xarith(Hord
F )≥0, πv(I) are supercuspidal representations

(resp. a principal series) at every I ∈ Xarith(Hord
F )≥0. In the case (B), πv(I) is a special

representation at each I ∈ Xarith(Hord
F )≥0.

3. Selmer groups for Galois deformations

In this section, we review the definition of Selmer groups for a two-variable nearly
ordinary deformation T and for its various specializations T /AT by ideals A ⊂ Hn.o

F . We
also give some fundamental properties on these Selmer groups.

Let A be the discrete Galois representation T ⊗�n.o
F Hom�p(Hn.o

F ,Qp/Zp). We denote
by QΣ the maximal Galois extension of Q which is unramified outside Σ.

3.1. Selmer groups over discrete valuation rings. Let (j, k) be a pair of integers
satisfying 1 ≤ j ≤ k − 1 and let ∆(j,k)

s,t = (γps − χj(γps
), γ′p

t

− κk−2(γ′p
t

)) be a height-

two ideal of Hn.o
F . We denote by A

(j,k)
s,t the ∆(j,k)

s,t -torsion part A[∆(j,k)
s,t ] of A, which is

identified with (T /∆(j,k)
s,t T )⊗�p Qp/Zp. Note that

1. T /∆(j,k)
s,t T is free of finite rank over Zp.

2. The p-adic representation (T /∆(j,k)
s,t T )⊗�p Qp is isomorphic to

⊕
f

(Vf ⊗ χjωi) ⊗�p

Zp[Γ/Γps
](χ̃), where f runs ordinary eigen cusp forms of weight k for Γ1(Npt) such

that the residual representation for f are isomorphic to that of T ⊗ ω−i. Here,
Zp[Γ/Γps

](χ̃) is a free Zp[Γ/Γps
]-module of rank one on which G� acts via the

tautological character χ̃ : G� � Γ/Γps
↪→ Zp[Γ/Γps

]×.
For any Gal(QΣ/Q)-module T which is free of finite rank over Zp, Selmer groups are
defined as a subgroup of H1(QΣ/Q, A), where A = T ⊗�p Qp/Zp. Once we fix a local
condition H1

? (Qv, A) ⊂ H1(Qv, A) at each v ∈ Σ \ {∞}, we define a Selmer group Sel?T
as follows:

Sel?T = Ker

[
H1(QΣ/Q, A) −→

∏
v∈Σ

H1(Qv, A)
H1

? (Qv, A)

]
(1)

For v ∈ Σ \ {p,∞}, one of the local conditions is given by the unramified part

H1
ur(Qv, A) = Ker[H1(Qv, A) −→ H1(Iv, A)],

where Iv is the inertia subgroup at v. Let V = T ⊗�p Qp. We define “the finite part”:

H1
f (Qv, A) = pr(H1

ur(Qv, V )),

where pr : H1(Qv, V ) −→ H1(Qv, A) is the map induced by the projection map V �
A = V/T of G�v -modules and H1

ur(Qv, V ) = Ker[H1(Qv, V ) −→ H1(Iv, V )].
We also give local conditions at p.
1. Greenberg’s local condition H1

Gr(Qp, A) ⊂ H1(Qp, A) is defined to be

H1
Gr(Qp, A) = Ker

[
H1(Qp, A) −→ H1(Ip,F−A)

]
.
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2. Bloch-Kato definedH1
f (Qp, A) called “the finite part” to beH1

f (Qp, A) = pr(H1
f (Qp, V )),

where
H1

f (Qp, V ) = Ker
[
H1(Qp, V ) −→ H1(Qp, V ⊗Bcrys)

]
,

by using the ring of p-adic periods Bcrys defined by Fontaine (cf. [Bu]).

Selmer groups SelBK
T and SelGr

T according to [BK] and [Gr1] are defined by the following
condition (cf. equation (1) in this subsection).

SelBK
T SelGr

T

H1
? (Qv, A) for v ∈ Σ \ {p,∞} H1

f H1
ur

H1
? (Qp, A) H1

f (Qp, A) H1
Gr(Qp, A)

Recall that we have the following proposition (cf. [O3, §4]):

Proposition 3.1. Let us assume that 1 ≤ j ≤ k−1. Then H1
f (Qp, A

(j,k)
s,t ) is the maximal

divisible subgroup of H1
Gr(Qp, A

(j,k)
s,t ) for each pair of integers (s, t) ≥ (0, 0).

We have the following corollary of Proposition 3.1:

Corollary 3.2. Let us assume that 1 ≤ j ≤ k−1. We denote by T (j,k)
s,t the representation

T /Φ(j,k)
s,t T , which is free of finite rank over Zp for each (s, t) ≥ (0, 0). Then SelBK

T
(j,k)
s,t

is a

subgroup of SelGr

T
(j,k)
s,t

with finite index.

Remark 3.3. Let T be a G�-module which is a quotient T /JT by a height-two ideal
(not necessarily a prime ideal) J ⊂ Hn.o

F . Assume that there is a pair (j, k) with 1 ≤
j ≤ k − 1 such that T is dominated by T (j,k)

s,t for sufficiently large s, t. Since T is free of
finite rank over Zp, we define SelBK

T as in the previous subsection. We define also SelGr
T

by means of the G�p -stable filtration F+T induced from F+T . Then, the same results
as Proposition 3.1 and Corollary 3.2 hold.

3.2. Selmer groups over one-variable Iwasawa algebras. In this subsection, we
give Selmer groups for specializations TJ = T /JT at height-one primes J of Hn.o

F in the
cases (a), (b), (c) and (d) in §1. Recall that J is given as follows in each case:
(a) J is I = Ker(I)Hn.o

F for I ∈ Xarith(Hord
F )≥0. (b) J is (γ − χ(γ)) ⊂ Hn.o

F . (c) J is
(γ − κ(γ′)γ′) ⊂ Hn.o

F . (d) J is (γ2 − κ2(γ′)γ′) ⊂ Hn.o
F .

In the cases (a), Hn.o
F /JHn.o

F is isomorphic to O�[[Γ]]. In the cases (b), (c) and (d),
Hn.o

F /JHn.o
F is isomorphic to Hord

F . The Greenberg-type Selmer group SelGr
J for TJ is

defined by:

SelGr
J = Ker

[
H1(QΣ/Q,A[J ]) −→ H1(Qp,F−A[J ])

H1
Gr(Qp,F−A[J ])

⊕
⊕

v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])

]
,

In each of the above four cases, let us take a system of height-one ideals (not necessarily
prime ideals) {Hu ⊂ Hn.o

F }u≥1of Hn.o
F with the following properties:

1. We have Hu ⊃ Hu+1 for each u ≥ 1 and ∩
u≥1

Hu = 0.
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2. Hn.o
F /(J,Hu) is finite flat over Zp for each u ≥ 1.

For each u ≥ 1, SelGr
T /(J,Hu)T is defined as in 3.1 by using the filtration F±(T /(J,Hu)T ) :=

F±T /(J,Hu)F±T . Further, SelGr
J is isomorphic to lim−→ u≥1SelGr

T /(J,Hu)T by definition. On
the other hand, the Bloch-Kato-type Selmer group for TJ is defined via a certain system
of height-one ideals {Hu ⊂ Hn.o

F }u≥1 in Hn.o
F and might depend on the choice apriori.

For a fixed natural number, we will make the following choice of a system {Hu}u≥1 of
height-one ideals:{

{Hs}s≥1 = {Φ(j)
s = (γps − χj(γps

))}s≥1 in the case (a),
{Ht}t≥1 = {Ψ(k)

t = (γ′p
t

− κk−2(γ′p
t

))}t≥1 in the case (b), (c) or (d).

We define the Bloch-Kato type Selmer group as follows:⎧⎨⎩SelBK,(j)
J = lim−→ sSelBK

T /(J,Φ
(j)
s )T

in the case (a),

SelBK,(k)
J = lim−→ tSelBK

T /(J,Ψ
(k)
t )T

in the case (b), (c) or (d),

(In the case (a), we assume that 1 ≤ j ≤ w(I) + 1)
Let Div(M) be the maximal divisible subgroup for an abelian group M . We have the
following proposition:

Proposition 3.4. We assume the condition (Ir) for T = T (i)
F with 0 ≤ i ≤ p − 2. Let

J be a height-one ideal of Hn.o
F determined at the beginning of 3.2 according to which of

the cases (a), (b), (c) and (d) we consider. Then,

1. SelBK,(?)
J is a Hn.o

F -submodule of SelGr
J . The Pontryagin dual (SelGr

J )∨ of SelGr
J is a

finitely generated Hn.o
F /J-module. (SelGr

J )∨ is torsion over Hn.o
F /J except in the case

(d) (cf. Remark 3.5).
2. In the case (a) with J = Ker(I)Hn.o

F , we have :

SelGr
J /SelBK,(j)

J
∼=
{

(O�)∨ if F−A[M]Ip �= 0 and ap(f�) = 1,
0 if F−A[M]Ip = 0 or ap(f�) �= 1.

3. We have : {
SelGr

J /SelBK,(k)
J

∼= WJ in the cases (b) and (c),
SelGr

J /SelBK,(k)
J ↪→WJ in the cases (d),

where WJ = lim−→ t
H1

Gr(Qp,A[J,Ψ(k)
t ])

Div
(
H1

Gr(Qp,A[J,Ψ(k)
t ])
) ⊕ ⊕

v∈Σ\{p,∞}

(((
(T ∗

J )Iv

)G�v

)
�ord
F -tor

)∨
.

Further, the component of WJ at each prime is given as follows:
(i) For each v ∈ Σ \ {p,∞}, we have:

(
(T ∗

J )Iv

)G�v ∼=

⎧⎪⎪⎨⎪⎪⎩
(
((Tord

F )∗)Iv ⊗ χ−1ω−i
)G�v in the case (b),(

((Tord
F )∗)Iv ⊗�p[[Γ′]] Zp[[Γ]](χ̃−1)⊗ χ−1ω−i

)G�v in the case (c),(
((Tord

F )∗)Iv ⊗�p[[Γ′]] Zp[[Γ]](χ̃− 1
2 )⊗ χ−1ω−i

)G�v
in the case (d).
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(ii) We have lim−→ t
H1

Gr(Qp,A[J,Ψ(k)
t ])

Div
(
H1

Gr(Qp,A[J,Ψ(k)
t ])
) � H1

ur(Qp,A[J ]). When i �= 1 is sat-

isfied or when ap(f�) �= 1 are satisfied for every I ∈ Xarith(Hord
F )≥0, we have

lim−→ t
H1

Gr(Qp,A[J,Ψ(k)
t ])

Div
(
H1

Gr(Qp,A[J,Ψ(k)
t ])
) ∼= H1

ur(Qp,F−A[J ]). We have :

H1
ur(Qp,F−A[J ]) ∼={((

(Hord
F /(γ′ − 1)

)
[Ap(F)− 1]

)∨ in the cases (b) and (d) with F−A[M]Ip �= 0,
0 otherwise.

Remark 3.5. 1. In the case (d), (SelGr
J )∨ is not necessarily a torsion Hord

F -module.
We refer the reader to the section 6 for more information.

2. Let us note that ap(f�) = 1 happens only when w(I) = 0. In the case (a), the
difference in the second statement is rather known to the experts as “trivial zero”
phenomena at least when f� is associated to an elliptic curve.

3. The group
((

(T ∗
J )Iv

)G�v

)
�ord
F -tor

is shown to be zero if certain conditions are satis-

fied in the case (B) of the section 2. In fact, we have an extension as follows in the
case (B):

0 −→ Hord
F (χ̃

1
2χωψ) −→ ((Tord

F )∗)Iv −→ Hord
F (χ̃

1
2ψ)/(b)Hord

F (χ̃
1
2ψ) −→ 0,

where ψ is a Dirichlet character and b ∈ Hord
F is a non-zero element such that the

ideal (b) is prime to every height-one ideals Φ(k)
t when k ≥ 2 and t ≥ 0 varies.

Hence, we have:

((
(T ∗

J )Iv

)G�v

)
�ord
F -tor

∼=

⎧⎪⎨⎪⎩
(
Hord

F (χ̃
1
2χ−1ψω−i)/(b)Hord

F (χ̃
1
2χ−1ψω−i)

)G�v in the case (b),(
Hord

F (χ̃− 1
2χ−1ψω−i)/(b)Hord

F (χ̃− 1
2χ−1ψω−i)

)G�v in the case (c),(
Hord

F (χ−1ψω−i)/(b)Hord
F (χ−1ψω−i)

)G�v in the case (d).

We see that
((

(T ∗
J )Iv

)G�v

)
�ord
F -tor

is trivial when ψ = 1 and (c) are satisfied or

when (d) is satisfied. We expect that
((

(T ∗
J )Iv

)G�v

)
�ord
F -tor

is trivial in other cases.

However we have not studied it.

Proof. Recall that (SelGr
J )∨ is known to be a finitely generated torsion module over O�[[Γ]]

in the case (a) by results of Kato-Rubin (cf. [R1], [Ka2]). In the cases (b) and (c), it
is not difficult to see that SelT /(J,Ψ

(k)
t )T −→ SelJ [Ψ(k)

t ] has finite kernel and cokernel.

If k ≥ 3, SelT /(J,Ψ
(k)
t )T is finite by Kato-Rubin. Since (SelGr

J )∨/Ψ(k)
t (SelGr

J )∨ is finite,

(SelGr
J )∨ is torsion over Hn.o

F /J ∼= Hord
F . This gives the first assertion.
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We will show the other assertions in the rest of the proof. Let us consider the following
commutative diagram:

0 −−−−→ SelBK,(?)
J −−−−→ H1(QΣ/Q,A[J ])

locBK
J−−−−→

⊕
v∈Σ\{∞}

lim−→ u
H1(Qv,A[J,Hu])
H1

f (Qv,A[J,Hu])⏐⏐� ∥∥∥ ⏐⏐�γJ

0 −−−−→ SelGr
J −−−−→ H1(QΣ/Q,A[J ]) −−−−→ H1(Qp,A[J ])

H1
Gr(Qp,A[J ])

⊕
⊕

v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
.

