A GENERALIZATION OF THE COLEMAN MAP FOR HIDA
DEFORMATIONS
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ABSTRACT. In this paper, we give a Coleman/Perrin-Riou type map for an ordinary
type deformation and construct a two variable p-adic L-function for a Hida family from
the Beilinson-Kato elements.
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1. INTRODUCTION

Fix a prime p > 3. We denote by Q(p,~) the extension of the rational number field
Q obtained by adjoining all p-power roots of unity. We fix a complex embedding Q < C
and a p-adic embedding Q — @p of an algebraic closure Q of Q throughout the paper,
where C is the field of complex numbers and @p is an algebraic closure of the field Q,
of p-adic numbers. Let G be the Galois group of Q(pp~)/Q and let Dy be the group
of diamond operators for the tower of modular curves {Y1(p')};>1 (see §2). We have the
canonical character x : Goo — Zy (resp. Kk : Do — 1+ pZ, C Zy). A character
n: Gy — @; (resp. 7' 1 Do — @;) is called an arithmetic character of weight
w(n) € Z (resp. w(n') € Z) if n (vesp. 1) coincides with the character x“() (resp.
<)) on a sufficiently small open subgroup U (resp. U’) of Gog (resp. Dog). For any
arithmetic character 7 (resp. 1) of Goo (vesp. Do), let O = (7 X /) (Zp[[Goo X Dool])
the finite flat extension of Z, obtained by adjoining the values of the character n x n'.
We fix a positive integer N prime to p.

In his celebrated paper [H2], Hida associates a continuous representation 7~ of Gal(Q/Q)
which is free of rank two over the complete group algebra Z,[[Goo X D] to a A-adic
cusp form F of level Np™. The representation 7 has the following properties (see also
§2 for more detailed explanation on Hida’s theory):
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1. Let 7 : Goo — @; (resp. 7' : Doy — @;) be a character. Assume that 7’ is
an arithmetic character of weight w' > 0. We denote by T;,,/ the specialization

T®ZP[[wapw” O,y of T. Then there exists a cusp form f,, = > an(fn’)qn of
0<n<oo

weight w'+42 and level Np* such that T, , is isomorphic to Tfn/ ®n where Tfn’ is the
Galois representation associated to f,/ in the sense of Deligne [Del] and ®7 is the
twist by the one dimensional Galois representation associated to n. In this sense, T
is a family of modular representations when the cusp form and the character twist
vary.

2. As a representation of the decomposition group G, at p, the representation 7 has
a filtration:

0—F'T—T—FT-—0

such that F*7 and F~T are free Z,[[Go X Doo)]-modules of rank one. Let X :
G = Goo — Zp[[Goo]]™ be the universal cyclotomic character and let a : G, —
Zyp[[Dso]]* be the unramified character such that n'(a(Froby)) = a,(f,) for each

arithmetic character ' : Doy — @; of non-negative weight, where Frob, is the geo-
metric Frobenius element at p. Then F7 is isomorphic to Z,[[Goo]|(X)®Z,[[Doo]] (@),
where Zp[[Goo]](X) (resp. Zp[[Dso]](@)) is the free rank one Z,[[Go]]-module (resp.
Zyp|[Doo]]-module) on which Gg, acts via X (resp. &). In this sense, F*7 interpo-

lates the p-th Fourier coefficient ay(f,/) of the cusp form f,» when 1’ varies.

We will construct the Coleman map for this deformation 7. Before stating the main
results, we prepare some notations.

We define the Z,[[Doo]]-module D to be (Zp[[Doo]](a)@pi;r)G@p, where ®Zp is the
formal tensor product over Z;, and 2;,” is the p-adic completion of the maximal unramified
extension of Z,. Let Z,(1) = Jmyips, where pips is the group of p*-th roots of unity. The

S

absolute Galois group Gg of Q acts naturally on Z,(1). We denote by 7 the Kummer
dual Homg, i x Do) (T, Zp[[Goo X Doo]]) ® Zp(1) of T. Let Ty, (vesp. Ty,y) be the
specialization of T (resp. T) at a character n x 7' of Goo X Do and let V. (resp. V;, )
be the extension T’ ,» ®z, Qp (resp. T,y ®z, Qp). The module D defined above has the
following properties (see §3 for the proof):

1. The module D is free of rank one over Z,[[Dso]].

2. Let n (resp. 7n') be an arithmetic character of G (resp. Do) satisfying 0 <
w(n) —1 < w(n'). We denote by K, (resp. K,/) be the finite extension of
Qp obtained by adjoining the values of the character n (resp. 7') to Qp. Then
D,y DO, i, Dar(Ky(n)) is naturally identified with Fontaine’s filtered module

Dar (Vyy)/Fil’Dar (Vi ), where D,y is the specialization of D at 7/, K,(n) is the
one dimensional Kj-vector space on which Gg acts via n and O, n K, is the ring
of integers of K, N K,y.

For a free Zjy-module T' with continuous Gg,-action, Bloch-Kato (cf. [BK, §3]) de-
fines a subgroup H} (Qp, T) of HY(Q,,T) called the finite part. We denote the quotient
2



H'(Qp, T)

by H 1(Q,,T) for short. Kato defines a map:
a1 T

exp*

H}¢(Qy, T) — Fil’Dar (T @z, Q)

called the dual exponential map (see Definition 3.9).

Let (w,w’) be a pair of integers such that 0 < w — 1 < w’. We denote by Tiﬁ’wl) the

quotient T/ @gﬁ’w/hi, where @gﬁ’w/) is the height two ideal of Z,[[Goo X D] defined to
be the kernel of the homomorphism XYP° X K" 2 Z,[[Goo X Doo]] — Q,. The projective
limit L Qp, Tl )) does not depend on the choice of (w,w’) by Corollary 4.13. We

denote lim /f(QP’ (ww )) by H}f(QP77-)' Let A be the largest finite subgroup of G

s,t
andlet w: A — (Z/ pZ)* C Z, be the Teichmuller character. We define an idempotent
e; € Zp|A] to be Z w™i(g)g for each 0 < i < p—2. For a Zp[[G o X Doo]-module M,

b— gEA

we have the decomposition M = &  e;(M), where each e;(M) is naturally regarded as
0<i<p—2

a Zp|[(Goo/A) X Dsg]]-module. The module H/f((@p, T) defined above has the following
properties (see §4 for the proof):
1. Foreach 0 <¢ <p-—2, ei(H}f((@p,T’)) is a torsion free Zy[[(Goo/A) X Doo|]-module
(note that Z,[[(Goo/A) X Dw]] is an integral domain).
2. Let Frac(Z,[[G X Doo]]) be the total quotient ring of Zp[[Goo X Dso]]. Then
/f((@p, T) @2, (G oo x Do) Frac(Zp[[Goo X Dog]]) s a free Frac(Zy[[Goo X Doo]])-module
of rank one.
3. Let n (resp. 1) be an arithmetic character of G (resp. Do) such that 0 < w(n) —
1< w( "). Then we have the specialization map H/f((@p, T) — H/lf(@van,n’) at

n x ' whose cokernel is finite.

From now on throughout the paper, we fix a norm compatible system {(ps } s>1 of primitive
p®-th roots of unity. Let dg,(1) be the inverse image of 1 € Q) via the isomorphism
Dar(Qp(1)) — Q, determined by {(ps}s>1. Let us fix a basis d of the Z,[[Ds]]-module
D. Denote by K, ,s the fraction field of O, ,,. By the properties of D stated above,
we have a basis d,, of the one dimensional K, ,/-vector space Dar(V;.)/Fil°Dar (V;,..)
induced by the fixed data {(ps}s>1 and d (see Definition 3.12 for the precise definition
of d,,s) for each n (resp. 7’) satisfying 0 < w(n) —1 < w(n’). Our main result is to
construct an interpolation of the dual exponential maps when the character n x ' of
Goo X Dy varies. The result is as follows:

Theorem (Theorem 3.13). Let us fiz a basis d of D. Then, we have a Zy[[Goo X Doo]]-
linear homomorphism

Ea: Hjp(Qp, T) — Zp[[Goo X Doo]]

satisfying the following properties :



1. The map =4 is injective and the cokernel of E4 is a pseudo-null Z,[[Deo X Gool]-
module.

2. Let C be an element ofH/lf(Qp,’T') and let ¢, v € H/lf(Qp,Tnm/) be the specialization
of C for each arithmetic character n (resp. 1) of Goo (resp. D). Assume the
inequality 0 < w — 1 < w' for w = w(n) and w' = w(n'). Then the specialization
Za(C)pay € Q, of 24(C) at the character n x 1 is given by

(1)L — 1) <%(fn)> - <1 B p“"lqﬁ(p)) <1 B ap(fnf)¢(p))_1 (5D (et o),

pw—l ap(f’r]’) P
where ( , ) is the de Rham pairing :
Fil'Dar (V) % Dar (Vi) /Fil°Dar (Vi) — Dar Ky (1)) =2 Ky,
¢ is the finite order character n- x~ " of Go and s is the p-order of the conductor
of .
Assume that the residual representation Go — GL(T/(I,p)T) = GLy(F,) is irre-
ducible, where I is the augmentation ideal of Z,[[Gs X Dx]]. By a result of Kato [Ka3],
we have an element Z € H/1 f(Qp,’T’) called the Beilinson-Kato element (see §3). The

specialization z, ,, of Z is related to a L-value of the modular form f,/. If we fix a basis
d of D, z,,/ has the property that

" G(¢7", Gpe) 2my/—T)w ) w1
(exp™ (2 ) dyy) [ Cpay.a = i(ﬁl)w(n’)fw(n)led)(,l) X L) (frs &0 (1))
oo,n’
where L, (fyy, ¢,s) is the Hecke L-function for the ¢-twist of f,; with its p-factor re-
moved, Cy, v 4 (resp. éfom’) is a p-adic (resp. complex) period (see §3 for the definition of
these periods) and G(¢ ™1, (,¢) is the Gauss sum for ¢~!. The following corollary shows

that the image Z4(Z) € Z,[[Goo X Doo]] of the Beilinson-Kato element Z gives a two
variable p-adic L-function for the Hida deformation corresponding to Z.