As we will see in Theorem 3.10, the map locBK
J is surjective in the cases (a), (b) and (c).

By the snake lemma, we have:{
SelGr

J /SelBK,(k)
J

∼= Ker(γJ) in the cases (a), (b) and (c) ,
SelGr

J /SelBK,(k)
J ↪→ Ker(γJ) in the case (d).

Let us denote Ker(γJ ) by WJ . By Proposition 3.1,

WJ
∼= lim−→ u

H1
Gr(Qp,A[J,Hu])

Div(H1
Gr(Qp,A[J,Hu]))

⊕
⊕

v∈Σ\{p,∞}
lim−→ u

H1
ur(Qv,A[J,Hu])

Div(H1
ur(Qv,A[J,Hu]))

∼= lim−→ u
H1

Gr(Qp,A[J,Hu])
Div(H1

Gr(Qp,A[J,Hu]))
⊕

⊕
v∈Σ\{p,∞}

lim−→ u
(A[J,Hu]Iv)G�v

Div
(
(A[J,Hu]Iv)G�v

) .

The Pontryagin dual of lim−→ u

(A[J,Hu]Iv)G�v

Div
(
(A[J,Hu]Iv)G�v

) is lim←− u

((
(T ∗

J )Iv/Hu(T ∗
J )Iv

)G�v

)
�p-tor

,

where ( )�p-tor means the torsion-part as a Zp-module and T ∗
J = Hom�n.o

F /J (TJ ,Hn.o
F /J).

Recall that

T ∗
J
∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Tf�)∗ ⊗�p Zp[[Γ]](χ̃−1) in the case (a),
(Tord

F )∗ ⊗ χ−1ω−i in the case (b),
(Tord

F )∗ ⊗�p[[Γ′]] Zp[[Γ]](χ̃−1)⊗ χ−1ω−i in the case (c),
(Tord

F )∗ ⊗�p[[Γ′]] Zp[[Γ]](χ̃− 1
2 )⊗ χ−1ω−i in the case (d),

where ( )∗ means the Zp-linear dual in the first line and ( )∗ means the Zp[[Γ′]]-linear
dual in each of other three cases.

In the case (a) with J = Ker(I)Hn.o
F , we have

(
(T ∗

J )Iv

)
(�n.o

F /J)-tor
∼=
(
(T ∗

f�
)Iv

)
�p-tor

⊗�p

Zp[[Γ]](χ̃−1). Since
(
(T ∗

f�
)Iv

)
�p-tor

is a finite abelian group and the image of G�v on

Aut(Zp/(pn)[[Γ]](χ̃−1)) is infinite for any n,
((

(T ∗
J )Iv

)
(�n.o

F /J)-tor

)G�v
must be zero. By

the structure of ((Tord
F )∗)Iv studied in §2 the associated primes in Hord

F
∼= Hn.o

F /J of
((Tord

F )∗)Iv are different from every prime factors of the images of {Ψ(k)
t }t≥1 in Hn.o

F /J
13



for (b), (c) and (d). Hence, we have:

lim←− t

((
(T ∗

J )Iv/Ψ
(k)
t (T ∗

J )Iv

)G�v

)
�p-tor

∼= lim←− t

((
(T ∗

J )Iv/Ψ
(k)
t (T ∗

J )Iv

)
�p-tor

)G�v

∼= lim←− t

((
(T ∗

J )Iv

)
(�n.o

F /J)-tor
/Ψ(k)

t

(
(T ∗

J )Iv

)
(�n.o

F /J)-tor

)G�v

∼=
((

(T ∗
J )Iv

)
(�n.o

F /J)-tor

)G�v ∼=
((

(T ∗
J )Iv

)G�v

)
(�n.o

F /J)-tor
.

The proof for the contribution of local terms outside p in the second and the third
assertions is completed.

Next, we discuss the group lim−→ u
H1

Gr(Qp,A[J,Hu])
Div
(
H1

Gr(Qp,A[J,Hu])
) . By definition, we have the

following exact sequence:

0 −→ H1
Gr(Qp,A[J,Hu]) −→ H1(Qp,A[J,Hu]) au−→ H1(Ip,F−A[J,Hu])G�p,

where the latter map au is decomposed as follows for each u:

H1(Qp,A[J,Hu])
a′

u−→ H1(Qp,F−A[J,Hu])
a′′

u−→ H1(Ip,F−A[J,Hu])G�p.

Hence we have the following extension:

(2) lim−→ u
Ker(a′u)

Div(Ker(a′u))
−→ lim−→ u

H1
Gr(Qp,A[J,Hu])

Div
(
H1

Gr(Qp,A[J,Hu])
)

−→ lim−→ u
Ker(a′′u) ∩ Im(a′u)

Div
(
Ker(a′′u) ∩ Im(a′u)

) −→ 0.

The first group
Ker(a′u)

Div(Ker(a′u))
is a quotient of

H1(Qp,F+A[J,Hu])
Div
(
H1(Qp,F+A[J,Hu])

) , which is iso-

morphic to:

H2(Qp,F+TJ/HuF+TJ)�p-tor
∼=
(
(F+TJ(−1))G�p

/Hu(F+TJ(−1))G�p

)
�p-tor

.

In the case (a) with J = Ker(I)Hn.o
F , we have:

F+TJ(−1) ∼= O�[[Γ]](ωi−1χ−1χ̃)⊗O�
O�(α�),

where O�[[Γ]](ωi−1χ−1χ̃) is a free O�[[Γ]]-module of rank one on which G�p acts via
ωi−1χ−1χ̃ and O�(α�) is a free O�-module of rank one on which G�p acts via the un-
ramified character α� : G�p −→ O×

�
given by α�(Frobp) = ap(f�). Since Ip acts on

F+TJ(−1)/MF+TJ(−1) via ωi−1, we have:{
(F+TJ(−1))G�p

/Φ(j)
s (F+TJ(−1))G�p

= 0 i �= 1,

(F+TJ(−1))G�p
/Φ(j)

s (F+TJ(−1))G�p
∼= O�/(ap(f�)− 1) i = 1.

We recall the following lemma:

Lemma 3.6. Let M be a finite Hn.o
F /J-module in the case (a), (b), (c) or (d). Then we

have lim−→ u(M/HuM) = 0.
14



By this lemma, we have lim−→ u

(
(F+TJ(−1))G�p

/Hu(F+TJ(−1))G�p

)
�p-tor

= 0 in the

case (a). Hence, lim−→ u
Ker(a′u)

Div(Ker(a′u))
in the equation (2) is trivial in the case (a).

In the cases (b), (c) and (d), (F+TJ(−1))G�p
is finite when i �= 1 is satisfied or

when ap(f�) �= 1 are satisfied for every I ∈ Xarith(Hord
F )≥0. This again implies that

lim−→ u
Ker(a′u)

Div(Ker(a′u))
in (2) is trivial under these assumptions by Lemma 3.6.

For the proof of Proposition 3.4, we need to show that

lim−→ u
Ker(a′′u) ∩ Im(a′u)

Div
(
Ker(a′′u) ∩ Im(a′u)

) ∼= H1
ur(Qp,F−A[J ]).(3)

We have the following claim:

Claim 3.7. In the cases (a), (b), (c) and (d), Ker(a′′u) ∩ Im(a′u) is finite for every u.

On the other hand, we have also the following claim:

Claim 3.8. For any height-one ideal I ⊂ Hn.o
F , H1(Qp,A[I]) a−→ H1(Qp,F−A[I]) is

surjective.

We will finish the proof of Proposition 3.4 by using these claims. By Claim 3.7, we
have:

lim−→ u
Ker(a′′u) ∩ Im(a′u)

Div
(
Ker(a′′u) ∩ Im(a′u)

) ∼= lim−→ uKer(a′′u) ∩ Im(a′u).

By Claim 3.8, we have:

lim−→ uKer(a′′u) ∩ Im(a′u) ∼= lim−→ uKer(a′′u) ∼= H1
ur(Qp,F−A[J ]).

This completes the proof of (3). Let us finally calculate the group H1
ur(Qp,F−A[J ]). In

the case (a) with J = Ker(I)Hn.o
F , we have

F−A[J ]Ip ∼=
{

(O�)∨ if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0,

on which Frobp acts via multiplication by ap(f�)−1. In the cases (b) and (d), we have

F−A[J ]Ip ∼=
{

(Hord
F /(γ′ − 1))∨ if F−A[M]Ip �= 0,

0 if F−A[M]Ip = 0,

on which Frobp acts via multiplication by Ap(F)−1. In the case (c), we have

F−A[J ]Ip ∼=
{

(Hord
F )∨ if F−A[M]Ip �= 0,

0 if F−A[M]Ip = 0,

on which Frobp acts via multiplication by Ap(F)−1. This completes the proof of Propo-
sition 3.4 since Ap(F) ∈ Hord

F is not a root of unity.
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In the rest of the proof, we finish the proof of two claims above.
Proof of Claim 3.7:
It suffices to show that:

Im
[
H1(Qp, VJ,Hu) −→ H1(Qp,F−VJ,Hu)

]
∩H1

ur(Qp,F−VJ,Hu) = 0

for every u, where VJ,Hu = (T ⊗�n.o
F Hn.o

F /(J,Hu)) ⊗�p Qp. In the case (a) with J =
Ker(I)Hn.o

F , we have:

V
J,Φ

(j)
s

=
(
Vf� ⊗ χjωi

)
⊗�p Zp[Γ/Γps

](χ̃).

The inertia group Ip acts on F−Vf� ⊗ χjωi via the character χj−1−w(�) modulo a finite
character. We have:((

F−VfI
⊗ χjωi

)
⊗Zp Zp[Γ/Γps

](χ̃)
)Ip

=

{
0 if j �= w(I) + 1 or (F−A[M]⊗ ωi)Ip = 0,
KI(α−1

I ) otherwise,

where K�(α−1
�

) is a vector space of rank one over K� = O�⊗�p Qp on which G�p acts via
α−1
�

. This implies that H1
ur(Qp,F−V

H,Φ
(j)
s

) =
(
(F−V

H,Φ
(j)
s

)Ip
)
G�p

is trivial if ap(f�) �= 1.

Suppose that ap(f�) = 1. This happens only when w(I) = 0. Note that w(I) = 0 implies
j = 1 and Vf� ⊂ H1

et(B� ⊗� Q,Qp) for certain abelian variety B� over Q. Let Qf� be a
finite extension of Q obtained by adjoining all Fourier coefficients an(f�) of f�. The field
K� is naturally identified with a direct-summand of Qf� ⊗� Qp. Since ap(f�) = 1, there
exists an abelian variety B′

�
over Qp with the following properties:

1. B′
�

is isogenious to a sub abelian variety of B�⊗Qp of dimension d = [K� : Qp] over
Qp.

2. B′
�

has totally multiplicative reduction over Qp.
3. H1

et(B′
�
⊗�p Qp,Qp) is isomorphic to Vf� as a G�p -module.

Recall that Vf� ⊗ χω ∼= Vp(B′
�

t) := Tp(B′
�

t) ⊗�p Qp, where B′
�

t is the dual abelian
variety of B′

�
and Tp(B′

�

t) is the p-Tate module lim←− nB
′
�

t(Qp)[pn]. Since B′
�

t has totally

multiplicative reduction over Qp, B′
�

t(Qp) is isomorphic to (Q×
p )d/P as G�p -module using

the Tate’s uniformization of B′
�

when d = 1 or its generalization by Mumford (cf. [FC,
appendix]) when d > 1, where P is subgroup of (Q×

p )d which is mapped into a free Z-

module of rank d in Q⊕d via the composite P ↪→ (Q×
p )d

ordp−→ Q⊕d. Since ap(f�) = 1, α� is a
trivial character. Hence P is contained in (Q×

p )d and F+Vp(B′
�

t) := (F+Vf�⊗χω)∩Vp(B′
�

t)
(resp. F−Vp(B′

�

t) := Vp(B′
�

t)/F+Vp(B′
�

t)) is isomorphic to Qp(χω)⊕d (resp. Q⊕d
p ). By

Shapiro’s lemma on induced Galois representations, we have:

Im
[
H1(Qp, VJ,Φ

(1)
s

) −→ H1(Qp,F−V
J,Φ

(1)
s

)
]
∩H1

ur(Qp,F−V
J,Φ

(1)
s

)

= Im
[
H1(Qp,s, Vp(B′

�

t)) −→ H1(Qp,s,F−Vp(B′
�

t))
]
∩H1

ur(Qp,s,F−Vp(B′
�

t))

where Qp,s is the unique Galois extension of Qp contained in Qp(µps+1) with Gal(Qp,s/Qp) ∼=
Z/(ps). By the properties of P mentioned above, we have P ∼=

∏
1≤h≤d

q�h ⊂ (Q×
p )d with
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ordp(qh) > 0 for each 1 ≤ i ≤ d. Via the following identification:

H1(Qp,s,F−Vp(B′
�

t)) ∼= H1(Qp,s,Q
⊕d
p ) ∼=

⊕
1≤h≤d

Hom(G�p,s ,Qp),

the image of H1(Qp,s, Vp(B′
�

t)) −→ H1(Qp,s,F−Vp(B′
�

t)) is equal to:⊕
1≤h≤d

Hom(Gal(F (h)
∞,s/Qp,s),Qp) ⊂

⊕
1≤h≤d

Hom(G�p,s ,Qp),

where F (h)
∞,s/Qp,s is the Galois extension of Qp,s characterized as follows:

1. Gal(F (h)
∞,s/Qp,s) is isomorphic to Zp.

2. When F runs finite extensions of Qp,s contained in F
(h)
∞,s,

⋂
F

NormF/�p,s
(F×) coin-

cides with µp−1 · q�h ⊂ Q×
p,s.