Corollary (Theorem 3.17). Let us fix a basis d of D. Assume that the residual represen-
tation Gg — GL(T /(I1,p)T) = GLa(F,) is irreducible. Then Z4(Z) € Zp[[Goo X Duo)]
has the following interpolation properties for each arithmetic character n (resp. n') of
G (resp. Do) satisfying the inequality 0 < w — 1 < w' for w = w(n) and w' = w(n') :

Ed(Z)nm’/ Cpm’vd

o w—1/ . G(¢_1’Cps)(277\/j1)w/_w+l ap(fy)\ _d’(l’)pw_l
- ey () () e

Greenberg-Stevens, Kitagawa and Ohta also construct a two-variable p-adic L-function
for an ordinary A-adic cusp form independently. Their method is to construct a A-adic
interpolation of modular symbols and their definition of a p-adic period is an error term on
the ”Betti side”. In our case, the definition of a p-adic period is an error term on the ”de
Rham side”. The relation between our p-adic L-function and those of Greenberg-Stevens,
Kitagawa and Ohta is not clear at present. One of the advantage of our construction
of the p-adic L-function from Euler system is that it is useful to investigate the relation
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between a p-adic L-function and a Selmer group (Iwasawa Main conjecture). We give an
application of the result in this paper to a two-variable Iwasawa Main conjecture for a
A-adic cusp form in the paper [O], where we show one of the inequality predicted by the
Main conjecture.

Plan. The plan of this paper is as follows. In §2, we recall necessary facts from
Hida theory. In §3, we state our main result for nearly ordinary Galois deformations not
necessarily limited to Hida deformation. We deduce the result stated above in the case
of two variable deformation coming from Hida theory from our main result. In §4, we
give the calculation of the limit of local cohomology groups, which is used to show the
injectivity of the interpolation map of the main theorem. In §5, we give the proof of the
main result.

Notation. For a field K, we denote Gal(K/K) by G where K is the separable
closure of K. Given a finite prime v of a number field F', we denote by Frob, the
geometric Frobenius at v. For a commutative ring S, we denote by S* the group of
invertible elements in S. We denote by S(p) the free S-module of rank one on which Gg
acts via a character p : Gp — S*. Throughout the paper, we assume that the fixed
integer p is an odd prime number.

Acknowledgements. The author expresses his gratitude to Prof. Takeshi Saito for
encouragement and discussion. He is grateful to Prof. Kazuya Kato for showing him the
manuscript [Ka3| and for useful advice and is also grateful to Prof. Kazuhiro Fujiwara for
useful advice and encouragement. He thanks Yoshitaka Hachimori and Kazuo Matsuno
for encouragement and fruitful discussion.

2. A-ADIC FORMS AND GALOIS REPRESENTATIONS

In this section, we review some fundamental results on A-adic cusp forms and their
Galois representations.

We keep the notation of the previous section. Let O C @p be a commutative ring
which is finite flat over Z, and let ¢ be a Dirichlet character modulo Np". We denote by
Mp(T1(Np"),¢; O) (resp. Sp(I'1(Np"),;O)) the space of modular (resp. cusp) forms of
weight k, Neben character ¢ and Fourier coefficients in O for the group I'1 (Np").

For each integer ¢t > 1, the affine modular curve Y;(p) /@ is the fine moduli of pairs
(E/g,€/s) of an elliptic curve E over a Q-scheme S and an S-section e;g of order p'.
Recall that the diamond operator {a) on Y;(p') is the automorphism on Y;(p!) which
sends a pair (E/g,e/g) to the pair (E/g,ae/g) for each a € (Z/p'Z)*. We denote the
p-Sylow subgroup of the group of diamond operators on Y; (p*1) by D;. D; is canonically
isomorphic to the group 1+ p(Z/p'T'Z)(C (Z/p'*17Z)*). We define the pro-p group Deo
to be the projective limit yLnt Dy.

Definition 2.1. Let G and x be as in the previous section and let Dy, be as above.
Let k: Do = 1+ PLyy — @; be the canonical character.

(1) A character n (resp. 7') of G (resp. Do) is called an arithmetic character of
weight w(n) (resp. w(n’)) if there exists an integer w(n) (resp. w(n')) such that n
(resp. 1) coincides with x*() (resp. £*(")) on a sufficiently small open subgroup U
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(resp. U') of G (resp. Doo). Let s(n) (resp. s(n')) be the p-order of the conductor
of the finite order character 1 - x “ (resp. 1’ - k= *)). We denote the set of
arithmetic characters of G (resp. Doo) by Xarith (Goo) (resp. Xarith(Doo))-

(2) Let R be a local domain finite flat over Z,[[Ds]]. We denote by X(R) the set
of non-trivial continuous algebra homomorphisms R — @p. We define a subset

Xarith (R) of X(R) by:
Xarith (R) = {p € X(R) | the character p|p_ : Dso — @; is an arithmetic character}.

We call an element p € X0 (R) an arithmetic point of R. The weight of p|p. €
Xarith (Do) s called the weight of the arithmetic point p and is denoted by w(p).
We also denote by 1®) (resp. s(p)) the finite order character p|p_ - £~ *“®) of Dy
(resp. the p-order of the conductor of ®)).

Consider a formal g-expansion F = > A, (F)q", where each A, (F) is an element
0<n<oo

of a fixed algebraic closure of Frac(Zy[[Dx]]). For F as above, we define the subring

H of the algebraic closure of Frac(Z,[[D]]) to be the algebra generated by all A, (F)’s

over Zp[[Do]|. We assume that H is finite flat over Zy[[Do]]. For each p € Xayitn (H), we

denote by f, the formal g-expansion 3 an(fy)q", where a,(fy) € Q, is the image of
0<n<oo

Ap(F) under the map p: H— Q,.

Definition 2.2. Let ¥ be a character defined modulo Np. We call F a A-adic form
of level Np® with Dirichlet character g if f, is the g-expansion of a modular form in
Mw(p)+2(F1(Nps(p)),wow(p)w_“’(p);@p) for each p € X0 (H) with w(p) > 0, where w is
the Teichmuller character.

Definition 2.3. Let r > 1. Let 9 be a character defined modulo Np". Then a p-adic
cusp form f € Sp(I'1(Np"),¢;O) is called a p-stabilized newform of tame conductor N
with Dirichlet character 1 if

1. f is an eigenform of Si(I't1(Np"),v;O) for all Hecke operators T;(l { Np) and
Up (I'| Np) which belong to End(Sk(T'1(Np"), 1; O)).

2. The newform associated to f has level Np™ for some rg, 0 < rg < 7.

3. The eigenvalue a,, of f for U, € End(S(I'1(Np"),v;0)) is a p-adic unit.

Let f be a newform in Si(I't(N),4;0). Assume that the eigenvalue a, of f for
the Hecke operator T}, is a p-adic unit. We define f* € Si(I't1(Np),¢;0) by f* =
f(q) — Bf(qP), where j3 is the unique root of 22 — a,z + ¥(p)p*~! with p-adic absolute
value |B| < 1. Then f* is a p-stabilized newform of tame conductor N whose n-th Fourier
coeflicients equal to that of f for each natural number n prime to p. We call this f* the
p-stabilized newform associated to f.

Definition 2.4. A normalized A-adic cusp form F is a A-adic newform of tame con-
ductor N with Dirichlet character v if f, is a weight w(p) + 2 p-stabilized newform of
tame conductor N, level Np*®) with character 1gyp®w="®) for each p € Xarien (H) with
w(p) = 0.



Remark 2.5. Let F be a A-adic newform of the tame conductor IV with character g
modulo Np. Then it is known that the specialized p-stabilized newform f, is a newform
(that is, f, is also new at p) if and only if s(p) > 1 or YotpPw=®) restricted to the
subgroup A = (Z/pZ)* is non-trivial.

Theorem 2.6 (Hida [H1] Corollary 3.2, Corollary 3.7). Let N be an integer prime to p
and let ¢ be a Dirichlet character defined modulo Np. Let f € Sk(I'1(Np),v;O) be a
p-stabilized newform of tame conductor N. Then there exist a A-adic newform F of tame
conductor N with Dirichlet character YwF=2 and p € Xapien(H) with w(p) = k — 2 such
that f, is equal to f.

Recall the definition of continuity for Galois representations over the field of fractions
K of H (see [H3, §7.5], for example).

Definition 2.7. The representation p : Gog — GLo(K) is continuous if there exists
a finitely generated H-module T C H%? which is stable under Gg-action such that p :
G — Aut(T) is continuous with respect to the topology of T defined by the maximal
ideal of H and that ToyK = K®2.

Hida associates a continuous Galois representation over H to a A-adic newform F as
follows:

Theorem 2.8 (Hida [H2]). Let F be a A-adic newform with Dirichlet character 1o mod-
ulo Np. Then, there exists a continuous irreducible representation pr : Gog — GL2(K)
satisfying the following properties:
1. pr is unramified outside Np.
2. For the geometric Frobenius element Frob; at 1 Np, we have:
Trace(pr(Froby)) = Ay(F),
det(px(Froby)) = vo()r (1)1,
where 1+ 1 is the projection Zy = (Z/pZ)* x (1 + pZp) — (1 + pZyp) and K is the
tautological character 1+ pZ, — Do — Zp[[Doo]]* C K*.