Since we have⎛⎝ ⊕
1≤h≤d

Hom(Gal(F (h)
∞,s/Qp,s),Qp)

⎞⎠ ∩H1
ur(Qp,s,Q

⊕d
p )

=

⎛⎝ ⊕
1≤h≤d

Hom(Gal(F (h)
∞,s/Qp,s),Qp)

⎞⎠ ∩Hom(Gal(Qur
p,s/Qp,s),Q⊕d

p ) = 0,

we complete the proof in the case (a).
Let us denote by χ� : G� −→ Q

×
p the character G� � Γ′ ↪→ (Hord

F )× �→ Q
×
p for each

I ∈ Xarith(Hord
F ). We have:

V
J,Ψ

(k)
t

∼=

⎧⎪⎨⎪⎩
⊕
f�

(Vf� ⊗ χχ�ωi) in the case (b),⊕
f�

(Vf� ⊗ χχ
1
2
�
ωi) in the cases (c) and (d),

where I runs arithmetic points such that Ker(I) contains the ideal (γ′p
t

− κk−2(γ′p
t

)) ⊂
Hord

F . The group Im
[
H1(Qp, VJ,Ψ

(k)
t

) −→ H1(Qp,F−V
(k)
J,t )
]
∩H1

ur(Qp,F−V
J,Ψ

(k)
t

) is trivial
by the same argument with that of the case (a). This completes the proof of Claim 3.7
in the cases (b), (c) and (d).
Proof of Claim 3.8:
The cokernel of a is a submodule of H2(Qp,F+A[J ]), which is the Pontryagin dual of
(((F+T )∗(−1))J )G�p. Since ((F+T )∗(−1))G�p

has support whose codimension is greater
than or equal to two, (((F+T )∗(−1))J )G�p must be zero for any height-one prime J ⊂
Hn.o

F . Consequently, the map a is surjective. This completes the proof of Claim 3.8.

3.3. Selmer groups over the two-variable Iwasawa algebra. For each j, k with
1 ≤ j ≤ k − 1, we define SelGr

T ⊂ H1(QΣ/Q,A) in the same way as previous ones by
using the filtration F+A. We define SelBK,(j,k)

T to be SelBK,(j,k)
T = lim−→ s,tSelBK

T
(j,k)
s,t

where

17



T
(j,k)
s,t and SelBK

T
(j,k)
s,t

are as given in §3.1. A priori, SelBK,(j,k)
T might depend on the choice

of (j, k). However, we have the following proposition :

Proposition 3.9. Assume the condition (Ir) above. We have the following statements:

(1) Selmer groups SelGr
T and SelBK,(j,k)

T are equal as subgroups of H1(QΣ/Q,A). Espe-
cially, the definition of SelBK,(j,k)

T does not depend on the choice of (j, k) as above.
(2) The Pontryagin dual of (SelGr

T )∨ is a torsion module over Hn.o
F .

Proof. The first statement is implicitly proved in the reference [O3]. We recall briefly
how to use the result in [O3]. Recall the following diagram:

0 −−−→ SelBK,(j,k)
T −−−→ H1(QΣ/Q,A) −−−→

⊕
v∈Σ\{∞}

lim−→ s,t

H1(Qv, A
(j,k)
s,t )

H1
f (Qv, A

(j,k)
s,t )⏐⏐� ∥∥∥ ⏐⏐�

0 −−−→ SelGr
T −−−→ H1(QΣ/Q,A) −−−→ H1(Qp,A)

H1
Gr(Qp,A)

⊕
⊕

v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
.

For v ∈ Σ \ {p,∞}, lim−→ s,tH
1
f (Qv, A

(j,k)
s,t ) is a subgroup of H1

ur(Qv,A) by definition. We
have H1

ur(Qv,A) ∼= H1(Qur
v /Qv,AIv) by the Inflation-Restriction sequence. By Shapiro’s

lemma, H1(Qur
v /Qv,AIv) is isomorphic to H1(Qur

v /Qv,∞, (A[γ − 1])Iv). Here Qv,∞ is
the unique sub-extension of Qv(µp∞)/Qv such that Gal(Qv,∞/Qv) ∼= Zp. Note that
Gal(Qur

v /Qv,∞) is isomorphic to
∏
l 	=p

Zl and that (A[γ − 1])Iv is a p-torsion group. Hence

we have lim−→ s,tH
1
f (Qv, A

(j,k)
s,t ) = H1

ur(Qv,A) = 0 for any v ∈ Σ \ {p,∞}. On the other

hand, lim−→ s,tH
1
f (Qp, A

(j,k)
s,t ) = H1

Gr(Qp,A) by [O3, Corollary 4.13]. This completes the
proof of (1).

Remark on the Notation . By Proposition 3.9 (1), SelGr
T and SelBK

T coincide to each
other for a two-variable nearly ordinary deformation T . Hence we denote the Selmer
group for T by SelT from now on. For various specializations TJ of T , we mainly study
SelGr

J rather than SelBK
J because of the simplicity of the definition of SelGr

J . We denote
SelGr

J by SelJ for short if there causes no confusion (note that SelGr
J and SelBK

J are different
in general).

3.4. Surjectivity of localization maps. In this subsection, we give surjectivity of
localization maps from semi-global Galois cohomologies to certain Galois cohomologies
at decomposition groups (Theorem 3.10 and Corollary 3.12). The result on this section
was used in previous subsections in §3 and will be used in §§4, 6 and 7.

Let R be a “deformation ring” and let M be a rank two Galois representation over R.
In this subsection, we will treat one of the following situations:

1. R = Hn.o
F and M = T .

2. R = O�[[Γ]] and M = TI where I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )≥0 (the one-
variable deformation (a) introduced in §1).
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3. R = Hord
F and M = T(γ−χ(γ)) or M = T(γ−κ(γ′)γ′) ((b) or (c) introduced in §1).

The following theorem is obtained from a variant of the Global duality theorem in our
situation.

Theorem 3.10. Let R and M be one of the above. Then the localization map:

H1(QΣ/Q,M ⊗R R∨) −→
⊕

v∈Σ\{∞}
lim−→
H

H1(Qv,M ⊗R R∨)
H1

f (Qv,M ⊗R R∨[H])

is surjective, where H runs height-two ideals ∆(j,k)
s,t for s, t ≥ 0 with fixed j, k in the case

1 above, H runs height-one ideals Φ(j)
s ⊂ O�[[Γ]] for s ≥ 0 in the case 2, and H runs

Ψ(k)
t ⊂ Hord

F for t ≥ 0 in the case 3.

Proof. By the global duality theorem, we have the following exact sequence:

0 −→ SelBK
M/HM −→ H1(QΣ/Q,M ⊗R R∨[H]) −→⊕

v∈Σ\{∞}

H1(Qv,M ⊗R R∨)
H1

f (Qv,M ⊗R R∨[H])
−→ (lim←−

H,n

SelBK
M∨(1)[H,pn])

∨,

where SelBK
M∨(1)[H,pn] is defined to be:

SelBK
M∨(1)[H,pn] = Ker

⎡⎣H1(QΣ/Q,M
∨(1)[H,pn]) −→

⊕
v∈Σ\{∞}

H1(Qv,M
∨(1)[H,pn])

H1
f (Qv,M∨(1)[H,pn])

⎤⎦ .
Note that the local condition H1

f (Qv,M
∨(1)[H,pn]) ⊂ H1(Qv,M

∨(1)[H,pn]) for a fi-
nite Galois module M∨(1)[H,pn] is defined to be the pull-back of H1

f (Qv,M
∨(1)[H]) ⊂

H1(Qv,M
∨(1)[H]) via the natural map H1(Qv,M

∨(1)[H,pn]) −→ H1(Qv,M
∨(1)[H]).

Since we assume the condition (Ir) given in §1, R is an Gorenstein algebra in each
case 1, 2 or 3. Hence we have an involution ι : R −→ R which coincides with the
canonical involution g �→ g−1 of Zp[[Γ × Γ′]] ⊂ R (resp. Zp[[Γ]] ⊂ R, Zp[[Γ′]] ⊂ R)
for g ∈ Γ × Γ′ (resp. g ∈ Γ, g ∈ Γ′) in the case 1 (resp. 2, 3). Let us denote by
M ι a free R-module of rank two lim←−

H,n

M∨(1)[H,pn]. By (Ir), the natural restriction map

SelBK
M∨(1)[H,pn] −→ SelBK

M ι [H, pn] is injective, where SelBK
M ι = lim−→HSelBK

M ι/HM ι . Thus, it
suffices to show that lim←−

H,n

SelBK
M ι [H, pn] is zero in order to have the desired surjectivity. We

refer to [O3, §5] for the above facts and the following lemma:

Lemma 3.11. As the following R-linear isomorphism:

SelBK
M ι [H, pn] ∼= HomR/(H,pn)

(
(SelBK

M ι )∨/(H,pn)(SelBK
M ι)∨,R/(H,pn)

)ι
where ( )ι means the twist of an R-module structure via the involution ι.

Since SelBK
M ι is a torsion R-module, the proof is completed.
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Corollary 3.12. Let R and M be one of the pair given in this subsection. Then the
localization map:

H1(QΣ/Q,M ⊗R R∨) −→ H1(Qp,M ⊗R R∨)
H1

Gr(Qp,M ⊗R R∨)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,M ⊗R R∨)
H1

ur(Qv,M ⊗R R∨)

is surjective.

Proof. The corollary is a consequence of Theorem 3.10 because lim−→
H

H1
f (Qv,M ⊗RR∨[H])

is contained in H1
Gr(Qp,M ⊗R R∨) (resp. H1

ur(Qv,M ⊗R R∨)) when v = p (resp. v ∈
Σ \ {p,∞}).

4. Control theorem for Greenberg’s Selmer groups

For a Galois representation M ∼= Rd of G� and a prime ideal J of R, we have
the natural restriction map between Selmer groups SelM/JM

resJ−→ SelM [J ] (if they are
defined). What we call the control theorem is the type of problems (or theorems)
where we study the kernel and the cokernel of resJ (or equivalently its Pontryagin dual
(SelM )∨/J(SelM )∨ −→ (SelM/JM )∨). For a family M over a one-variable algebra R
and its specialization to a zero-variable algebra (i.e. a discrete valuation ring) R/J , the
control theorem was already studied in [O2].

In this section, we study the control theorem for a nearly ordinary deformation T or
quotient representations of T . Throughout the section, we denote by NJ the quotient
N/JN for an Hn.o

F -module N and an ideal J of Hn.o
F for short. We will always assume

(Ir) throughout the section. The assertions on Coker(resJ) holds without (Ir). However,
the assertion on Ker(resJ) might be modified if we replace (Ir) by a weaker condition.
Though it is not difficult, we decide not to do it in order to avoid unnecessarily complicate
description. We refer [O2] for the idea of such argument in the case without (Ir).

4.1. From two-variable to one-variable. First, we discuss the specialization of the
two-variable SelT to some of important one-variable deformations.

Proposition 4.1. Assume the condition (Ir) for T = T (i)
F . Let J be a height-one prime

ideal of Hn.o
F and let resJ be the restriction map SelJ −→ SelT [J ], where SelJ = SelT /JT .

Then the map resJ is injective. Coker(resJ) is a sub-quotient of the following group LJ :

LJ =

⎧⎪⎨⎪⎩
(F−A[γ − κ(γ′)γ′]J)G�p ⊕

⊕
v∈Σ\{p,∞}

((AIv)J)G�v if F−A[M]Ip �= 0,⊕
v∈Σ\{p,∞}

((AIv)J)G�v if F−A[M]Ip = 0,

where MJ means M/JM for an Hn.o
F -module M . If we have further the surjectivity of

the localization map:

H1(QΣ/Q,A[J ]) locJ−→ H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
,

then, the cokernel of resJ is isomorphic to LJ .
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Proof. Let us recall a diagram as follows:

0 −−−→ SelJ −−−→ H1(QΣ/Q,A[J ]) −−−→
locJ

Y (J)

resJ

⏐⏐� ⏐⏐�αJ

⏐⏐�βJ

0 −−−→ SelT [J ] −−−→ H1(QΣ/Q,A)[J ] −−−→ Y [J ],

where

Y (J) =
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])

Y =
H1(Qp,A)
H1

Gr(Qp,A)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
.

By the condition (Ir), the map αJ is injective. Consequently, resJ is injective. By the
snake lemma and by the injectivity of αJ , Coker(resJ) is isomorphic to a submodule of
Ker(βJ). Further, we have Coker(resJ) ∼= Ker(βJ ) if locJ is surjective. Hence we have
only to show that Ker(βJ ) is isomorphic to LJ . By the Inflation-Restriction sequence, it

is easy to see that the kernel of
H1(Qv,A[J ])
H1

ur(Qv,A[J ])
−→ H1(Qv,A)

H1
ur(Qv,A)

is ((AIv)J)G�v at each

v ∈ Σ \ {p,∞}. In the rest of the proof, we will concentrate on the map βJ restricted to
p-part. Let us consider the exact sequence:

0 −→ H1
Gr(Qp,A[J ]) −→ H1(Qp,A[J ]) −→ H1(Ip,F−A[J ])G�p.

Note that the second map H1(Qp,A[J ]) −→ H1(Ip,F−A[J ])G�p decomposes as:

H1(Qp,A[J ]) a−→ H1(Qp,F−A[J ]) b−→ H1(Ip,F−A[J ])G�p.

The map a is surjective as is shown in Claim 3.8 and the map b is surjective since the coho-

mological dimension ofG�p/Ip is one. Thus, we have
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
∼= H1(Ip,F−A[J ])G�p.

By a similar argument, we have
H1(Qp,A)
H1

Gr(Qp,A)
∼= H1(Ip,F−A)G�p. This gives

Ker
[
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
−→ H1(Qp,A)

H1
Gr(Qp,A)

]
∼= ((F−A)Ip/J(F−A)Ip)G�p.

We complete the proof since (F−A)Ip ∼=
{

F−A[γ − κ(γ′)γ′] if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0.

We will apply Proposition 4.1:

Proposition 4.2. Assume the condition (Ir) for T = T (i)
F . Let us consider height-one

primes J ⊂ Hn.o
F as follows in the following four cases:

(a) J is I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )≥0. (b) J is (γ − χ(γ)) ⊂ Hn.o
F . (c) J is

(γ − κ(γ′)γ′) ⊂ Hn.o
F . (d) J is (γ2 − κ2(γ′)γ′) ⊂ Hn.o

F .
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Then, the restriction map resJ : SelJ −→ SelT [J ] are injective in every four cases and
we have:⎧⎪⎨⎪⎩

Coker(resJ) ∼= (UJ)∨ in the case (a) with J = Ker(I),
Coker(resJ) ∼= (Hord

F )∨[Ap(F)− 1] in the case (c) with F−A[M]Ip �= 0,
Coker(resJ) = 0 otherwise,

where UJ =
⊕

v∈Σ\{p,∞}

(
((Tord

F )∗)Iv [Ker(I)]⊗�p Zp[[Γ]](χ̃−1)⊗ ω−i
)G�p.

Remark 4.3. For each v ∈ Σ \ {p,∞}, ((Tord
F )∗)Iv [Ker(I)] is always finite and is trivial

except certain special cases (cf. Theorem 2.3).

Proof. By Proposition 4.1, resJ is injective and we have:

Coker(resJ) =

⎧⎪⎨⎪⎩
(F−A[γ − κ(γ′)γ′]J)G�p ⊕

⊕
v∈Σ\{p,∞}

((AIv)J )G�v if F−A[M]Ip �= 0,⊕
v∈Σ\{p,∞}

((AIv)J)G�v if F−A[M]Ip = 0.

Except in the case (c), F−A[γ − κ(γ′)γ′]J is zero. In the case (c), F−A[γ − κ(γ′)γ′]J =
F−A[γ − κ(γ′)γ′] is a cofree Hord

F -module of rank one with unramified G�p -action on
which Frobp acts via the multiplication of Ap(F) (see §1 for Ap(F)). Hence we have
(F−A[γ − κ(γ′)γ′]J)G�p ∼= (Hord

F )∨[Ap(F) − 1] in this case.
Next, we discuss local terms at v ∈ Σ \ {p,∞}. Recall that

A ∼= (Tord
F ⊗̂�pZp[[Γ]](χ̃)⊗ ωi)⊗�n.o

F Hom�p(H
n.o
F ,Qp/Zp)

(see the beginning of §1 for Tord
F ). Since Iv acts trivially on Zp[[Γ]](χ̃)⊗ ωi, we have:(

((AIv)J)G�v
)∨ ∼= ((((Tord

F )∗)Iv⊗̂�pZp[[Γ]](χ̃−1)⊗ ω−i
)

[J ]
)

G�v

.

In the cases (b), (c) and (d),
(
((Tord

F )∗)Iv⊗̂�pZp[[Γ]](χ̃−1)⊗ ω−i
)
[J ] is clearly zero. In

the case (a) for J = Ker(I)Hn.o
F with certain I ∈ Xarith(Hord

F )≥0, we have:(
((Tord

F )∗)Iv⊗̂�pZp[[Γ]](χ̃−1)⊗ ω−i
)

[J ] = ((Tord
F )∗)Iv [Ker(I)]⊗̂�pZp[[Γ]](χ̃−1)⊗ ω−i.

This completes the proof.

4.2. From one-variable to discrete valuation case. In [O2], we studied control theo-
rems of the Selmer groups for one-variable Galois deformations when they are specialized
into various representations over discrete valuation rings. In this subsection, we restrict
ourselves to one-variable deformations inside Hida deformations in order to have more
precise and complete result. By applying the fundamental diagram and the snake lemma
as in 4.1, we prove also the Control theorem in this case.

Proposition 4.4. Assume the condition (Ir) for T = T (i)
F . Let J and J ′ be two different

height-one prime ideals of Hn.o
F and let resJ ′ be the restriction map SelT /(J,J ′)T ′ −→
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SelJ [J ′], where SelJ = SelT /JT . Then the map resJ ′ is injective. The cokernel of resJ ′ is
a sub-quotient of the following group LJ :

LJ =

⎧⎪⎨⎪⎩
(
(F−A[J ]Ip)J ′

)G�p ⊕
⊕

v∈Σ\{p,∞}
((A[J ]Iv )J ′)G�v if F−A[M]Ip �= 0,⊕

v∈Σ\{p,∞}
((A[J ]Iv )J ′)G�v if F−A[M]Ip = 0,

By calculating the term LJ in each case, we have the following proposition:

Proposition 4.5. Assume the condition (Ir) for T = T (i)
F . We consider the four cases

(a), (b), (c) and (d) with the same J ’s as Proposition 4.2. We consider another height-
one ideal J ′ :

J ′ =

{
(γ − χj(γ)) for a certain j with 1 ≤ j ≤ w(I) + 1 in the case (a),
Ker(I)Hn.o

F for certain I ∈ Xarith(Hord
F )≥0 in the cases (b), (c) and (d).

The kernels and the cokernels of resJ ′ : SelT /(J,J ′)T −→ SelJ [J ′] are given as follows:

1. The restriction map resJ ′ is injective in each of (a), (b), (c) and (d).
2. In the cases (a), (b), (c) and (d) with F−A[M]Ip = 0, Coker(resJ ′) is a sub-quotient

of a finite group Z which is given as follows:

Z =

⎧⎨⎩
⊕

v∈Σ\{p,∞}

(
((Tord

F )∗)Iv [Ker(I)]
)∨ in the cases (b), (c) and (d),

0 in the case (a).

In the cases (a), (b), (c) and (d) with F−A[M]Ip �= 0, Coker(resJ ′) is a sub-quotient
of the following group:{

(O�)∨[1− ap(f�)]⊕ Z in the cases (a), (b) and (d),
Z in the case (c)

Remark 4.6. 1. Note that T /(J, J ′)T is equal to Tf� ⊗ χjωi (resp. Tf� ⊗ χωi, Tf� ⊗
χw(�)+1ωi, Tf� ⊗ χ

w(�)
2

+1ωi) in the case (a) (resp. (b), (c), (d)).
2. The control theorem in the case (a) was studied in various references (e.g [Gr4])

when f� is associated to an elliptic curve E. Note that there has been contribution
of the local Tamagawa number of E at every v ∈ Σ \ {p,∞} to Coker(resJ ′) in the
above mentioned references (e.g [Gr4]). Whereas, there are no such contribution in
our result. This is because SelTf�

⊗χω is isomorphic to the classical Selmer group for
E only after divided by a finite abelian group whose order is related to the local
Tamagawa number of E at v.

5. Two-variable p-adic L-function

In this section, we discuss the two-variable p-adic L-function for a nearly ordinary de-
formation T through Beilinson-Kato elements. The construction will be done by using the
two-variable Coleman map (Theorem 5.3) which translates a norm compatible elements
to a measure. The key of the section is an optimization of two-variable Beilinson-Kato
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element given in Theorem 5.10. The results of this section make clear the relation be-
tween Kitagawa’s two-variable p-adic L-function [Ki] and our Euler system construction,
modifying previous constructions [O3] and [FC] which was not well-optimized in general.

5.1. Review on the work on [O3]. In order to introduce Beilinson-Kato elements,
we need to prepare notations. For a normalized eigen cusp form f =

∑
n>0

an(f)qn of

weight k ≥ 2, we denote by Qf a finite extension of Q obtained by adjoining all Fourier
coefficients of f to Q. We denote by f =

∑
n>0

an(f)σqn the dual modular form of f where

σ is a complex conjugation. The dual modular form f is known to be a Hecke eigen cusp
form of weight k with Neben character dual of that of f . The field Qf is equal to Qf .
We associate the de Rham realization VdR(f) to f . The de Rham realization VdR(f) has
the following properties:

1. VdR(f) is a two dimensional vector space over Qf and is equipped with a de Rham
filtration FiliVdR(f) ⊂ VdR(f), which is a decreasing filtration of Qf -vector spaces.

2. We have Fil0VdR(f) = VdR(f) and FilkVdR(f) = {0}. For each j such that 1 ≤
j ≤ k − 1, FiljVdR(f) is naturally identified with one-dimensional Qf -vector space
Qf · f .

3. Let I be an arithmetic point of weight w(I) ≥ 0. For each j such that 1 ≤ j ≤ k−1,
Filk−jVdR(f�)⊗�f

�

K� is naturally identified with Fil0DdR(V ∗
f�
⊗χ1−jω1−i), where

K� is the p-adic completion of Qf� with respect to the fixed embedding Qf� ⊂ Q ↪→
Qp, Vf� is Tf� ⊗�p Qp and ( )∗ means the Qp-linear dual here.

For each 1 ≤ j ≤ w(I)+1, we denote by δdR
� the Qf�-basis of Filw(�)+2−jVdR(f�) sent to f�

under the natural identification Filw(�)+2−jVdR(f�) = Qf� ·f�. Let D be an Hord
F -module

(Hord
F (α̃)⊗̂�pẐ

ur
p )G�p and let δ�p (1) be the inverse image of 1 ∈ Qp via the isomorphism

DdR(Qp(1)) ∼−→ Qp determined by a fixed norm compatible system {ζpn}n≥1 of pn-th
roots of unity. We recall the following properties (see [O3, §3] for the proof):

Lemma 5.1. (1) D is a free Hord
F -module of rank one.

(2) D/Ker(I)D is the canonical lattice of DdR(F+Vf�) = Dcrys(F+Vf�) for each I ∈
Xarith(Hord

F )≥0.
(3) For each (j,I) such that 1 ≤ j ≤ w(I) + 1, we have the canonical isomorphism

DdR(F+Vf� ⊗ χjωi) ∼= DdR(Vf� ⊗ χjωi)/Fil0DdR(Vf� ⊗ χjωi)
(4) The fixed norm compatible system {ζpn}n≥1 induces the following isomorphism:

DdR(F+Vf�) ∼−−−−→
⊗δ⊗j
�p(1)

DdR(F+Vf� ⊗ χjωj) ∼= DdR(F+Vf� ⊗ χjωi),

where 0 ≤ i ≤ p− 2

Definition 5.2. Fix an Hord
F -basis d of D. For each I ∈ Xarith(Hord

F )≥0, we define a de
Rham p-adic period Cp,�,d ∈ Qp to be

Cp,�,d = 〈δdR
� , d� ⊗ δ⊗j

�p (1)〉(4)
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where j is an integer satisfying 1 ≤ j ≤ w(I) + 1, 〈 , 〉 is the pairing :

〈 , 〉 : Fil0DdR(V ∗
f�
⊗ χ1−jω1−i)×DdR(F+Vf� ⊗ χjωi) −→ DdR(Qp(1))⊗K�

∼= K�(5)

induced by the identification of Lemma 5.1 (3) and the de Rham paring:

Fil0DdR(V ∗
f�
⊗χ1−jω1−i)×DdR(Vf� ⊗χjωi)/Fil0DdR(Vf� ⊗ χjωi) −→ DdR(Qp(1))⊗K�.

and d� ∈ DdR(F+Vf�) is the specialization modulo Ker(I) of d ∈ D (cf. Lemma 5.1 (2)).

The p-adic period Cp,�,d does not depend on j and depends only on d and a fixed norm
compatible system {ζpn}n≥1 of pn-th roots of unity.

Theorem 5.3. [O3, Theorem 3.14] Let i be an integer such that 0 ≤ i ≤ p − 2. We
assume the condition (Ir) for a nearly ordinary deformation T = T (i)

F . Assume further
that Hn.o

F is integrally closed in its fraction field Frac(Hn.o
F ). Fix an Hord

F -basis d of D =
(Hord

F (α̃)⊗̂�pẐ
ur
p )G�p (Lemma 5.1 (1)). Then we have a map Ξd : H1

/f (Qp,T ∗(1)) −→
Hn.o

F which has the following properties:
(1) The map Ξd is an Hn.o

F -linear pseudo-isomorphism.
(2) Let C ∈ H1

/f (Qp,T ∗(1)). For each (j,I) such that 1 ≤ j ≤ w(I) + 1 and for each
finite order character η of Γ, (χjη ◦ I)(Ξd(C)) is equal to:(

1− (ωi−jη)(p)pj−1

ap(f�)

)(
1− (ωi−jη−1)(p)ap(f�)

pj

)−1

×
(
pj−1

ap(f�)

)q(i,j,η)

G(ωj−iη)
〈
exp∗((χjη ◦ I)(C)), d

〉
,

where (χj ◦ I)(C) ∈ H1
/f (Qp, T

∗
f�

(1) ⊗ ω−iχ−j) is the specialization of C via χj ◦ I,
q(i, j, η) is the p-order of the conductor of ωj−iη and G(ωj−iη) is the Gauss sum
for ωj−iη.

5.2. p-adic periods at weight two. In this subsection, we study the p-adic periods
Cp,�,d in the special cases where w(I) = 0. We fix an Hord

F -basis d of D throughout §5.2.
The main result of §5.2 is as follows:

Proposition 5.4. Let T = T (i)
F be a nearly ordinary deformation. Then Cp,�,d is a

p-adic unit for any I ∈ Xarith(Hord
F )≥0.

Proof. For an arithmetic point I ∈ Xarith(Hord
F ) with w(I) = 0, let B� be the abelian

variety associated to the normalized weight two eigen cuspform f�. B� is an abelian
variety of dimension g = [Qf� : Q] over Q and we have an injection Qf� ↪→ End�(B�)⊗Q.
Since f� is ordinary at p, there exists an abelian variety B′

�
over Qp with the following

properties (see [Wi1, §2.2]):
1. B′

�
is isogenious to a subabelian variety of B� ⊗Qp with d = dim(B′

�
) = [K� : Qp]

over Qp.
2. B′

�
has totally multiplicative reduction or good ordinary reduction over Qp.