In order to study the Iwasawa theory for Hida deformations, it is convenient to assume
the following condition:

(Int) The representation pr : Gg — GL2(K) has a Gg-stable lattice T which is
isomorphic to H®?.

The condition (Int) is satisfied in fairly general situations. Before stating some suffi-
cient conditions for (Int) to be satisfied (Proposition 2.10), we introduce some necessary
notations.

Definition 2.9. Let F be the residue field of H modulo the maximal ideal M of H.
A semi-simple representation p : Gg — GL2(F) is called the residual representation
associated to F if p is unramified outside Np and the characteristic polynomial of the
geometric Frobenius Frob; for each prime [ fNp is congruent to

X2 — AF)X —o(DFHD)I™! modulo M.
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Such a residual representation is always known to exist without assuming the condition
(Int) and it is unique up to isomorphism. The following is a list of cases where the
condition (Int) is known to be true.

Proposition 2.10 (Mazur-Wiles, Tilouine, Mazur-Tilouine). The condition (Int) holds
if one of the following conditions is satisfied:
(1) The ring H is regular.
(2) The tame conductor N of F is equal to 1 and the ring H is Gorenstein (Mazur- Wiles
IMW?2] §9).
(3) Let a be a number such that 1o|(z/pzyx = w®. Then a # 0,—1 modulo p—1 and the
ring H is Gorenstein (Tilouine [Ti] Theorem 4.4).
(4) The residual representation is irreducible (see Mazur-Tilouine [MT] §2, Corollary
6). We denote this condition by (Ir).

From now on throughout the paper, we will assume the condition (Int). We have the
following local property of pr due to Mazur and Wiles:

Proposition 2.11 ([Wi] Theorem 2.2.2). The restriction prlc,, to the decomposition
group G, of pr has the filtration:

0—FT—T—FT—0

such that FTT and F~T are free H-modules of rank one. Further, Gq, acts on FtT
via the unramified character & such that a(Frob,) = A,(F) for the geometric Frobenius
element Frob,,.

Remark 2.12. Note that the normalization of the above proposition is dual to that of
the paper [Wi]. In [Wi], the Frobenius element is normalized to be the arithmetic one.
We normalize the Frobenius element to be the geometric one throughout this paper.

For each p € Xuien(H) with w(p) > 0, the specialization T, = T ®g p(H) of T is
isomorphic to the p-adic Galois representation Ty, associated to f, by Deligne [Del].
In this sense, pr is a family of modular Galois representations when the weight of the
modular form varies.

Let X : Gg - G = Zp[[G]] be the universal cyclotomic character. We denote by
Zp|[Go)](X) the free Z,[[Go]]-module of rank one on which Gg acts via the character
X- The nearly ordinary deformation 7 associated to T is defined to be the formal tensor

product T®z,Z[[Goo]](X), where the action of Gg on T is given by the diagonal one.
The representation 7 has the following properties:

1. T is free of rank two over R = H®szp[[GooH = H[[G]]-
2. As a Gg,-module, we have the filtration:

0—F'T —T7T —=FT—0,

where F*7 (resp. F~7) is F*T®z, Z,[[Go]](X) (resp. F~T®z, Zy[[Goo]](X))-

3. Let T, be the specialization of 7 at (17,p) € Xarith(Goo) X Xarieh (H). Assume that
w(p) is non-negative. Then there exists a cusp form f, of weight w(p) + 2 and
T}, is isomorphic to Ty, ® n, where ®n is the twist by the one dimensional Galois
representation corresponding to 7.
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3. THE MAIN RESULT AND ITS APPLICATION TO HIDA’S (GALOIS DEFORMATION

In this section, we state our main results for general nearly ordinary deformations not
necessarily limited to the Hida deformation introduced in §2. We give an application to
the Hida family in the latter half of this section.

Throughout the first half of the section, let D, be a pro-p group which has the
canonical isomorphism & : Dso — 1+ pZy, (we do not necessarily assume that Do is
the group of diamond operators as in §2). We fix a commutative ring H which is finite
flat over Zp[[Dso]).

Definition 3.1. Let T be a free H-module of rank two with continuous Gg-action. The
representation T is called an ordinary deformation if the following conditions are satisfied:

1. The representation T has a filtration as a Gg,-module:
0—FT—T—FT-—0

such that F™T and F~T are free rank one H-modules and that the action of Gy,
on F™T is given by an unramified character & of Go,-
2. There exists a Dirichlet character g : Gg — Zp[tho] — H* such that Gg acts on

2
the the determinant representation det(T) = AT via the character 1ox %!, where

we regard the tautological character % : 14 pZ, — Doo > Zp[[Doo]]* C H* as a
character of Gg through the canonical character y : Gg — Goo — 1 + pZy.
Let R = H®szp[[Gm]] = H[[G]], which is finite flat over Z,[[Goc X Dso]]. We denote by

T the Galois representation T®Zpr[[Gw]] (X)- We call T the nearly ordinary deformation
associated to T.

A nearly ordinary deformation 7 defined above is free of rank two over R. The
Kummer dual 7 of 7 is defined to be Homg (7,R) ®z, Zy(1). T has a rank one filtration
F*T C T defined by F*T = Homg(F~T,R) ®z, Zp(1). Let (w,w’) € Z x Z and let
(s,t) € Z>p X Z>p. We denote by Ts(jf’w/) (resp. F*Ts(jf’wl), F*Ts(ff’w,), Tgﬁ’w/), F*Tg’w,),
F‘Tiﬁ’w/)) the specialization of T (resp. F™T,F~T,T,FTT,F~T) obtained by applying

®RR/<I>$’W), where q)gflt)’w/) is the height two ideal defined in §1. These representations

are free Z,-modules of finite rank on which Gg acts continuously. We denote by Vs(f’wl)

(resp. F*V;(f’wl), F‘*Vs(ff’wl)7 Vﬁ?w/), F*Vgtﬁ’w,), F*Vﬁf‘;’“")) the extension of Ts(jf’wl)
(w (w,w')

(resp. F+Ts(ff’w,), F_Ts(ff’w/), Tg?w,), F+Ts,t’w/), F~T,, ') by applying ®2,Qp. For cach
(1,9) € Xarith(Goo) X Xarien (H), we denote by Ty, (vesp. FYT,,,, F~Typ, Tyypy FFTp,

F~T,,) the specialization of T (resp. F*T, F~T, T, F'T, F T) via R — nop(R),

where nop(R) is finite flat over Z,. Similarly, we define V,,, (resp. TV, o, F~V, , V0,
F*V,p F~V, ) by applying ®z,Qp to the above representations. For later use in this

section and the next, we summarize basic facts on these specializations:

1. For (n,p) € Xaith(Goo) X Xarith (H), Ty p (vesp. T)p) is a quotient of T(S(z;’)l’i()p) (resp.
Tgl(z;'j;)(p)), where w = w(n) and w’ = w(p).
2. Ty is the Kummer dual Homg, (T}, Zy) ®z, Zy(1) of Ty p.

9



3. Vs(f’w,) (resp. Vg’wl)) is isomorphic to @Vn p (resp. EBVn p) where 7 (resp. p) runs

arithmetic characters of G, (resp. arlthmetlc points of H) satisfying w(n) = w and

s(n) < s (resp. w(p) = w' and s(p) < ).
Fontaine defines the rings of p-adic periods Berys C Bgr. The rings Berys and Bgr have
continuous Gg,-action and Bgg is a complete discrete valuation field. We denote by B(J{R
the valuation ring of Byr and denote by Fil’Bgg for each i € Z the decreasing filtration
of Bgr defined by uilerR where v is a uniformizer of B:{R. For a p-adic representation
V' of Gg,, we denote by Derys(V) (resp. Dgr(V)) the Fontaine’s module defined by
(V ® Berys) @ (vesp. (V & Bgr)“@). The module Deys(V) (resp. Dgr(V)) is a finite
dimensional Q,-vector space such that dimg,Derys(V) < dimg, V' (resp. dimg,Dgr (V) <
dimg,V'). A p-adic representation V' is called a crystalline representation (resp. de Rham
representation) if dimg,Derys(V) = dimg,V (resp. dimg,Dgr(V) = dimg,V’). The
module Dggr (V) has a separated and exhausted decreasing filtration Fil'Dgg (V) := (V ®
FilinR)G@P. We refer the reader to [Bu] for Fontaine’s theory of p-adic representations.
For each 1 € Xuith(Goo) (resp. p € Xaien(H)), we denote by K, (resp. K, K, ,) the
fraction field of n(Z,[[G]]) (resp. p(H), n o p(H[[G]])), which is a finite extension of
Qp. We have the following lemma:

Lemma 3.2. Let (17,p) € Xarith(Goo) X Xanitn(H) satisfying 0 < w(n) — 1 < w(p).
Then, Vyp is a de Rham representation of Gg, such that Dar(F*V, ) is canonically
isomorphic to Dar (Vyyp) /Fil°Dar (Vyp). Vi 45 also a de Rham representation such that
Dar(F~V,p) is canonically isomorphic to Fil"Dagr (V).