3. H1
et(B′

�
⊗�p Qp,Qp) is isomorphic to Vf� as a G�p -module.
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Let B′
�

t be the dual abelian variety of B′
�
. We denote by B the p-divisible group over Qp

associated to B′
�

t with its connected part B0. We see that

Fil0DdR

(
V ∗

f�
⊗ χ1−jω1−i

) ∼= Fil0DdR

(
H1

et(B
′
�

t ⊗�p Qp,Qp)
)

∼= Fil1H1
dR(B′

�

t) ∼= D(B0),

where H1
dR(B′

�

t) means the de Rham cohomology of B′
�

t and D(B0) is the Dieudonee
module for B0. By the second statement of “Basic property of nearly ordinary Hida
deformations T (0)

F ” stated in §1, we see that

Fil0DdR

(
V ∗

f�
⊗ χ1−jω1−i) ∼= DdR

(
F−V ∗

f�
⊗ χ1−jω1−i

)
∼= DdR(K�(α−1)).

By Definition 5.2, Cp,�,d is a p-adic unit if and only if the K�-basis of D(B0) induced by
δ
dR
� gives an integral basis of DdR(K�(α−1)) = (K�(α−1)⊗�p Q̂ur

p )G�p with respect to the
lattice (O�(α−1)⊗�p Ẑur

p )G�p. This is clear since B0 is of multiplicative type.

5.3. Beilinson-Kato element. Let H1
B(Y1(M)� ,Symk−2(R1p∗A)) be a Betti cohomol-

ogy and let H1
B,c(Y1(M)� ,Symk−2(R1p∗A)) be a compact support Betti cohomology,

where p : E → Y1(M) is the universal elliptic curve over the affine modular curve
Y1(M) and A is a submodule of C. To each normalized eigen newform f ∈ Sk(Γ1(M))
of weight k ≥ 2, we associate the Betti realization VB(f). VB(f) is defined to be
H1

B(Y1(M)� ,Symk−2(R1p∗Qf ))[πf ] (resp. H1
B,c(Y1(M)� ,Symk−2(R1p∗Qf ))[πf ]), where

[πf ] means a direct summand cut out by the kernels of Tl − al(f) with Hecke operators
Tl ∈ End�f

(Sk(Γ1(M); Qf )) for all prime l. The Betti realization VB(f) has the following
properties:

1. VB(f) is a two-dimensional vector space over Qf and is equipped with a natural
action of complex conjugate σ, whose ±-eigen space VB(f)± is one-dimensional over
Qf .

2. We have a period map Per± : FiljVdR(f)⊗�f
C

∼−→ VB(f)±⊗�f
C for each 1 ≤ j ≤

k − 1.
Let us denote by H the local system on Y1(M)� whose fiber Hs is H1(Es,Z) at s ∈
Y1(M)� . Let ϕ : H −→ Y1(M)� be the uniformization map. The stalk of H at
ϕ(yi) is identified with Z + Zyi for any y ∈ R>0. We denote by β be the element of
Γ((0, i∞), ϕ−1(H)) which corresponds to 1 ∈ Z.

Definition 5.5. 1. Let δB,w
0 be the element of HB

1 (Y1(M)� ; {cusps},Symw(H)) which
represents a path (0,∞) and βw. By abuse of notation, we also denote by δB,w

0 the
image via the map :

HB
1 (Y1(M)� ; {cusps},Symw(H�f

)) ∼−→ H1
B,c(Y1(M)� ,Symw(R1p∗Qf )) � VB(f).

2. Let VB(f)× VB(f)
〈 , 〉B−→ Qf be the pairing induced from the Poincare duality :

H1
B(Y1(M)� ,Symw(R1p∗Qf ))×H1

B,c(Y1(M)� ,Symw(R1p∗Qf )) −→ H2
B,c(Y1(M)� ,Qf ) ∼= Qf .
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Let 〈 , 〉∞ be the extension of 〈 , 〉B as follows :

VB(f)⊗�f
C× VB(f)⊗�f

C
〈 , 〉∞−−−−→ C.

Recall that 〈Per+(f�), δ
B,w
0 〉∞ is equal to

∫ ∞

0
f(
√
−1y)dy = L(f, 1).

In [Ki], Kitagawa constructed modules of Λ-adic modular symbols B±, which has the
following properties:

1. B± is a finitely generated Hord
F -modules whose generical ranks are one.

2. For each I ∈ Xarith(Hord
F )≥0, B±/Ker(I)B± is a lattice of VB(f�)⊗�f�

Q̂f� .

Definition 5.6. Let I ∈ Xarith(Hord
F )≥0. Then f� is a newform in Sw(�)+2(Γ1(M)) for a

certain multiple M of N . Let Of� be the ring of integers of Qf� . Choose an Of�-basis
δB,±
�

of the natural Of�-lattice H1
B,c(Y1(M)� ,Symw(R1p∗Of�)) ∩ VB(f�)± of VB(f�)±.

1. We define a complex period C±
∞,� ∈ C to be C±

∞,� = 〈Per±(δdR
�

), δB,±
�
〉∞.

2. Let 〈 , 〉p be the extension of 〈 , 〉B as follows :

VB(f�)⊗�f�
Qp × VB(f�)⊗�f�

Qp
〈 , 〉p−−−→ Qp.

We define a p-adic period C±
p,�,b ∈ Qp to be C±

p,�,b = 〈b±
�
, δB,±

�
〉p.

Theorem 5.7. [Ki, Theorem 1.1] Let us fix an Hord
F -basis b of B(−1)i . Then we have a

two-variable p-adic L-function LKi
p (T ) ∈ Hn.o

F with the following interpolation properties:

(χjη ◦ I)(LKi
p,b(T ))/Cp,�,b

= (−1)j−1(j−1)!
(

1− (ωi−jη)(p)pj−1

ap(f�)

)(
pj−1

ap(f�)

)q(i,j,η)

G(ωj−iη−1)
L(f�, ωi−jη, j)

(2π
√
−1)j−1C

(−1)i

∞,�

,

where q(i, j, η) is the p-order of the conductor of ωj−iη−1 and G(ωj−iη−1) is the Gauss
sum for ωj−iη−1.

Proposition 5.8. [Ka2] Assume the condition (Ir). Let us fix an Hord
F -basis b of B(−1)i

and an Hord
F -basis d of D. Fix an arithmetic point I ∈ Xarith(Hord

F ) with w(I) = 0.
Then we have an Euler system {Z�(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1)I)} whose first layer
Z� = Z�(1) satisfies the following properties:

1. For each finite order character η of Γ, (exp∗◦loc/f )(η(Z�)) is contained in Fil1VdR(f�⊗
ω1−iη−1) ⊂ Fil0DdR(V ∗

f�
⊗ ω1−iη−1).

2. Further, (exp∗ ◦ loc/f )(η(Z�)) is equal to
Cp,�,b

Cp,�,d

L(p)(f�, ωi−1η, 1)

C
(−1)i

∞,�

· δdR
� .

(We denote by Q(µr)Σ the maximal Galois extension of Q(µr) unramified outside primes
over Σ)

Remark 5.9. By taking the projective limit of the elements in Galois cohomology groups
obtained via Chern character from Beilinson-Kato elements in K2-group of Y1(Np) ⊗
Q(µrps), we have an Euler system {Z�,0(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1)�)} where r runs
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square-free natural numbers prime to p. The above Euler system Z�(r) is optimally
normalized at I and is obtained as a summation

∑
ξ cξZ�,0(r)ξ multiplied by Cp,�,b/Cp,�,d,

where Z�,0(r)ξ is the twist of Z�,0(r) by ξ ∈ SL2(Z) and cξ are rational integers. For
such optimal normalization for a fixed f�, we refer to [Ka2, § 12].

We will give the following optimization of the two-variable Beilinson-Kato element.

Theorem 5.10. Let us fix an Hord
F -basis b of B(−1)i and an Hord

F -basis d of D. Then we
have an Euler system {Z(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1))} and the specialization of the
first layer Z = Z(1) at each arithmetic point I ∈ Xarith(Hord

F ) with w(I) = 0 and at each
finite order character η of Γ satisfies the following properties:

1. (exp∗ ◦ loc/f )((η ◦ I)(Z)) is contained in Fil1VdR(f� ⊗ ω1−iη−1) ⊂ Fil0DdR(V ∗
f�
⊗

ω1−iη−1).

2. Further, (exp∗ ◦ loc/f )((η ◦ I)(Z)) is equal to
Cp,�,b

Cp,�,d

L(p)(f�, ωi−1η, 1)

C
(−1)i

∞,�

· δdR
� , where

L(p)(f�, ωi−1η, s) is the ωi−1η-twist of the Hecke L-function for f� whose p-factor
is removed.

Remark 5.11. 1. The construction of Z(r) will be done by “gluing” of the elements
Z�(r) given in Proposition 5.8 for various I ∈ Xarith(Hord

F ) with w(I) = 0 by using
Lemma 5.12 below.

2. Though the interpolation property is given only for I ∈ Xarith(Hord
F ) with w(I) = 0,

(exp∗ ◦ loc/f )((η ◦ I)(Z)) is related to an optimal L-value even when w(I) > 0.

Proof of Theorem 5.10. Let S = {I = Ker(I)Hn.o
F |I ∈ Xarith(Hord

F ), w(I) = 0}. We
denote by A a subset of the set of height one ideals of Hn.o

F as follows:

A =
{
J =

⋂
I∈S

I
∣∣∣ S ⊂ S, �S <∞

}
.

Note that J ∩ J ′ ∈ A for any J, J ′ ∈ A and that the intersection
⋂
J for infinitely many

J ∈ A is zero.

Lemma 5.12. For each natural number r and for each J, J ′ ∈ A, we have the exact
sequence:

0 −→ H1(T ∗(1)J∩J ′) −→ H1(T ∗(1)J )⊕H1(T ∗(1)J ′) −→ H1(T ∗(1)J+J ′),

where H1(M) is H1(Q(µr)Σ/Q(µr),M) in the above sequence.

In the following, we only construct Z = Z(1) ∈ H1(QΣ/Q,T ∗(1)) with two desired
properties stated in Theorem 5.10. The construction for general r is done basically in
the same way using Lemma 5.12. We need the following Claim for the proof.

Claim 5.13. Let J ∈ A. Then there exists an element ZJ such that (exp∗ ◦ loc/f )((η ◦
I)(ZJ )) satisfy two properties stated in Theorem 5.10 for all arithmetic points I ∈
Xarith(Hord

F ) with Ker(I)Hn.o
F ⊃ J and for all finite order characters η of Γ.

In fact, Z is obtained as lim←−
J∈A

ZJ ∈ H1(QΣ/Q,T ∗(1)) when J runs a directed subset

A ⊂ A such that
⋂

J∈A J = 0. Hence we will prove the above claim in the rest of
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the proof. The proof proceeds by induction with respect to the numbers of arithmetic
points I ∈ Xarith(Hord

F ) with Ker(I)Hn.o
F ⊃ J . By Proposition 5.8 the claim holds when

J = Ker(I)Hn.o
F for an arithmetic point I ∈ Xarith(Hord

F ). Now we take arbitrary ideal
J ∈ A at which Claim 5.13 is true. We will prove Claim 5.13 for J ∩ I where I =
Ker(I)Hn.o

F for an arithmetic point I ∈ Xarith(Hord
F ) such that w(I) = 0 and J �⊂ I. Let

us denote T ∗/(J,Ker(η))T ∗ by T ∗
J,η and let us denote the continuous Galois cohomology

H1(QΣ/Q,M) by H1(M) for short. Then, we have the following diagram for each finite
order character η of Γ:

0 −−−→ H1(T ∗(1)J∩I) −−−→
aI,J

H1(T ∗(1)J )⊕H1(T ∗(1)I) −−−→
bI,J

H1(T ∗(1)J+I)

η

⏐⏐� η

⏐⏐� ⏐⏐�η

H1(T ∗
J∩I,η(1)) −−−→ H1(T ∗

J,η(1))⊕H1(T ∗
I,η(1)) −−−→ H1(T ∗

f�⊗η(1)J ),

where aI,J sends x ∈ H1(T ∗(1)J∩I) to xJ ⊕ xI ∈ H1(T ∗(1)J ) ⊕ H1(T ∗(1)I) and bI,J

sends x⊕y ∈ H1(T ∗(1)J )⊕H1(T ∗(1)I) to xJ+I−yJ+I ∈ H1(T ∗(1)J+I). Let us consider
the following morphism:

H1(QΣ/Q, T
∗
f�⊗η(1))

loc/f−−−→
H1(Qp, T

∗
f�⊗η(1))

H1
f (Qp, T ∗

f�⊗η(1))
〈d, 〉dR◦exp∗
−−−−−−−−→ (η ◦ I)(Hn.o

F )(6)

The element (η ◦ I′)(ZJ) ∈ H1(QΣ/Q, T
∗
f
�′⊗η(1)) (resp. η(ZI) ∈ H1(QΣ/Q, T

∗
f�⊗η(1)))

is mapped to v�′,η :=
Cp,�′,b

Cp,�′,d

L(p)(f�′ , η, 1)

C
(−1)i

∞,�′
when J ⊂ Ker(I′)Hn.o

F (resp. I = I′). The

following lemma is obtained by Euler system argument using the Beilinson-Kato element
and by a Rohlich’s result (cf. [Ka2]):

Lemma 5.14. Under the condition (Ir), the map in (6) is injective when the conductor
of η is sufficiently large.

In fact, since H1(QΣ/Q, T
∗
f�⊗η(1)) has no non-zero torsion by (Ir), the kernel of (6)

is non-zero if and only if SelT ∗
f�⊗η(1) is an infinite abelian group. This happens only for

finitely many η by Kato-Rubin and Rohlich.
Since values v�′,η and v�′′,η are congruent to each other modulo (Ker(I′)+Ker(I′′),Ker(η)),

η ◦ bI,J(ZJ ⊕ZI) is zero for each finite order character η of Γ with sufficiently large con-
ductor.

Lemma 5.15. Let I be a height one ideal of Hn.o
F generated by a height one ideal of Hord

F .
Then the intersection

⋂
η
Ker(η) ⊂ H1(QΣ/Q,T ∗(1)I) is trivial when η runs infinitely

many finite order characters of Γ.

Since ZJ ⊕ZI is mapped to zero via bI,J by Lemma 5.14 and Lemma 5.15, we have an
element ZJ∩I ∈ H1(QΣ/Q,T ∗(1)J∩I) such that aI,J (ZJ∩I) = ZJ ⊕ZI . By construction,
ZJ∩I satisfies desired properties for Claim 5.13. This completes the proof.

Corollary 5.16. Let us fix an Hord
F -basis b of B(−1)i and an Hord

F -basis d of D. Then
we have an Euler system {Zb,d(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1))} such that Lp(T ) :=
Ξd(Zb,d(1)) ∈ Hn.o

F is equal to the two-variable p-adic L-function LKi
p,b(T ) by Kitagawa.
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6. Iwasawa Main conjectures for various specializations of T
In this section, we formulate and discuss the Iwasawa Main Conjecture for various

one-variable specializations TJ of T . Especially, we will discuss how to obtain a result on
the one-variable Iwasawa theory on TJ from the two-variable Iwasawa theory on T and
vice versa. Recall the following definition:

Definition 6.1. Let R be a Noetherian local domain such that R is integrally closed in
the fraction field Frac(R) of R. A finitely generated torsion R-module M is called pseudo-
null if lengthR�

(M�) = 0 for every height-one prime l in R or equivalently SuppR(M) has
codimension greater than one in Spec(R).

To study a relation between the two-variable Iwasawa main conjecture for T and
the one-variable Iwasawa main conjecture for each TJ , the following lemma plays an
important role:

Lemma 6.2. Assume the conditions (Ir) and (Nor) for T = T (i)
F . Let us consider a

height-one prime J ⊂ Hn.o
F as follows in the following three cases:

(a) J is I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )≥0. (b) J is (γ − χ(γ)) ⊂ Hn.o
F . (c) J is

(γ − κ(γ′)γ′) ⊂ Hn.o
F .

Then, (SelT )∨null/J(SelT )∨null is pseudo-null Hn.o
F /J-module.

Proof. Let us consider the following diagram:

0 −−−→ SelT −−−→ H1(QΣ/Q,A) loc−−−→ Y −−−→ 0

×J

⏐⏐� ⏐⏐�×J

⏐⏐�×J

0 −−−→ SelT −−−→ H1(QΣ/Q,A) loc−−−→ Y −−−→ 0,

where Y =
H1(Qp,A)
H1

Gr(Qp,A)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
. The cokernel of the middle vertical map

is a subgroup of H2(QΣ/Q,A[J ]), which is zero since SelT /JT is a cotorsion O�[[Γ]]-
module. By the snake lemma, (SelT )/J(SelT ) is isomorphic to the cokernel of the map

H1(QΣ/Q,A)[J ]
loc[J ]−−−→ Y [J ]. We compare Coker(loc[J]) with the cokernel of

H1(QΣ/Q,A[J ]) locJ−−→ Y (J)

where Y (J) =
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
. We consider another diagram:

0 −−−→ Im(locJ) −−−→ Y (J) −−−→ Coker(locJ) −−−→ 0⏐⏐� ⏐⏐�w

⏐⏐�
0 −−−→ Im(loc[J]) −−−→ Y [J ] −−−→ Coker(loc[J]) −−−→ 0.

(7)
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By Corollary 3.12, Coker(locJ) is zero in the above commutative diagram. Let us consider
another diagram as follows:

0 −−−−→ H1
Gr(Qp,A[J ]) −−−−→ H1(Qp,A[J ])⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
−−−−→

q
Y (J) −−−−→ 0⏐⏐� ⏐⏐�t

⏐⏐�w

0 −−−−→ H1
Gr(Qp,A)[J ] −−−−→ H1(Qp,A)[J ]⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
[J ] −−−−→

q′
Y [J ]

Note that the upper horizontal map q is surjective by definition. The cokernel of the
lower horizontal map q′ is a subgroup of H1

Gr(Qp,A)/JH1
Gr(Qp,A) by the snake lemma.

Since the Pontryagin dual of H1
Gr(Qp,A) is a torsion-free Hn.o

F -module by [O2, Corollary
4.13], the map q′ has to be surjective. Hence, the surjectivity of the middle vertical map
w of the diagram (7) follows since t is easily seen to be surjective. We have shown that
(SelT )/J(SelT ) is zero, or equivalently, we have shown that (SelT )∨[J ] is zero by taking
the Pontryagin dual. By a simple argument(cf. [O4, Lemma 3.1]), (SelT )∨null/J(SelT )∨null
is pseudo-null Hn.o

F /J-module since (SelT )∨null[J ] is a pseudo-null Hn.o
F /J-module. This

completes the proof.

(a) Iwasawa Main conjecture for T� .
Let I = Ker(I)Hn.o

F with I ∈ Xarith(Hord
F )≥0. The specialization of T at I is the cyclotomic

deformation of f� as we saw in §1. By Mazur-Tate-Teitelbaum, we have LMTT
p (TI) ∈

Hn.o
F /I which has the following interpolation property for each finite order character η of

Γ and for each integer 1 ≤ j ≤ w(I) + 1:

χjη(LMTT
p (TI)) =

(
1− (ωi−jη)(p)pj−1

ap(f�)

)(
pj−1

ap(f�)

)q(i,j,η)

G(ωj−iη)
L(f�, ωi−j , j)

(2π
√
−1)j−1C±

∞,�

,

where C±
∞,� is a complex period given by Definition 5.6. Note that the ideal (LMTT

p (TI))
is well-defined since C±

∞,� is unique up to multiplication by a unit in Of� . Recall that
Sel∨I is a cotorsion Hn.o

F /I-module (cf. §3.2).

Conjecture 6.3. Let I = Ker(I)Hn.o
F with I ∈ Xarith(Hord

F )≥0. We have the following
equality:

length(�n.o
F /I)�(Sel∨I )� = ord�(LMTT

p (TI)),

for each height-one prime l of Hn.o
F /I.

As a corollary of Theorem 3 in §1, we have the following result:

Corollary 6.4. Let I = Ker(I)Hn.o
F with I ∈ Xarith(Hord

F )≥0. For every prime v ∈
Σ \ {p,∞}, we assume that ((Tord

F )∗)Iv [Ker(I)] is trivial. Then,

1. The two-variable main conjecture (Conjecture 1.3) implies Conjecture 6.3 for f�.
2. Assume further the conditions listed in Theorem 2 of §1 with Pτ a unit in Hn.o

F .
Then Conjecture 6.3 for f� implies the two-variable main conjecture (Conjecture
1.3).
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Remark 6.5. 1. Concerning our condition on the triviality of ((Tord
F )∗)Iv [Ker(I)], we

refer to Theorem 2.3 for detailed information on when it is trivial. We expect that
the conclusion of Corollary 6.4 is true without any assumption. However we do not
prove it at the moment (cf. Remark 3.5).

2. Let F be a Λ-adic eigen form satisfying the conditions listed in Theorem 2 of §1. If
the conjecture 6.3 is true for a classical specialization f�0 in F with w(I0) ≥ 0, the
conjecture 6.3 is true for every specializations f� of F with w(I) ≥ 0. Thus we have
an infinite family of modular forms {f�}�∈�arith(�ord

F )≥0
where the conjecture 6.3 is

true. A recent paper [EPW] also proves a similar result on the conjecture 6.3 for
infinite family {f�}�∈�arith(�ord

F )≥0
with further deep interpretation of λ-invariants

under the assumption µ = 0 for the µ-invariant of f�0 . The advantage of our result
above is that we do not have to assume µ = 0.

Proof. The restriction map SelI −→ SelT [I] is an isomorphism by Proposition 4.2 and
by the assumption of Corollary 6.4. By Lemma 6.2, the image of char�n.o

F (SelT )∨ in
Hn.o

F /I is equal to char�n.o
F /I(SelT [I])∨. The image of LKi

p (T ) ∈ Hn.o
F in Hn.o

F /I is equal
to LMTT

p (TI) up to multiplication of a unit in Hn.o
F /I since the p-adic period Cp,�,b is a

p-adic unit. Thus we obtain the first assertion. For the second assertion, note that we
have the following inequality:

length�n.o
F,�

(SelT )∨� ≤ ord�n.o
F,�

(LKi
p (T ))

for each height-one prime l of Hn.o
F by Theorem 3 in §1. If Conjecture 6.3 is true for f�,

we have the following equality:

length(�n.o
F /I)�

(
(SelT )∨/I(SelT )∨

)
�
= ord(�n.o

F /I)�(L
Ki
p (T ))

for each height-one prime l of Hn.o
F /I by the same argument as in the proof of the first

assertion. Thus we complete the proof of the second assertion.

(b) Iwasawa Main conjecture for T(���(�)).
Sel(γ−χ(γ)) is a cotorsion Hord

F -module (cf. §3.2). On the other hand, we define Lp(T(γ−χ(γ)))
to be the image of LKi

p (T ) in Hn.o
F /(γ − χ(γ)) = Hord

F . The one-variable Iwasawa main
conjecture is formulated as follows:

Conjecture 6.6. We have the following equality:

length(�ord
F )�

(Sel∨(γ−χ(γ)))� = ord�(Lp(T(γ−χ(γ)))),

for each height-one prime l of Hord
F .

We have the following corollary of Theorem 3 in §1:

Corollary 6.7. 1. The two-variable main conjecture (Conjecture 1.3) implies Conjec-
ture 6.6.

2. Assume further the conditions listed in Theorem 2 of §1 with Pτ a unit in Hn.o
F .

Then Conjecture 6.6 implies the two-variable main conjecture (Conjecture 1.3).

The proof is done in the same manner as the case (a) above by using Lemma 6.2.
(c) Iwasawa Main conjecture for T(���(��)��).
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Sel(γ−κ(γ′)γ′) is a cotorsion Hord
F -module (cf. §3.2). On the other hand, we define Lp(T(γ−κ(γ′)γ′))

to be the image of LKi
p (T ) in Hn.o

F /((γ − κ(γ′)γ′)) = Hord
F .

Conjecture 6.8. Let T = T (i)
F . We have the following equality:

length(�ord
F )�

(Sel∨
(γ−κ(γ′)γ′))� + e� = ord�(Lp(T(γ−κ(γ′)γ′))),

for each height-one prime l of Hord
F , where

e� =

{
ord�(1−Ap(F)) if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0.

A corollary of Theorem 3 in §1 is given as follows:

Corollary 6.9. 1. The two-variable main conjecture (Conjecture 1.3) implies Conjec-
ture 6.8.

2. Assume further the conditions listed in Theorem 2 of §1 with Pτ a unit in Hn.o
F .

Then Conjecture 6.8 implies the two-variable main conjecture (Conjecture 1.3).

The proof is done in the same manner as the case (a) and (b) by using Lemma 6.2.
(d) Iwasawa Main conjecture for T(�2

��2(��)��). The Selmer group for the diagonal
specialization T(γ2−κ2(γ′)γ′) is not a cotorsion Hord

F -module in general.

Conjecture 6.10. 1. Let T = T (i)
F . The group (Sel(γ2−κ2(γ′)γ′))∨ has rank one or zero

as an Hord
F -module.

2. Assume that T0 ⊗ ωi′ is isomorphic to its Kummer dual (T0 ⊗ ωi′)∗(1) with certain
0 ≤ i′ ≤ p− 2, where T0 := T(γ2−κ2(γ′)γ′)/(γ′− 1)T(γ2−κ2(γ′)γ′). In this case, we have

rank�ord
F

(Sel(γ2−κ2(γ′)γ′))
∨ =

{
1 if ε(l) = −1 for every l > 0,
0 if ε(l) = 1 for every l > 0,

where ε(l) is the sign of the functional equation of L-function for a specialization of
F ⊗ ωi′−i explained in Remark 6.11 below.

Remark 6.11. 1. Suppose that T0 ⊗ ωi′ is isomorphic to the Kummer dual of itself.
For each l, we put Pl = γ′ − κa(l)(γ′) for each integer l > 0 with a(l) := 2(i′ − i) +
2l(p−1). For each l > 0, T /(Pl)T is isomorphic to the Tate-twist Tfl

(a(l)
2 +1) of the

Deligne’s Galois representation Tfl
for an eigen cuspform fl of weight 2 + a(l). The

sign ε(l) = ±1 is the sign of the functional equation Λ(fl, s) = ε(l)Λ(fl, 2+a(l)− s)
where Λ(fl, s) is the Hecke L-function for fl with its Γ-factor.

2. The phenomena for the generic rank on the line (γ2 − κ2(γ′)γ′) was first studied
and conjectured at least under the condition as in 1 (see [NP, §0] for example). We
believe that such phenomena is always true even in the case without the functional
equation.

Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module. We define Lp(T(γ2−κ2(γ′)γ′)) ∈

Hord
F to be the specialization of the two-variable p-adic L-function LKi

p (T ) ∈ Hn.o
F via

Hn.o
F −→ Hn.o

F /(γ2 − κ2(γ′)γ′) ∼= Hord
F , in this case.
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Conjecture 6.12. Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module. Then, we

have the following equality:

length(�ord
F )�

(Sel∨
(γ2−κ2(γ′)γ′))� = ord�(Lp(T(γ−χ(γ)))),

for each height-one prime l of Hord
F .

Corollary 6.13. Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module.

1. The two-variable main conjecture (Conjecture 1.3) implies Conjecture 6.12.
2. Assume further the conditions listed in Theorem 2 of §1 with Pτ a unit in Hn.o

F .
Then Conjecture 6.12 implies the two-variable main conjecture (Conjecture 1.3).

Finally, in a general case where (Sel(γ2−κ2(γ′)γ′))∨ is not necessarily a torsion Hord
F -

module, we propose the following Iwasawa Main Conjecture:

Conjecture . Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is an Hord
F -module with generic rank r =

dimFrac(�ord
F )(Sel(γ2−κ2(γ′)γ′))∨⊗�ord

F
Frac(Hord

F ). Let X be the Hord
F -torsion part of the Hord

F -
module (Sel(γ2−κ2(γ′)γ′))∨. Then the following statements hold:

1. The order ord(γ2−κ2(γ′)γ′)(Lp(T )) is equal to r.
2. For every height-one prime l of Hord

F , we have:

length(�ord
F )�

(X)� = ord�(Lp(T(γ2−κ2(γ′)γ′))),

where Lp(T(γ2−κ2(γ′)γ′)) is defined to be the image of Lp(T )/(γ2 − κ2(γ′)γ′)r via
Hn.o

F −→ Hn.o
F /(γ2 − κ2(γ′)γ′) ∼= Hord

F .