Proof. By the definition of 7T, there exists a finite extention K of Q, such that V;,, is
an ordinary representation of Gg. By a result of Perrin-Riou [P3], an ordinary repre-
sentation is semi-stable in the sense of Fontaine. Especially, V,,, is a de Rham repre-
sentation of Gg. Since a potentially de Rham representation is a de Rham representa-
tion (cf. [Bu]), V;, is a de Rham representation of Gg,. We have Fil’Dagr(F*V;,) =
(FtV,, ® BCTR)G@P = 0 since the action of a sufficiently small open subgroup of the in-
ertia subgroup I, on FV, , is given by x* with w > 0. Thus we have a K, y-linear
injection Dyqr(F*Vp) < Dar(Vyp)/Fil"Dar(V;yp). Similarly we have a K, ,-linear
surjection Fil"Dag (V;,,) — Fil’Dar(F~V,,) and dimg, ,Fil’Dar ((Vy,/FFV;p)) = 1.
We have dimg, ,Dar(V;p) = 2 since V;, is a de Rham representation and we have
dimg, , Dar(F*V, ) = 1 since a sub-representation of a de Rham representation is also
a de Rham representation. In conclusion, we have dimg, ,Dar(Vyp)/ Fil'Dygr (V) < 1
and the above mentioned injection Dagr(FV;, ) < Dar(Vyp)/Fil"Dar (V;,p) must be an
isomorphism. The assertion for Vn,p is shown in the same way. O

Lemma 3.3. Let M be a free H-module of finite rank e endowed with unramified Gg,-
action. Then (M@sz;r)(;@? is a free H-module of finite rank e.

Proof. Let I be a height two ideal of H. Then we have
(M&z,Z3") %% = (im(M/I")®g, Z3) %% = [im(M/I"®g, Z3) .

n n
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M/I™ is a free module of rank one over the ring H/I™ with finite number of elements. It

suffices to show that (M/I ”®szgr)G@P is free of rank one over H/I". Clearly the proof
follows from the following claim:

Claim 3.4. Let R be a Zj-algebra with finite number of elements. For a free R-module

M of finite rank e endowed with unramified Gg,-action, (M ®z, 2;1”)(;@1) is free of finite
rank e over R.

We prove the claim in the rest. Let p™ be the characteristic of the ring R. Then
M ®z, Zgr is isomorphic to M ®z /,mz Wi (Fp), where W, (F) is the ring of Witt vectors
of length m (cf. [Se, Chap. II, §6]). Since M is finite, there is an open subgroup H of
Gal(Q,"/Qp) such that H acts trivially on M. We have (M ®z, 2;Y)G@p = (M ®z/pmz,

Wi (F))E, where I is the fixed field ?f and G = Gal(Q,"/Qp)/H. Since M @z, /ymz Wi (F)
is isomorphic to M ®z,,mz Z/p™Z[G) as an R[G]-module, (M @z /,m7 Wy, (F))< is free of
rank e over R. O

By Lemma 3.3, we give the following definition.

Definition 3.5. Let T be an ordinary deformation. We define a free H-module D of
rank one by D = (F*']I‘@)ZPZ;‘")GQP where the Galois action of g € Gg, on F*']I‘@ZPZ;}Y is
the diagonal action g ® g.

Lemma 3.6. Let T = T®z,Z,[[G]](X) be a nearly ordinary deformation and let (1,p) €
Xarith(Goo) X Xarith (H) satisfying 0 < w(n) —1 < w(p). Then we have the canonical iso-
morphism:

Dar (Kn(n)) Q0K K, Dy 2= Dar(F V),
where Dy is the specialization D @y p(H) of D and K, (n) is the one dimensional Galois
representation over K; on which Gq, acts via 7.

Proof. Let V;, be the representation (T @y p(H)) ®z, Qp. Since FTV; is unramified,
D4r(F*V;) is canonically isomorphic to (F7V, ® @;r)G@p. Hence D @y Ky = (FTV, ®
@;r)GQp is canonically isomorphic to Dqr(F*V;). Recall that F*V, , = K, (1) ®k,nk,
F*V,. Since the functor Dgg is compatible with a tensor product of two de Rham

representations, we have the canonical isomorphism Dyg (K (7)) ®k,nk, Dar(FTV;) =
D4r(F*V, ). This completes the proof of the lemma. O

Before giving the main result, we prepare some general definitions. Let By be the
ring of p-adic periods for semi-stable Galois representations, which is a subring of Bygr
equipped with continuous Gg,-action (cf. [Bu]). For arepresentation V of G, , we denote
by Dpst (V) the inductive limit lim (V®Bgt)” where J runs through open subgroups of the

Jci,
inertia subgroup I, of Gg,. Let o be an arithmetic Frobenius element in Gal(Q,"/Qp).
The module Dy (V) is a finite dimensional @]‘;r—vector space with the following properties:

1. We have the inequality dim@gerst(V) < dimg, (V).

2. Dpst (V) is endowed with the monodromy operator N, which is a @;r—linear nilpotent

endomorphism on Dy (V') and is induced from the monodromy operator of Bi.
11



3. We have a o-semilinear Gg,-action on Dyt (V') and the action of I, factors through
a finite quotient of I,.

4. The module Dy (V') has the Frobenius operator f, which is o-semilinear and is
induced from the Frobenius operator of B;.

The restriction of the action of G, on Dyt (V') to the Weil group W, C Gg, gives us a

o-semilinear action of W, on Dyt (V). We denote by u : W, = W,,/I,, — Z the natural
map which sends o to 1. By the twist of the W)-action which replaces the action of
g € W, with the action of g - U9 we obtain a @;r—linear action of W, on Dy (V).
Since the inertia subgroup I, C W), acts through a finite quotient of I, the complex
absolute values of the eigenvalues of the Frobenius element of W), are well-defined if they
are algebraic numbers.

Definition 3.7. For a nearly ordinary deformation 7, we consider the following condi-
tion:

(MW) Every eigenvalue « of the action of a lift of a geometric Frobenius Frob, on
Dpst(Vy,p) is an algebraic number whose complex absolute value is

pwzﬂ_w if the monodromy N is zero on Dyt (V)p),
pz %+l if N is non zero on Dpst(Vyp) and the eigen vector of « is in Coker(N),
pzT W if N is non zero on Dy (V;p) and the eigen vector of « is in Ker(IV).

for each (1,p) € Xarith(Goo) X Xaritn (H) with w(p) > 0, where w = w(n) and w' = w(p).

Remark 3.8. Assume that V}, is the p-adic realization of a certain pure motive of weight
w(p) + 1 for each p € Xyun(H) with w(p) > 0. Then the above assertion (MW) is
conjectured to be true. By a result of T. Saito [Sa| for the monodromy-weight conjecture
for elliptic modular forms, the above assertion on the complex eigenvalues of the lift of
the Frobenius on Dy (Vi p) is true if Vj is the p-adic representation associated to an
elliptic cusp form of weight w(p) + 2. Hence (MW) is true if 7 is associated to a certain
A-adic cusp form.

Let us recall the definition of the dual exponential map exp*. We denote by log(y) €

H'(Q,,Q,) = Hom(Gg,,Q,) the homomorphism Gg, - ZX <% Q, defined by the
cyclotomic character x. Let V' be a p-adic representation of Gg,. Let us consider the
map:
ul
HY(Qy,V @ By) =% H'(@,,V @ By),

obtained by the cup product with log(y) € H'(Q,, Q,). By [Kal] Chap. II, Proposition
1.2.3, the above map U log(x) is an isomorphism.

Definition 3.9. The dual exponential map exp* is defined to be the composite:

HYQp, V) — HYQ,,V ® Blp) ﬁ Fil'Dyr (V) = H(Q,, V @ Biy).
Ulog(x))~
Bloch-Kato [BK] defines a subgroup H}(Qp, V) C HY(Qp,V) called the finite part as
follows:
H}(Qpa V) = Ker [Hl((@pa V) — Hl(va Ve BcryS)]
12



Let T' (resp. A) be a G,-stable lattice of V' (resp. a discrete Galois module T'®Q,/Z,).
We have the following exact sequence:

HYQ,,T) - HY(Q,, V) -2+ HY(Q,, A).

We define H}(QP,T) C HY(Qp,T) (resp. H}(QP,A) C H'(Qp, A)) to be the pullback
i_lH}(Qp, V) (resp. the push-forward p*H}(Qp, V). The dual exponential map is known
to factor as:

HY(Q,, V) — H};(Q,, V) =5 Fil’Dag(V),

1 . HY(Qy,V) . .
where H / f(@p, V) is ————=. We prove the following lemma in §4 (see Corollary

H{(Qp, V)
4.13):

Lemma 3.10. Assume that T satisfies the condition (MW). For each pair (w,w') €
7 x 7 satisfying 0 < w — 1 < u/, @1 H/lf(Qp,TSfZ’w)) is canonically isomorphic to
s,t

y%n H/lf((@p,TSt’O)). Especially, Lril H/lf(@p,f(:;’wl)) 1s independent of the choice of
(w,w’).

We denote the module lim H/lf(Qp,Tg’wl)) by H/lf((@pﬂi). Since R is finite flat over
s,t

Zp|[Goo X Dooll, Homgz, (g x Doo)) (Rs Zp[[Goo X Diol]) is finitely generated R-module by
(r-f)(x)=f(r-z)forr € R and f € Homg, (G x Doc] (R, Zyp|[Goo % Dsl])-

Definition 3.11. The Z,[[Gs x Do]-algebra R = H[[G )] is called a Gorenstein ring
if Homy, (jG.. x Doo]] (R Zp[[Goo X Do) is free of rank one over R.