7. Pseudo-null submodule

In this section, we give a sufficient condition (Proposition 7.1) for (SelT )∨ to have no
non-trivial pseudo-null submodule. Our proof relies on the method in Greenberg’s paper
[Gr1] (see also Remark 7.2). The result in this section is used in §8 in order to study
examples where we can determine the structure of the Selmer group. In this section,
we do not assume necessarily the condition (Ir). In stead of (Ir), we will assume the
following condition:
(Fr) Tord

F (resp. T (i)
F ) is free of rank two over Hord

F (resp. Hn.o
F ).

As remarked in §1, (Ir) implies (Fr). Since we find no reference for the pseudo-null
submodule of the Selmer group for a Galois deformation, we decide to assume only a
weaker condition (Fr) in this section for our later use. Our main proposition here is as
follows:

Proposition 7.1. Let T = T (i)
F be a nearly ordinary deformation satisfying the condition

(Fr) and let Σ be the set of ramified places for T (see §1 for the notation). Assume the
following conditions:

1. Hn.o
F is a regular local ring.

2. Σ consists only of {p,∞}.
Then (SelT )∨ has no non-trivial pseudo-null Hn.o

F -submodule.
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Remark 7.2. Under similar assumptions, Greenberg [Gr1, Proposition 5] has proved
that the Pontryagin dual of the Selmer group for the cyclotomic deformation of an or-
dinary p-adic representation T ∼= Zd

p has no pseudo-null Zp[[Γ]]-submodule when T is
unramified outside {p,∞}. Our proof follows the idea of [Gr1, Proposition 5]. Since we
treat two-variable case, there causes technical difficulties in order to imitate his argument
over the cyclotomic (one-variable) Iwasawa algebra.

Before giving the proof, we prepare several lemmas. Though our main proposition
stated above treats only the case where Σ consists only of {p,∞}, we allow Σ to contain
primes other than p in the most part of this section unless we state it.

First, we prove the following lemma known as the weak Leopoldt conjecture for T .

Lemma 7.3. H2(QΣ/Q,A) = 0.

Proof. Note that H2(QΣ/Q,A) is equal to the inductive limit lim−→ s,tH
2(QΣ/Q, A

(j,k)
s,t ) for

any pair (j, k) with 1 ≤ j ≤ k − 1, where A(j,k)
s,t is the module defined in §3.1. From

now on we assume further that 2j �= k. It suffices to show that H2(QΣ/Q, A
(j,k)
s,t ) = 0

for every s, t under this condition. Since the Galois group Gal(QΣ/Q) has cohomological
dimension two, H3(QΣ/Q, A

(j,k)
s,t [p]) is zero. By the natural exact sequence:

H2(QΣ/Q, A
(j,k)
s,t [p]) −→ H2(QΣ/Q, A

(j,k)
s,t )

×p−→ H2(QΣ/Q, A
(j,k)
s,t )

−→ H3(QΣ/Q, A
(j,k)
s,t [p]) −→ · · · ,

H2(QΣ/Q, A
(j,k)
s,t ) must be a p-divisible abelian group. On the other hand, by a Kato’s

result [Ka2, §14], H2(QΣ/Q, A
(j,k)
s,t ) is finite for each s, t under the above assumption on

(j, k). Hence H2(QΣ/Q, A
(j,k)
s,t ) must be zero.

Lemma 7.4. Assume that Hn.o
F is regular and that Hn.o

F satisfies the condition (Fr).
H1(QΣ/Q,A)∨ has no nontrivial pseudo-null Hn.o

F -submodule.

Proof. Let N be the largest pseudo-null submodule of H1(QΣ/Q,A)∨. Let h be an
arbitrary irreducible element of Hn.o

F . By taking the short exact sequence:

0 −→ A[h] −→ A ×h−→ A −→ 0,

and by using Lemma 7.3, we have

H1(QΣ/Q,A)/(h)H1(QΣ/Q,A) ∼= H2(QΣ/Q,A[h]).(8)

By a similar argument as that used in the proof of Lemma 7.3 depending on the Galois
cohomological dimension of Gal(QΣ/Q), H2(QΣ/Q,A[h])∨ is shown to be torsion-free
over the local domain Hn.o

F /(h). Consequently, H1(QΣ/Q,A)∨[h] must be a torsion-free
Hn.o

F /(h)-module by taking the Pontryagin dual of the equation (8). N [h] is also a torsion-
free Hn.o

F /(h)-module since N [h] is a sub Hn.o
F /(h)-module of H1(QΣ/Q,A)∨[h]. On the

other hand, the torsion part N [h] of N for the height one prime (h) is a torsion Hn.o
F /(h)-

module because N is a pseudo-null Hn.o
F -module. Thus N [h] is zero for any irreducible

element h ∈ Hn.o
F . This completes the proof for N = 0.
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A finitely generated Hn.o
F -module V is called reflexive if the canonical homomorphism

V −→ V ∗∗ := Hom�n.o
F (Hom�n.o

F (V,Hn.o
F ),Hn.o

F ) is an isomorphism. We have the following
lemma:

Lemma 7.5. Assume that Hn.o
F is a regular local ring. Then, H1(Qp,F−A)∨ is a reflex-

ive Hn.o
F -module.

Proof. First, we show that H1(Qp,F−A)∨ is torsion-free over Hn.o
F . By taking the Pon-

tryagin dual, it is equivalent to the statement that H1(Qp,F−A) is a divisible Hn.o
F -

module. Consider the long exact sequence of the G�p -cohomology of

0 −→ F−A[h] −→ F−A ×h−→ F−A −→ 0,

for an irreducible element h ∈ Hn.o
F , H1(Qp,F−A)/(h)H1(Qp,F−A) is a Hn.o

F -submodule
of H2(Qp,F−A[h]). By the local Tate duality theorem, H2(Qp,F−A[h]) is the Pontrya-
gin dual of H0(Qp, (F−A(−1))∨/(h)(F−A(−1))∨). This group must be zero, because(
(F−A(−1))∨

)
G�p

has support whose codimension is equal or greater than two. Hence

H1(Qp,F−A) is a divisible Hn.o
F -module. Since the Pontryagin dual H1(Qp,F−A)∨ has

no non-trivial Hn.o
F -torsion submodule, the structure theorem of finitely generated Hn.o

F -
modules (cf. Proposition (5.17) and Proposition (5.1.8) in [NSW]) gives us an exact
sequence:

0 −→ H1(Qp,F−A)∨ −→ V −→ Z −→ 0,

where V is a reflexive Hn.o
F -module and Z is a pseudo-null Hn.o

F -module. Let h′ ∈ Hn.o
F

be an arbitrary non zero irreducible element and let us consider the snake lemma to the
following commutative diagram:

0 −−−→ H1(Qp,F−A)∨ −−−→ V −−−→ Z −−−→ 0

×h′
⏐⏐� ⏐⏐�×h′

⏐⏐�×h′

0 −−−→ H1(Qp,F−A)∨ −−−→ V −−−→ Z −−−→ 0.

By applying the snake lemma to the above diagram, we have an injection

Z[h′] ↪→ (H1(Qp,F−A)[h′]∨)�n.o
F /(h′)-tor.

Since H1(Qp,F−A)[h′]∨ is naturally an Hn.o
F /(h′)-submodule of H1(Qp,F−A[h′])∨, this

also gives us an injection

Z[h′] ↪→ H1(Qp,F−A[h′])∨�n.o
F /(h′)-tor.

By a similar argument as above, we show thatH1(Qp,F−A[h′])∨ is a torsion free Hn.o
F /(h′)-

module by the condition 2 of the lemma. Hence Z must be zero. This completes the
proof.

Lemma 7.6. Assume three conditions stated in Proposition 7.1. Then, we have the
following exact sequence:

0 −→ SelT −→ H1(Q{p,∞}/Q,A) loc−→ H1(Qp,F−A) −→ 0.
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Proof. By Corollary 3.12, we have the following exact sequence:

0 −→ SelT −→ H1(Q{p,∞}/Q,A) loc−→ H1(Qp,A)
H1

Gr(Qp,A)
−→ 0.

Since the restriction map H1(Qp,F−A) −→ H1(Ip,F−A)G�p is an isomorphism, we have
an exact sequence:

0 −→ H1(Qp,A)
H1

Gr(Qp,A)
−→ H1(Qp,F−A) −→ H2(Qp,F+A).

Note that H2(Qp,F+A) is zero by the same argument as the proof of Claim 3.8. This
completes the proof of the lemma.

Lemma 7.7. Let R be a Noetherian complete regular local ring and let M be an R-module
which has the following presentation

0 −→W −→ U −→M −→ 0,

where U is a finitely generated R-module which has no non-trivial pseudo-null R-submodule
and W is a reflexive R-module. Then M has no nontrivial pseudo-null R-submodule.

Proof. Suppose that the largest pseudo-null R-submodule Mnull of M is non-trivial. We
denote by U0 ⊂ U the inverse image of Mnull via the natural projection U � M . Since
U has no non-trivial pseudo-null R-submodule, U0 also has no non-trivial pseudo-null
R-submodule. By the structure theorem of finitely generated R-modules (Proposition
??), we have the following exact sequence:

0 −→ U0 −→ E ⊕W ′ −→ Z −→ 0,

where E is an elementary torsion R-module, W ′ is a reflexive R-module and Z is a
pseudo-null R-module. Thus, we have also the following exact sequence:

0 −→ W −→ E ⊕W ′ −→ Z ′ −→ 0,

where Z ′ is an extension of Z by Mnull. Especially, Z ′ is a non trivial pseudo-null R-
module. Since W is reflexive and Z ′ is pseudo-null, E must be trivial. Thus we have
an injection W ↪→ W ′ whose cokernel is a non trivial pseudo-null R-module. Note that
Ext1R(W ′/W,R) is zero since W ′/W is pseudo-null (see [OV, Proposition 3.4] for exam-
ple). The injection W ↪→ W ′ induces an isomorphism HomR(W ′, R) ∼−→ HomR(W,R).
Hence W ↪→W ′ must be an isomorphism since W and W ′ are reflexive R-modules. This
contradicts to the assumption that Mnull is non-trivial. The proof is done.

Finally we give the proof of Proposition 7.1.

Proof of Proposition 7.1. By Lemma 7.6, we have the following exact sequence:

0 −→ H1(Qp,F−A)∨ −→ H1(Q{p,∞}/Q,F
−A)∨ −→ (SelT )∨ −→ 0.

The module H1(Qp,F−A)∨ is reflexive over Hn.o
F by Lemma 7.5. The Hn.o

F -module
H1(Q{p,∞}/Q,F−A)∨ has no non-trivial pseudo-null Hn.o

F -submodule by Lemma 7.4.
Thus we complete the proof by applying Lemma 7.7.
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8. Examples

In this section, we study examples of two-variable nearly ordinary deformations where
we can determine the structure of the Selmer group or we prove the equality in addition
to the inequality result proved by using Beilinson-Kato elements.

First, we prepare some preliminary results.

Proposition 8.1. [Gr1, Theorem 2] Let T be a Gal(QΣ/Q)-module which is free of finite
rank over Zp. Suppose that T is ordinary and critical at p. Then we have:

length�p[[Γ]]�(Sel∨T⊗�p[[Γ]](�χ))� = length�p[[Γ]]�(Sel∨T ∗(1)⊗�p[[Γ]](�χ))
ι
� ,

for every height-one primes l in Zp[[Γ]]� where ι is the canonical involution of Zp[[Γ]]
induced by g �→ g−1 for g ∈ Γ.

We recall the following lemma:

Lemma 8.2. Let R be a Noetherian complete regular local ring of Krull dimension n ≥ 2
and let N be a pseudo-null R-module. Let I be a height one prime of R such that R/I
is a regular local ring of Krull dimension n− 1. Then, we have the following equality for
every height-one prime ideals in R/I:

length(R/I)�(N [I]�) = length(R/I)� (N/IN)�.

Especially, N [I] is a pseudo-null R/I-module if and only if N/IN is a pseudo-null R/I-
module.

Though this lemma might be known to the experts, we refer the reader to [O4, Lemma
3.1] for the proof if necessary.

Lemma 8.3. Let R be a Noetherian complete regular local ring of Krull dimension ≥ 2.
Let M (resp. N) be a torsion R-module R/(f) (resp. R/(g)) with f ∈ R (resp. g ∈
R). Suppose that we have a family {Jl}1≤l<∞ of non-zero elements of R satisfying the
properties:

1. We have an injection M ↪→
∏

1≤l<∞
M/JlM .

2. For each i, R/Jl is a regular local ring.
3. The modules M/JlM and N/JlN are torsion over R/Jl.
4. We have charR/Jl

(M/JlM) ⊃ charR/Jl
(N/JlN) for each l ≥ 1.

Then, we have charR(M) ⊃ charR(N).

Proof. It suffices to show that the image of g via R � M is zero. By the conditions 3
an 4, the image of g via R � M/JlM is zero for any l. This completes the proof by the
condition 1.

8.1. Iwasawa Main conjecture for Ramanujan’s cusp form. Let ∆ ∈ S12(SL2(Z))
be the unique eigen cusp form of level 1 and weight 12, whose q-expansion is equal to
q
∏

1≤n<∞
(1 − qn)24. Only known non-ordinary primes for ∆ is p = 2, 3, 5, 7, 2411 at the

moment. For all other primes p, we have the ordinary Λ-adic newform F(∆) ∈ Zp[[Γ′]][[q]]
such that the specialization of F under Zp[[Γ′]][[q]] −→ Zp[[q]], γ′ �→ κ10(γ′) coincides
with the q-expansion of the p-stabilization ∆(p) of ∆ (we omit the prime p in the notation
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F(∆) unless there is a possibility of confusion). See [H3, §7.6] for the explanation on the
Hida family for ∆. The condition (Nor) is always satisfied. The two-variable Iwasawa
theory for T = T (i)

F(∆) at p is of our interest.