Definition 3.12. 1. For each p € X1 (H), we denote by Sp, : D — Dar(F1V}) the
map induced by the Gg,-invariant of the map F+T®Zp25r — F'T, p@)zngr, where
Ty = T @ p(H) (note that Dar(FtVp) = Derys(FTVp) = (FF Ty, 21%) % @7, Q,
since FTT,, is unramified).
2. Let n € Xarith(Goo) and let ¢ be the finite order character nx‘w(n). We denote by O
a finite flat extension of Z, whose fraction field is K. We define Sp, : O[[G]] —
Dar ((K ®@knK, Ky)(n)) to be the Z,-linear homomorphism:

Ol[Goo]l — Dar(K(x")) @@, Qu(pps) = Dar(K(x"*) @q, Qp[Gs])
— Dar(K(x") @q, Kn(¢)) = Dar(K(x") ©@xnk, Kn(¢)) = Dar((K ©@xnk, K9)(1)),

where the first map is the O[[G]]-linear map which sends g € G to 58;”(1) ®
Cgs. The isomorphism in the upper line is nothing but the isomorphism (K (x*) ®

BdR)GQP“‘PS) = (K (x") ® Q,[Gs] ® Bgr)“@ by Shapiro’s lemma.
13



3. Let (1,p) € Xarith(Goo) X Xarien(H). Then we denote by Sp, , D®Zpr[[Gw]] —
D4r(F*V, ) the composite:

—~ Sp,,®1
D&y, Zp[[Goo)] 2= Dar(FTVp) © Op[[Gucl]
1®S
8 Dar (F*Vp) @y, Dar (K (1)) = Dar(F V)

Let A be the largest finite subgroup of G and let Ra be R ®z,a] Zp. The ring Ra

is an integral domain and we have an isomorphism R =2 [ Ra. Our main result in
1<i<p—1
this paper is the following theorem:

Theorem 3.13. Let T be a nearly ordinary deformation in the sense of Definition 3.1.
Assume that R is Gorenstein, Ra is a normal domain and that T satisfies the condition
(MW). Let us fiz a basis d of the H-module D = (F+']I‘</X\>ZPZ;’“)GQP. Then we have an

R-linear homomorphism Zg : H}f(Qp,7) — R with the following properties:
1. The map Zq is an injective R-homomorphism whose cokernel is a pseudo-null R-

module.
2. Let C be an element of H/lf((@p,’T') and let ¢y € H/lf(@p,i%p) be the specialization

of C at (n,p) € Xarith(Goo) X Xarith (H). Assume that 0 < w —1 < w' for w = w(n)
and w' = w(p). Then, Z4(C)yp is given by :

-0t ) (1 W) (1- ""’(’”) (50" (Cnp)s )

pw -1 ap pw

where ay is the value of the action of the geometric Frobenius Frob, on TV, (1, )
1s the pairing :

Fil’Dar (Vyp) X Dar(Vyp) /Fil’Dar (V) — Dar (K p(1)) = Ky,

¢ is the finite order character nx~" of Goo and s is the p-order of the conductor of
o.

Now, we apply our main theorem to a two-variable modular deformation explained in
§2. From now on throughout the section, we take 7 to be the nearly ordinary deformation
associated to a certain A-adic new form F.

In order to introduce Beilinson-Kato elements, we prepare notations. For each p €
Xarith (H) with w(p) > 0, we denote by f, = Zoan( fp)¢q" the dual modular form of

n>

fo = > an(fy)g"™ where c is the complex conjugate. The dual modular form ?p is known
n>0
to be a Hecke cuspidal eigen form of weight w(p)+2 with Neben character dual of that of

fp- We denote by @? the finite extension of Q obtained by adjoining Fourier coefficients
o p
of f, to Q. For a Dirichlet character ¢ of p-power conductor, let @? # be the finite
p7
extension of Q7 obtained by adjoining the values of ¢ and let Vigr(¢) be the de Rham

p
realization of the Dirichlet motive for ¢, which is a one dimensional vector space over
14



Ky. We associate the de Rham representation VdR(fp) to fp. The de Rham realization
VdR(?p) has the following properties:

1. VdR(fp) is a two dimensional vector space over Q?p and is equipped with a de

Rham filtration FilinR(fp) C VdR(?p), which is a decreasing filtration of @7,,'
vector spaces.

2. We have FilOVdR(?p) = Var(f,) and Fil“’(p)‘*'szR(fp) = {0}. For each w such that
0 <w—1< wp), FilVar(f,) is naturally identified with the one-dimensional
Q?p—vector space Q?p “fp-

3. For a Dirichlet character ¢ of p-power conductor, we define the ¢-twist Var(f,,)(#) of
Var(fy) to be Var(f,) ®gz, NK, Var(¢), which has dimension two over Q?wqﬁ. If ¢ is
the finite order character 7y~ for n € Xaitn(Goo) satisfying 1 < w(n) < w(p)+1,
Filv®) =02y (F) (07 h) D0y, , Kyp is naturally identified with Fil’Dar (V.p)-

We also associate the Betti representation Vg(f,) to f,. The Betti realization Va(f,)
has the following properties:

1. VB (?p) is a two dimensional vector space over Q?p and is equipped with the action

of the complex conjugate ¢ on V (?p)
2. Each +1-eigen space V (?p)i for the action of ¢ is one dimensional over @f .
p

Let &y, (npt) KN Y1(Np') be the universal elliptic curve and let v : $ — Y1 (Np')(C) =
$/T1(Np') be the uniformization map, where §) is the complex upper half plane. Consider
the continuous map 7 : (0,00) — Y1(Np!)(C), y — v(yv/—1). Let H' be the higher
direct image R'\; «(Z), which is a locally free sheaf on Y;(Np')(C) of Z-rank two. We
denote by H; the dual sheaf Hom(H",Z). The stalk of 7~(H,) at y € (0, cc) is identified
with H1(C/y\/—1Z +Z,7) = y/—1Z + Z. The sheaf 771(H,) is a constant free sheaf of
Z-rank two with basis e; = (yv/—1,0), ez = (0,1).

Definition 3.14. Let p € X5t (H) be an arithmetic point of weight w’.

1. For each integer w satisfying 0 < w — 1 < w’, we denote by ggR the Q?p—basis of
Filw/_w"'szR(?p) coming from Tp.
2. We define a basis gf’i of Vp (fp)jE to be the image of the class (7,e%’) in the co-

homology Hy(X1(Np*®)), X1 (Np*®)\ Yi(Np*®)); Sym® (H,)) under the following
composite map:

Hy(X1(Np*®)), X1 (Np*®)) \ Y4 (Np*®); Sym™ (H,))
= Hy (X (Np*®), Xy (Np*®)) \ Yi(Np*®); Sym® (H1))
5 HY(Yi(Np*®); Sym™ (H'Y)) — Va(F,) .

We have the Eichler-Shimura isomorphism:

-+ qw —w — _ ~ —_— _ w/—w+1 _
Iop: FI" 7P Var(F)(07) ®qy, , C— Vi (f,)tY $(~1) ®q; C.
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Kato constructs elements in the Ky of modular curves [Ka3|. By using his elements, we
have the following system of elements in Galois cohomology.

Proposition 3.15. [Ka3] Let T be the nearly ordinary representation associated to a
certain A-adic newform F satisfying the condition (Ir) stated in §2 for (Ir). There exists
an element Z € H/lf((@p, T) satisfying the following properties:

1. Let zyp € H/lf(Qp,Tmp) be the specialization of Z at (n,p) € Xarith(Goo) X Xarith (H)
satisfying 0 < w — 1 < W' for w = w(n) and w' = w(p). Then exp*(z,;p) €
Fil’Dar(V,)p) is contained in Filw/_w+2VdR(7p)(¢*1) C Fil’Dar (Vo p)-

2. The image of exp*(zy,p) € Filw/_w+2VdR(?p)(¢_1) under the map

+

Tyt FI"""FVip(F) (07" — VB(F,) D" ey Rg;, C

is equal to G(¢™1, (pe ) (2my/— 1) wHL o) (fos &, w) -3 ( 1w et g(— 1

We define a complex period and a p-adic period at each arithmetic point p as follows:

Definition 3.16. Let the notations be as defined in Definition 3.14.

1. A complex period 6;'3 is the complex number given by o (ESR) = 627p35’i

2. Fix a basis d of the H-module D. For each arithmetic point p : H — @p of weight
w’ and each integer w such that 0 < w —1 < w', we denote by d,, the basis of
rank one K, ,-vector space Dygr (V;p)/Fil°Dagr (V;, ) defined as the image of d®1 via
the map Sp, , : DRZy[[Goo]] — Dar(Vyp)/Fil®Dar (Vi) p) of Definition 3.12. We

define a p-adic period C),, = C} ;.4 (depending on the choices of d) to be the value

<S§R> dpp) where (, ) is the pairing :

Fil’Dar (V) X Dar(Vap) /Fil°Dar (Vs p) — Dar(Kpp(1)) = Ky p.

The p-adic period C), ;4 does not depend on w and depends only on d.

We fix a basis d of the H-module D from now on. Let (1,p) € Xarith(Goo) X Xarith (H)
with 0 < w—1 < w' for w = w(n),w = w(p) Then exp*(zy,p) € Filw,_w“VdR(?p)(gb_l)
(2mv/ =) " L) (fo, $,w)

o 1w ’”“¢>( 1)

00,p

is equal to

6 , where ¢ = nx ™. Hence exp*(2y,p)/ Cpp.d €

(QW\/jl)w/_w+lL(p) (fpa o, ’UJ) c

d;;)w/_ww,(,l)

Fil’Dar (V) ®k, ., Qp is sent to the L-value G(¢™1, o)

Q under the pairing FilODdR(V77 p) OK, . @p : " ») Q
As stated in Remark 3.8, a Hida deformation 7 satlsﬁes the condition (MW). Hence

we have the interpolation map Z; by Theorem 3.13. By the interpolation property of the
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map =g, Ed(Z)mp/ Cp.p.d is given by:
Cyw—1/, ap(fp))s ( _ Pw_1¢(P)> ( _ @p(fp)¢(l?)>l {exp™(2p,p), dnyp)
-0 (58) (-TEP) (-

ap(fp)>s (1_pw—1¢<p>> Cry =D L (. 6.0
A () ) G, ) 1T ;)w —utlg(-1)”

— (1" - 1t

From the above argument, we obtain the following theorem by applying Theorem 3.13:

Theorem 3.17. Assume the condition (Ir) for F. Assume that R is Gorenstein and in-
tegrally closed in Frac(R). Let us fiz a basis d of the H-module D. Then Zq(Z)yp/ Cpyp.d
s given by :

(Cpye (= DIGET G 2ry/ D) ! (apm))‘s (1 _ ol
e ) Ul
at each (1,p) € Xarith(Goo) X Xaritn(H) satisfying 0 < w — 1 < w' with w = w(n) and
w' = w(p), where ¢ is the finite order character nx™" of G and s is the p-order of the
conductor of ¢.

>L(fp,¢aw),

Remark 3.18. A two-variable p-adic L-function for a Hida deformation is also con-
structed by Greenberg-Stevens, Kitagawa and Ohta independently. The main ingredient
of their work is a construction of the H-adic modular symbol B*, which is a free H-module
of rank one. The module B* has an interpolation property that B+ / pl’)’i is canonically
identified with the p-adic completion of the Betti realization Hg(f,)*" ) for each arith-
metic point p of H with w(p) > 0. They define their p-adic period Cip pt € Qp to be

the error term 5B Aule) _ o oot 0p b where bp is a basis of BT /pB* coming from a fixed

H-basis b* of Bi. On the other hand, our p-adic period C,; 4 is defined to be the error
term on the de Rham side. Fukaya [Fu] announces another construction of the p-adic
L-functions as an application of her theory of Ks-version of the theory of Coleman power
series.

4. CALCULATION OF LOCAL IWASAWA MODULES

In this section, we calculate projective limits of various local Galois cohomology groups.
The local calculation given in this section immediately implies the coincidence of two-
variable Selmer groups of Greenberg type and of Bloch-Kato type for Hida’s nearly
ordinary deformations 7 (see [O]). For the proof of the main theorem (Theorem 3.13),
we need only Corollary 4.13.

For a p-adic representation V' of Gg,, a subspace Hgl(Qp,V) (resp. HX(Qp,V)) of
HY(Q,, V) is defined as follows (see [BK, §3]):

Hy(Qp, V) = Ker [H(Qp,V) — H'(Q, V ®q, Bar)] .
HX(Qp, V) = Ker [H'(Qp, V) — H'(Qp,V ®g, B -
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We have

H;(Qp, V) C H{(Qy, V) C Hg(Qy, V) C HY(Qy, V)
by definition. Let T be a nearly ordinary deformation. For a pair (w,w’) of integers and
a pair (s,t) of non-negative integers, we define the specialization T S(jf’w,) (resp. ‘/;{f’wl))
of T and the specialization Tf:f;’w,) (resp. V( ) ) of T as in the beginning of §3. We
define a subspace H{, ,(Qp, VS(;”’wl)) of HY(Qy, Vs(’qf’w/)) to be:

HE (@ V™) = Ker [HY(Qp, V) — BH@p V)
By a result of Flach [F1], we have the following lemma:
Lemma 4.1. For integers w,w’ such that 0 < w — 1 < w’ and integers s,t > 0, the
subspace Hy(Qp Vyy™") of H'(Qy V™) is equal to HY (@ Viy™").
We prove the following lemma:

Lemma 4.2. Assume that the nearly ordinary deformation T satzsﬁes the condition
(MW) (cf. Definition 3.7). Then we have the equality Hf(Qp, V(w v )) Hgl( D) Vs(,;v’w ))
for integers w,w’ such that 0 < w —1 < w' and integers s,t > O

Proof. By Proposition 3.8 and Corollary 3.8.4 of [BK], we see:
Hy(Qp, Var ™)
HYQp V™)

= (H}(@, Vi) /1A, Vi)

= (Do (VE5)/(1 = HDarys(VL5™))
(

where ()* means a Q)-linear dual. Since a slope of Deyys (V;f;’w/)) isw—w —2orw-—1,
this implies that H}(Qp,n(ff’wl)) is equal to Hg1 (QP,VS(’?)’M/)) when w # 1 (Note that
w — w' — 2 can not be zero by the assumption of the lemma).

Let us discuss the case w = 1 in the rest. To see that DcryS(V( ) /(1=f)Darys(Vg, )
is zero in this case, we study the complex absolutes of the eigenvalues of the Frobemus f
on DcryS(VSt’w )) = Homyg, (Dpst(V(?’w ))N, Qp)G@P, where Dpst(T/;g’w ))N is the cokernel

S,

(1w)

of the monodromy operator N acting on Dpst(VS(’?’wl)). The set of eigenvalues of f on

Derys (V&’w )) is equal to the set of the eigenvalues of the inverse of f on Dpst(‘/:g(gﬂﬂ/)) N
and hence is equal to the set of the eigenvalues of the inverse of the geometric Frobenius

element Frob,, on Dpst(‘/;?’w/)) ~N- By the assumption (MW), the complex absolute values
of the eigenvalues of Frob, on DpSt(Vs(’g’w/)) are equal to prH or pw?"'l. Thus, the

eigenvalues of f on DcryS(VSgw )) can not be trivial for any w’ > 0. This completes the
proof. O

For each pair (s,t) of non-negative integers and each pair (w,w’) of integers such that

0<w-—1<w, we define H. (Q,, A(w’wl)) to be:

HGT(QP’ w " )) Ker (@p’ w " )) — Hl(prF_AL(;,}Z’w ))] )
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") is the discrete Galois representation Ts(jf’w )®Zp Qp/Zy. The inductive limit

ligHér(Qp, Agg’w/)) is equal to Ker [H'(Qy, A) — H'(Q,,F~A)]. Since it is indepen-
st

where Aguz

dent of the choice of (w,w’) with 0 < w — 1 < w’, we denote it by HL (Qp,.A). We have
the following proposition:

Proposition 4.3. Assume the condition (MW) for T. Let (w,w') be a pair of integers
such that 0 < w — 1 < w'. Then the following statements hold:

1. The group @S,tH/lf(@p,Tg’w/)) is a quotient of the Pontryagin dual of the group

HGr(Qp7 )
2. Assume that w # 1. Then the group Q_stH/f (Qp, Suzw )) 1s the Pontryagin dual
Of HGr(Qp? )

Remark 4.4. We will eliminate the assumption w # 1 later and prove that the group
Jim tH/f(@p, (ww )) is the Pontryagin dual of H}, (Qy, A) for any pair of integers (w, w')
such that 0 < w — 1 < w' (see Corollary 4.13).

First, we have the following lemma:

Lemma 4.5. Let T = T®Zpr[[GooH(>A€) be a nearly ordinary deformation. We assume
the condition (MW) for T. Then the value a(Froby,) € H at Frob, is not a root of unity
for the unramified character & associated to the unramified representation FTT.

Proof. The specialization &(Froby), € Q, of &(Frob,) at an arithmetic point p is equal

to the eigenvalue of the action of Frob, on Fﬂ/p ®q, @;r = Dcrys(FJ“V}o) ®q, @;r —
Dpst(F™V,) C Dpst(Vp). On the other hand, the eigenvalues of every lift of Frob, on

Dpst (V) are algebraic integers with the complex eigenvalues > p e by the assumption
(MW). Hence a(Frob,), is not a root of unity for each p € X0 (H) with w(p) > 0.
This completes the proof. O

For the proof of Proposition 4.3, we introduce other subgroups of H 1(QP,A). Define
(Qpa (w v )) by:
HY (Qp, AL™) = Ken [Hl(@m ALy — Y@y Fm Al
The inductive limit lim A/, , (Qp, Ay ) is equal to Ker [H'(Qp, A) — HH Q) F~A)].
Since it is also inde;énden‘c of the choice of (w,w’) with 0 < w —1 < w', we denote

it by HY ,(Qp, A). Let H}(@p, S’;’w/)) be as given after Definition 3.9. By Lemma 4.1

and Lemma 4.2, H}(Qp, AS’;’M/)) is the maximal divisible subgroup of H} o (Qp, A w o )).
Taking inductive limit with respect to s,t, we define

HYQp, A = limH}(Qp, AY™).

s,t

By [BK, Proposition 3.8], the group l(iLn&tH/lf(Qp,Tg’wl)) is the Pontryagin dual of

H} (Qp, A) @) Hence Proposition 4.3 is equivalent to the following proposition:
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Proposition 4.6. Assume the condition (IMW) for T. Let (w,w’) be a pair of integers
such that 0 < w — 1 < w'. Then the following statements hold:

1. The group H}(QP,A)(“”’”/) is a subgroup of H(l;r((@p,.A).
2. If further w # 1, H}(QP,A)(“”“’,) is equal to HL (Qyp, A).

w,w’)

For a finitely generated R-module M, we denote the specialization M/® ;" "M by
Ms(jf’wl). For (s',t') > (s,t), we have a natural surjection M, ngf’wl). We define

st
the augmentation map M S(jf’wl)—>M é,wt’,w,) by z > gg'T, where 7 is
9eGES /G g eDR /DR
a lift of . The augmentation map is well-defined and is independent of the choice of a
lift . We have the following lemma:

Lemma 4.7. Let M be a finitely generated torsion R-module whose ideal of support has
height at least two. Let (w,w’) be a pair of integers. For any t > 0, assume that M(ftu’w )

S
s a finite group whose order is bounded when s > 0 varies. Then the limait li_II}&tMSf’wl)
with respect to the augmentation maps above is equal to zero.

w’)

Proof. 1t suffices to show that hﬂ sM Sf = 0 for each t > 0. By the assumption of the
lemma, gn sM Sf’w/) is finite for any ¢ > 0. Hence there exists a sufficiently large natural
number such that G22 acts trivially on @SMS(Z)’W). For s’ > s > sg, the augmentation
map M, S(T:’w/) — Mg?}i’wl) is the multiplication by p* ~5. Hence, by taking s’ — s greater

than the p-order of ﬁMs(ff’w,), M(qf’w/) s M) s the zero map. This completes the

s, st

proof. O

Let (" (resp. \Ilgw/)) be the height one ideal of Z,[[G]] (resp. Z,[[Ds]]) defined
to be the kernel of the algebra homomorphism x“?* : Z,[[Gso]] — Q,, (resp. KOV

Zp|[Dso]] — @,). We also denote by o) and \Ilgw,) the height one ideals of Zp[[Goo X
Dqo]] through the inclusions Z,[[Gso]] = Zp[[Goo X Doo)] and Zp[[Doo)] = Zp[[Goo X Do ]].
Lemma 4.8. Assume the condition (MW) for T. Let (w,w’) be a pair of integers such
that w' > 0. Then, for any t > 0, (Ts(jf’w ))G@p = (Tg@p)glj’w) (resp. (F+Ts(:f’w ))G@p =

(F*TGQP)g’w/)) is a finite group whose order is bounded when s > 0 varies.