Question 8.4. For which ordinary prime p of ∆ and for which integer i with 0 ≤ i ≤
p− 2, the characteristic ideal char�n.o

F (SelT (i)
F(∆)

)∨ or the ideal (Lp(T (i)
F(∆))) is non-trivial?

Recall that the value
L(∆, j)

(2π
√
−1)j−1C

(−1)j−1

∞,∆

is equal to
23 · 34 · 5 · 7

691
, 24·3, 2·7, 52, 32, 22·

5 when j = 1, · · · , 6. By the functional equation, we have
L(∆, j)

(2π
√
−1)j−1C

(−1)j−1

∞,∆

=

− L(∆, 12− j)
(2π
√
−1)j−1C

(−1)11−j

∞,∆

. Especially, the value
L(∆, j)

(2π
√
−1)j−1C

(−1)j−1

∞,∆

is a p-adic unit for

every j with 1 ≤ j ≤ 11 and for p ≥ 11 with p �= 691.
Let p be an ordinary prime of ∆ where the condition (Ir) is satisfied (Especially,

p �= 691). For 1 ≤ i ≤ 11, we have:

(χi ◦ κ10)Lp(T (i)
F(∆)) =

(
1− pi−1

ap(∆(p))

)
L(∆(p), i)

(2π
√
−1)i−1C

(−1)i−1

∞,∆

=
(

1− pi−1

ap(∆(p))

)(
1− ap(∆)

pi

)
L(∆, i)

(2π
√
−1)i−1C

(−1)i−1

∞,∆

.

For i �= 1, this is a p-adic unit, hence we have Lp(T (i)
F(∆)) ∈ Zp[[Γ × Γ′]]×. For i = 1,

Lp(T (1)
F(∆)) is a unit if and only if ap(∆) � 1 modulo p. As for the structure of the Selmer

group, we have the following result.

Lemma 8.5. (SelT )∨ has no non-trivial pseudo-null Λ(2)-submodule for T = T (i)
F(∆).

Proof. It suffices to see that our nearly ordinary deformation T associated to ∆ satisfies
two conditions in Proposition 7.1. The condition 1 is deduced by observing the dimension
of the space of weight 12 cusp forms (cf. [H3, §7.6]). The condition 2 is clear since ∆ has
level one. This completes the proof.

We summarize our argument above in the following proposition:

Proposition 8.6. Let p be an ordinary prime of ∆ where (Ir) is satisfied.

1. When 2 ≤ i ≤ 11, Lp(T (i)
F(∆)) is trivial and SelT (i)

F(∆)

= 0.

2. When i = 1, Lp(T (1)
F(∆)) is non-trivial if and only if ap(∆) ≡ 1 modulo p.

Remark 8.7. 1. For i = 0 or for 12 ≤ i ≤ p− 2, we do not have a precise conjecture
about when or how often Lp(T (i)

F(∆)) is non-trivial.
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2. The primes where ap(∆) ≡ 1 modulo p is called anomalous primes for ∆. Among
smaller primes, p = 11 and p = 23 are known to be anomalous. We do not know
how much other anomalous primes for ∆ exist.

According to the above remark, we will investigate the case p = 11 in the next sub-
section.

8.2. Ramanujan’s cusp form at p = 11. In this subsection, we discuss the two-
variable Iwasawa theory for F(∆) at p = 11, where we have a Hida family T = T (1)

F(∆)
∼=

Zp[[Γ× Γ′]]⊕2 such that
1. The specialization T /Φ(1,2)T is isomorphic to the p-Tate module of X0(11).
2. T /Φ(j,12)T is a lattice of the representation T∆(j) ⊗ ω1−j , where T∆

∼= Z⊕2
p is the

p-adic Galois representation associated to ∆ by Deligne.
From now on, we shall denote Zp[[Γ× Γ′]] by Λ(2) for short. Our results on the Iwasawa
theory for T in this section is as follows:

Results on the Iwasawa theory for T . Let T = T (1)
F(∆) with p = 11.

(1) We have length
Λ

(2)
�

(Sel∨T )� = ord�(Lp(T )) for every height-one primes l in Λ(2).

(2) We have (SelT )∨ ∼= Λ(2)/(γ2 − κ2(γ′)γ′).

We will show the statement (2) at first and the equality in (1) will be proved later. Let
us take an infinite family of elements {Pl ∈ Λ(2)}1≤l<∞ given by Pl = γ′ − κ2l(p−1)(γ′).
Then we have the following claim:

Claim 8.8. Let us denote by Tl the representation associated to the ordinary eigen cusp
form f2+2l(p−1) of weight 2 + 2l(p− 1) in the Hida family for ∆.
(1) T /(Pl)T is the cyclotomic deformation of Tl ⊗ ω.
(2) The natural restriction map (SelT )∨/(Pl)(SelT )∨ −→ SelT /(Pl)T is an isomorphism.
(3) We have the isomorphism SelT /(Pl)T

∼= Zp[[Γ]]/(γ − χ1+l(p−1)(γ))

Proof of Claim 8.8. (1) is nothing but the definition of T . We haveH0(Q,A) = 0 by [Se2,
5.5.2] and by argument using Nakayama’s lemma (cf. the proof of Claim 8.11), where
A = T ⊗Λ(2) Hom�p(Λ(2),Qp/Zp). By definition, the set of ramified primes Σ for T is
{p,∞}. Hence, Claim 8.8 (2) is a corollary of Proposition 4.2. Let us show the statement
(3) in the rest. SelT /(Pl,p)T is isomorphic to SelT /(P0,p)T for any l ≥ 0 by congruence
property. On the other hand, T /(P0, p)T is the cyclotomic deformation X0(11)[11] ⊗�p

Zp[[Γ]](χ̃) of the group of 11-torsion elements X0(11)[11] of the modular elliptic curve
X0(11). Hence, by [Gr2], SelT /(P0,p)T is isomorphic to Zp[[Γ]]/(γ − 1, p) ∼= Z/pZ. By the
control theorem for modulo-(p) reduction which can be proved in the same manner as
those in §4, we have an isomorphism (SelT /(Pl)T )∨/(p)(SelT /(Pl)T )∨ ∼= (SelT /(Pl,p)T )∨ ∼=
Z/pZ. Since (SelT /(Pl)T )∨ has no finite Zp[[Γ]]-submodule (cf. [Gr3, Proposition 10]),
(SelT /(Pl)T )∨ must be a free Zp-module of rank one for any l ≥ 0. Finally, let us denote
the action of Γ on (SelT /(Pl)T )∨. Recall that (Tl⊗ω)⊗χ1+l(p−1) is Kummer-dual to itself
via Weil pairing. By Proposition 8.1 and Claim 8.8 (1), (SelT /(Pl)T )∨ ⊗ χ−1−l(p−1) ∼=(
Sel(T /(Pl)T )⊗χ1+l(p−1)

)∨
is a free rank-one Zp-module with trivial Γ-action. Hence we
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have (SelT /(Pl)T )∨ ∼= Zp(χ1+l(p−1)) for every l ≥ 1, where Zp(χ1+l(p−1)) is a free rank one
Zp-module on which Γ acts via χ1+l(p−1). This completes the proof of Claim 8.8 (3).

Let us prove the following claim:

Claim 8.9. We have length
Λ

(2)
�

(Sel∨T )� ≤ ord�(γ2 − κ2(γ′)γ′) for every height-one primes

l in Λ(2).

Proof. Let g be an element of Λ(2) such that (g) = charΛ(2)(SelT )∨. Since (SelT )∨ has no
non-trivial pseudo-null Λ(2)-submodule, we have an injection (SelT )∨ ↪→ Λ(2)/(g) with
a pseudo-null cokernel. We may replace (SelT )∨ by Λ(2)/(g) to prove the claim. Let
us apply Lemma 8.3 for R = Λ(2), M = Λ(2)/(γ2 − κ2(γ′)γ′) and N = Λ(2)/(g). Let
Pl = γ′ − κ2l(p−1)(γ′) ∈ Λ(2) as above. Note that each Pl is contained in Zp[[Γ′]]. Since
Pl’s are relatively prime to each other, we have an injection:

Zp[[Γ′]] ↪→
∏

1≤l<∞
Zp[[Γ′]]/(Pl).(9)

On the other hand, M is finite flat of degree two over Zp[[Γ′]]. Hence by applying the
base extension ⊗�p[[Γ′]]M to (9), we have an injection M ↪→

∏
1≤l<∞

M/(Pl)M . Thus we

have shown the condition 1 of Lemma 8.3. The condition 2 is satisfied since Pl’s are
polynomials of degree one.

Claim 8.10. We have length
Λ

(2)
�

(Sel∨T )� = ord�(γ2−κ2(γ′)γ′) for every height-one primes

l in Λ(2).

Proof. Let us consider the specialization at k = 2. The image of the two ideals (γ2 −
κ2(γ′)γ′) ⊂ Λ(2) and (g) ⊂ Λ(2) in Λ(2)/(γ′ − 1) = Zp[[Γ]] are both equal to (γ − 1).

Hence (SelT )∨ is a torsion Λ(2)-module whose characteristic ideal is (γ2 − κ2(γ′)γ′). By
Greenberg, (SelT )∨/(P0)(SelT )∨ ∼= (SelTf2

⊗�p[[Γ]](�χ))∨ is isomorphic to Zp. Especially,
(SelT )∨/(P0)(SelT )∨ is a cyclic module over Zp[[Γ]] ∼= Zp[[Γ× Γ′]]/(P0). By Nakayama’s
lemma, (SelT )∨ has to be a cyclic module over Zp[[Γ × Γ′]]. Consequently, we have
(SelT )∨ ∼= Λ(2)/(γ2 − κ2(γ′)γ′).

Next, we shall study Iwasawa Main Conjecture for this T . Theorem 1 and Theorem 2
given in §1 implies the following claim:

Claim 8.11. We have length
Λ

(2)
�

(Sel∨T )� ≤ ord�(Lp(T )) for every height-one primes l in

Λ(2).

Proof of Claim 8.11. We shall check the conditions (i) and (ii) in Theorem 2 for T . By
the nearly ordinary condition of T , the image of G�ur

p (µp∞ ) is contained in the group{(
1 ∗
0 1

)
∈ GL2(Λ(2))

}
. Let us consider also the action of G�ur

p (µp∞ ) on T /MT ∼= F⊕2
p

which is contained in the group
{(

1 ∗
0 1

)
∈ GL2(Fp)

}
. Recall that the residual repre-

sentation T /MT is isomorphic to the group of 11-torsion points of X0(11) by properties
41



of T introduced at the beginning of §8.2. Since X0(11) has split multiplicative reduction
at 11, we have a G�p -equivariant isomorphism X0(11)(Qp) ∼= Q

×
p /q

� with q ∈ pZp by the
uniformization theory by Tate. Hence we have:

0 −→ µp −→ T /MT −→ q�/q
1
p
�−→ 0.

We find τ ∈ G�ur
p (µp∞ ) such that the image

(
1 pτ

0 1

)
of τ in Aut(T /MT ) ∼= GL2(Fp)

satisfies pτ �= 0 because q = 115u with u ∈ Z×
11. Thus τ is presented as

(
1 Pτ

0 1

)
under

certain choice of basis Aut(T ) ∼= GL2(Λ(2)), where Pτ is a unit of Λ(2).

For the condition (ii), G� −→ Aut(T /MT ) contains an element
(
−1 0
0 −1

)
by the

surjectivity of the representation of G� on the group of 11-torsion points of X0(11) shown
in [Se2, 5.5.2]. This completes the proof by Theorem 2.

Since we already have an inequality as in Claim 8.11, it suffices to see that charΛ(2)(SelT )∨

modulo (γ′−1) is equal to the ideal of Zp[[Γ]] generated by Lp(T ) modulo γ′−1. By Claim
8.10, the ideal charΛ(2)(SelT )∨ modulo (γ′ − 1) of Zp[[Γ]] is equal to (γ2 − 1) = (γ − 1)
(note that γ + 1 is a unit in Zp[[Γ]]). On the other hand, by the interpolation property
given in Theorem 1, Lp(T ) modulo γ′ − 1 is equal to Cp,2 × LMTT

p (f2) ∈ Zp[[Γ]], where
LMTT

p (f2) ∈ Zp[[Γ]] is the p-adic L-function by Mazur-Tate-Teitelbaum [MTT]. Since
Cp,2 is a p-adic unit by Proposition 5.4, it suffices to prove the following claim to have
the equality of the Iwasawa Main conjecture for T :

Claim 8.12. We have the equality (LMTT
p (f2)) = (γ − χ(γ)) in Zp[[Γ]].

Proof. We denote by g ∈ Zp[[Γ]] to be the quotient LMTT
p (f2)/(γ− χ(γ)). We would like

to show that g is a unit in Zp[[Γ]]. For any element h ∈ Zp[[Γ]], we regard h to be the
function on Zp by setting h(s) = χs(h) for s ∈ Zp. The trivial zero conjecture [MTT]
which was already proved by Greenberg-Stevens [GS] gives us an equality as follows:

LMTT
p (f2)(s)′|s=1 = χ(γ)logp(χ(γ)) × g(s)|s=1 = Lp ×

L(f2, 1)
C+
∞,2

,(10)

where Lp ∈ Qp is the L-invariant defined to be logp(q)/ordp(q) by using the Tate period
q for the Tate curve X0(11)/�p

. By numerical calculation, we have ordp(Lp) = 1 =
ordp(χ(γ)logp(χ(γ))) for X0(11) (cf. [MTT, §13]). Consequently, g(s)|s=1 ∈ Zp is a unit.
By Weierstrass preparation theorem, g ∈ Zp[[Γ]] must be a unit. This completes the
proof of Claim 8.12.
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