Proof. As a Gg,-module, we have the following exact sequence (see Definition 3.1):
0 — H(@)82,Zy[[G]l(X) — T — H(@ "X~ '& 40) 82, Zy[[Gu]|(X) — 0,

where H(a) (resp. H(a'x~'% !4))) is the free H-module of rank one on which Gg, acts
via the character & (resp. a !y A '4g). Hence we have the following exact sequence
for each t > 0:

0— H(&)\Ijgwq ®2,Zp|[G o)) (X)
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where M\P(w/) means the quotient M/ \Ilgw/)]\/[ . By the assumption that w’ > 0, the largest
t
Jipoe) OLL H(&)WW) and H(a~ 1y~ k)
t

is finite group. We have the following exact sequence:

coinvariant quotient by the action of G, v

(@) 1)) Gy ) B2 Lo [[Gooll (X) — (T )iy 10
o (G0 e iy, ) @ Zpl[Gcl](R) — 0.

It is easy to see that the coinvariant quotients by the action of Gal(Qp(pp~)/Qp) in the
right hand term and the left hand term of the above sequence are finite groups. Hence

v Sff’w ))G@p is proved in
the same way. m

(T <w’))G@p = (TG@p)\I/(“”) is a finite group. The assertion for (F+T(
t t

Proof of Proposition 4.3 and Proposition 4.6. Since Proposition 4.3 and Proposition 4.6
are equivalent to each other, it suffices to prove Proposition 4.6. Consider the following
commutative diagram:

0 —— H,(Qp,A) —— HYQp, A) —— HYQ,,F~A)

l | l

0o —— Hér,(Qp,A) —— HY(Q,, A) —— HY(QY,F~A).

The cokernel of H,(Qy, A) — HY, (Qy, A) is a sub-quotient of H*(Qp"/Qp, (F‘A)G@z“or) =

r/

Ker[H'(Q,,F~A) — H'(QW,F~A). Recall that F~ A is isomorphic to

HomZp (H(aX?@wo—l)@ZPZPHGm” (%71)’ Qp/Zp)-
Let us decompose the Dirichlet character ¢y as 19 = (1§ where the conductor of vy, is

prime to p and the conductor of ¢ is of p-power order. Then H 1(@]‘0” /Qp, (F‘A)G@ﬁr)
is the Pontryagin dual of the representation:

(H(@xRYG )&z, Zpl[Gocll (X)) Gy ) @/ = H(a(yf) )&/ ),

By Lemma 4.5, H(a(y)) 1) 9@ /@) is zero. This completes the proof of the assertion
1.

Let us now prove the assertion 2 in the rest. Since w # 1, we have the following
commutative diagram for s,t > 0:

’ ’ d‘ ’
0 —— HL(Q, V™)) —— HYQ,, V™)) —= HYQ, F V¥*)) —— 0

Qs,tJ/ JQSJ lgs,t

’

0 —— H&(QpAY™)) —— HY(Q, AY")) —— HY(Q,,F-A/™)).

’ d ’ ’
Note that H'(Q,, Vs(iuw )y =4 (Qp, F_Vs(f’w ) is surjective since H?(Qps, F+V;(w’w )y =

HO(Qy, (F+Vs(:f71’w/))*)* = 0 by the assumption that w # 1, where ( )* means the Q,-

linear dual here. By definition, H} (Qp,quf;’wl)) is equal to the image of a,,. We have
21



the following exact sequence by applying the snake lemma to the above commutative
diagram:

HY(Q, %)

li :
o HYQp Ty

o HNQ, FITM)
— hén (w,w’)
N H! (Qpa F_Tsﬂf ' )tor
HE, (Qp, A)
HH(Qp, A)()

— hﬂ H2(Qp7 Ts(j?w ))t0r7
s,t
where tor means the Z,-torsion part. We have:

lig H2(Q,, T5") = lig HO(Qy, Hom(T™), Q,/Z,(1)))
s,t s,t

w—1,w")

hﬂ (TGQp );t
st

~

~ 13 _17 !
~ 1im(Ty ey,
s,t

Since w # 1, we have w’ > 0. Hence h_rr;HQ( Dy Ts(ff’w/)) must be zero by Lemma 4.7 and

s,t

Lemma 4.8. On the other hand, the group:

s,t

HY(Qp T e HY(Qpy FT8™ )i

s

Hl , T(w,w/) Hl , F—T(wvw,)
” Coker[ ©@.TH™) | H'@, )
s,t

is a quotient of

s

liny Coker [H'(Qy, T3 ") — H' (@, F7TL)]
s,t

which is a subgroup of hg H?(Qp, F+T§}f’wl)). By the same argument as above, we prove
s,t
that lim HQ(QP,FJFTS(?f’wl)) = 0 by Lemma 4.7 and Lemma 4.8. This completes the
s,t
proof. O

Let A, Ra be as defined before Theorem 3.13. For each integer ¢ such that 0 < ¢ <
1 )
p — 2, we define the idempotent e; € Zy[A] to be e; = P > w™(g)g. For a finitely
P—1lgea
generated R-module M and each i, e;M is equal to the submodule of M on which A
acts by the character w*. Each e;M is an Ra-module and we have the decomposition
M= & e M as an R-module.
0<i<p—2
Lemma 4.9. Assume the condition (MW) for T. For each 0 <1i < p — 2, we have the
following statements.
1. The Pontryagin dual e;(HL (Qp, A)Y) of ep—o—i(HE(Qp, A)) is a finitely gener-
ated Ra-module such that the extension e;(Hk, (Qp, A)V) ®r, Frac(Ra) is a one

dimensional vector space over Frac(Ra).
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2. For a pair (w,w'") of integers such that 0 < w—1 < w', ¢; (@ f((@p, T ))> is
a finitely generated Ra-module such that e; (gn sth/lf(QmTS,t ))> QORA Frac(RA)
is a one dimensional vector space over Frac(Ra).

Proof. First, we calculate the group Hér(@p,A). By definition, we have the following
exact sequence:

HO(QmFiA) — Hl(vaFJrA) — Hér(@pv-A) — 0

By definition, e; (HO(QP, F‘A)) is a torsion Ra-module for each 0 < ¢ < p — 2. By this,
it suffices to show that the Pontryagin dual ¢; (H'(Q,,F~T)) of ep—o—; (H'(Qp, FTA))
is a finitely generated Ra-module of rank one for each 0 < ¢ < p — 2. Consider the
inflation-restriction sequence of continuous Galois cohomology:

0 — HY(Q)/Qp T4 ) — HY(QyFT) — H'(Q F-T) 5@ — .

Here, the last map is surjective since Gal(Q,"/Qp) has cohomological dimension one.

Since F~T %" is zero, H'(Q,, F~T) is isomorphic to H*(Qp", F~T7)G@/ Q) Now, we
have the following isomorphism:

HYQ," F~T) = HY Q) H(a™ )&z, Zp[[Gool] (X' X))
= H'(Q)", Zy[[Goe)l(X'X)) @z, H(@™).
By Shapiro’s lemma, H*( ;r,Zp[[Goo]](i_lx)) is isomorphic to @Hl(Q;r(ups),Zp(l)).

On the other hand, the cohomology H 1(er (fps), Zp(1)) is isomorphic to the p-adic

completion of (@;r(ﬂ/ps))x by the Kummer theory where @;r is the p-adic completion of

Qur. Hence, we have H'(QU" (p1ps), Zp(1)) = T x U L where U! is the group of principal

units of @;r(,ups) and 7 is a uniformizer of the complete discrete valuation field @;r(ups).
Thus, H'(QW, Zp[[Gso]](X 'x)) is isomorphic to Z, x @Usl Recall that we have the

S
following lemma by the theory of Coleman power series (see Lemma 5.8 and Lemma 5.9
for the theory of Coleman power series) :

Lemma 4.10. We have the following short exact sequence:

0 — Zy( —>LU1—>Z‘”[[G ]] — 0.

By the above lemma, we have the following exact sequence:
0 — (Zp x Zp(1))&z,H(a™") — HY(Q),F~T)
— (Zp x Z¥[[Goo])) @z, H(@™) — 0.
Since & is non-trivial by the condition (MW) and by Lemma 4.5, H(a~')%% is zero.
By Lemma 3.3, (H(~ Y&y, 25 ([G ) = lim , (H(@ )@z, 285 @3, Z,[G,] is free

of rank one over R. Thus the Gg,-invariant of (Zp X Zgr[[Goo]])(X)ZpH(a_l) is a free
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R-module of rank one. By taking Galois cohomology for Gal(Q,"/Qj) of the above short
exact sequence, we have

0— H'(Qp,FT) — R — HY(Q/Qp, (Zp x Zp(1))®z,H(@™)).

Since (Z, x Zp(l))@)ZpH(&_l) is torsion over Ra, H'(Qy'/Qp, (Zy x Zp(l))®ZpH(a_1))
is a torsion Ra-module. Thus, e; (Hl(Qp,F_'T‘)) ®r, Frac(Ra) is a one dimensional
Frac(Ra)-vector space for each 0 < ¢ < p — 2. This completes the proof of the assertion
1.

By Proposition 4.3, @SJH}f(Qp,TSZ’w )) is isomorphic to H}, (Qp, A)Y for w # 1.
Hence the assertion 2 follows from the assertion 1 if w # 1. In the rest, we treat the
case, w = 1. The group l(iLnH/lf(Qp,TSt’w )) is the Pontryagin dual of H}(QP,A). Since

s,t
H} (Qy, A) 1) s a subgroup of H{, (Q,,A) by Proposition 4.6, it suffices to show that
e;i(HL (Qp, .A)/H} (Qp, A)L¥)) is a cotorsion Ra-module for each 1 < i < p—2. Consider
the following commutative diagram for each s,¢ > 0:

HO@Q,, V™)) —— HY(Q,, P V™)) —— HL (@, V™)) —— 0

s,t S,

1 o b
HO(Qp F- ANy —— HYQ,, FTAL")) —— HL.(Q,,AN")) —— 0.
By Lemma 4.1 and Lemma 4.2, we have:

Image(bs,) C H}(Qy, ALY € HL (@, AL).

Since @Hér(Qp,ASt’w,)) is equal to ligHér, (Qp,Agt’w/)) by the proof of Proposition

st st

4.3, it suffices to show that e; (@Coker(bs,t)> is a cotorsion Ra-module for each
s,t
1 <i < p—2. In the above commutative diagram, we have Coker(as;) is a subgroup

S S S

of HQ(QP,FJFT(;}’TU/)) — (FJFT(}:_LU/))GQP' The module ¢; (@(FJrT(jf—l,w'))GQp is a

s,t

cotorsion Ra-module for each 0 < i < p — 2. Since ¢; (@Coker(bs,t)> is a subquotient

s,t

of e; <@(F+Ts(jf_l7w,))g(@p> , this completes the proof. O
st

Proposition 4.11. Let (w,w’) be a pair of integers such that 0 < w—1 < w’. Then the
group e; ((].Ln S»tH/lf(Qp,Tg?w )> 1s a torsion-free Ra-module for each 0 < i <p— 2.
Proof. For the proof, it suffices to give an injective R-module homomorphism from
Jim s,tH/l f(@p’ng;,w )) into a free R-module of rank one. Consider the following short
exact sequence:
H(Qp, FIT™)) — H (@, T™) — B} (@, FT™)).
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By Proposition 3.8 of [BK], H/lf((@p,FJ“Tgﬁ’w,)) is the Pontryagin dual of the group
H 1(Qp, F- A(w w') ). On the representation F*Vssf;']’w,), a sufficiently small open subgroup

of Gg, acts via the character yw—w' =1

modulo twist by an unramified character for
all sufficiently large s. Since we assume that w —w’ — 1 < 0, H/lf((@p,FjLTSZ’w )) =

H(Qp, F*Agﬁ’w,))v is zero by [BK, Corollary 3.8.4]. This gives us an injection:
H(Qp, To) < HE (@, B TH™)).

Consider the commutative dlagram.

0 —— H}f(Qp,F—Tg;,w)) Hl(@p’F_Tg,m@ Berys)

0 —— H}(Qy FToy")) —— H(Q F T3 @ Bays).
Since the kernel of the restriction map

Hl(@p’F—T(wﬂﬂ ) ® Bcrys) — Hl( ;r,F_Tiﬁ7w ) ® Bcrys)
is Hl(Qur/Qp, Derys(F™ V(w " )) @;r) = 0, we have an injection:
( o) Gal(Qp'/Qp)
fm #,(@,, - T) (L m Ay P T >)
87

(w,w')

The representation F~T ;" is isomorphic to Z[[G )] (X%_l)q)(w) ®ZP]H[(62_1)\PW), where
s t

<I>£“J> and ‘Ifgwl) is as defined before Lemma 4.8. Hence, we have the following isomor-
phisms:

Hjp(Qy, F- 7)) = Hjp Q) Zy[[Gocl] XX ) @2, H(&_l)\pgww
= Hp(Qp (1pe): Zp(X' ™)) @z, H(a_l)\yiw@

o HYUQY () Zp(x' ™))
HOQpr (1pe), Qu/Zp(x* ™))
where the second isomorphism is obtained by Shapiro’s lemma and the third isomorphism
is due to [BK, Corollary 3.8.4]. Hence we have

: ur —7(w7w Hl(Qur(:up ) Z (Xl w)) ~
M (Q5 F T <P—Ho (@ (1), Qp/ Zp (X w>>>®ZPH( )

We have the following claim:

Kz

P

H(ail)qjiwq ,

ur 1—w
Claim 4.12. The inverse limit ]#HO Q(S(M(M)D ()@Z/Z<X(X1—)i))
p°)s p/ Hp

o HYQ (ppe), Zp(X))
LHO Qur(ﬂp ), QP/ZP( ))

is isomorphic to the limit
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By the same argument as that of the proof of Lemma 4.9, we have:

lm A} QU FTo ™)) 2 H@ ) x (H(a—l)@pz;gr[[eoo]]).

As shown in the proof of Lemma 4.9, the G, -invariant of H(a ') x (]HI( _1)®ZPZ‘H[[GOOH)
is a free R-module of rank one. This completes the proof assuming the above claim. Fi-
nally, we prove Claim 4.12. Consider the following short exact sequence of GQ;r—mOduleSI

(1) 0 — Z[[Go]]®) U Z, (Gl (%) — Zp — 0,

where y is a topological generator of G,. By the connecting homomorphism of the Galois
cohomology of this sequence for GQgr, we have the following isomorphism:

(2) Ly — H Q) Zp[[Goo)l(X))(v = 1]
Let r # 0 be an integer. For each s > 0, we have the following short exact sequence by

applying the functor ®Zp[[Goo”Zp[[Goo]]/('yps — X" (7*")) of the sequence (1):

x(y=1)

(3) 0—=Zp(X") ®z, Zp|Gs] — Zp(X") @z, Zp|Gs] — Zp/(X"(¥"") = 1)Zp — 0,

where G5 = G/ GZ.. By taking the Galois cohomology of this sequence for GQgr, we
have the following isomorphism:

(4) Zp/ (X" (V") = VZp = HY Q' Zp(X") @z, Zp|Gi])[(v — 1)]
By taking projective limit of (4) with respect to s > 0, we have the isomorphism
of (2). On the other hand, the left hand side (resp. the right hand side) of (4)
is isomorphic to HO(QU (p1ps ), Qp/Zp(x")) (resp. H(QU(paps), Zp(x"))[(v — 1)]) Hence
o HNQ (), Zp(XT)) HY(Qy, Zy[[Gocl) (X))

Q). Q%) (@ Z,[Goc )b — 1

Q_HO (5:2 5 %(7; )( ) is isomorphic to each other for every r # 0. O
9 p D X

Corollary 4.13. Let T be a nearly ordinary deformation. Assume the condition (MW))
for T. Let (w,w') be a pair of integers such that 0 < w —1 < w'.

1. Then the group ]&ns,tH}f(Qp,T&t) is the Pontryagin dual of HL (Qp, A). Espe-
cially, the R-module @nS’tH/lf(Qp,Tg’w )) is independent of the choice of (w,w’).
2. For each integer i such that 0 < i < p—2, ¢ (]{i_stH/lf(Qp,Tg’wl))) is a tor-

Especially,

is isomorphic to

UJUJ

sion free Ra-module such that e; (L s tH/f(Qp, st

dimensional vector space over Frac(Ra).

))> ®@r, Frac(Ra) is a one

Proof. For any pair (w,w’) such that 0 < w — 1 < w’, the assertions are already shown
by Proposition 4.3, Lemma 4.5 and Proposition 4.11. Assume now that w = 1 or w =
w' + 1. We already know that e;(H}, (Qp, A)") is a torsion free Ra-module such that

e (L . tH/f<@pa (w,w ))) ®r Frac(Ra) is a rank one vector space over Frac(Ra). By

Proposition 4.3, e; (HGI(QP’ A)V) @, Frac(Ra) is a quotient of e;(HE, (Qp, A)Y). Since
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e (1<1_ s 75H/f((@p, T ))) ®r A Frac(Ra) is also a rank one vector space over Frac(Ra ),

ei (HL, (Qp,A)Y) must be equal to e; (].(in (Qp, st )) for each 0 < i < p—2.
This completes the proof. O

5. PROOF OF THEOREM 3.13

In this section, we prove Theorem 3.13. Throughout the section, we assume that T is a
nearly ordinary deformation in the sense of Definition 3.1. First, we give the interpolation
of exponential maps for 7 (Theorem 5.3) by using the inverse of the Coleman power series

map for the cyclotomic tower @;r(upoo )/Qp". Then we obtain the desired result (Theorem

3.13) on the interpolation of the dual exponential maps for 7 by taking the R-linear dual.
We will keep the notation of the previous sections.

Proposition 5.1. Let the assumptions and the notations be as in Theorem 3.13. Assume
that R is Gorenstein, Ra is a normal domain and that T satisfies the condition (MW).
Let us firx a basis d of the H-module D defined in Definition 3.5. Then, we have an
R-linear homomorphism

Eqy: HY(QpFT) —R
with the following properties:

1. The kernel and the cokernel of Z4 4 are pseudo-null R-modules.

2. Let C be an element of H*(Q,, F~T) and let ¢, € H'(Qp, F~T', ) be the specializa-
tion of C at (,p) € Xarith(Goo) X Xaritn (H) satisfying 0 < w —1 < w' for w = w(n)
and w' = w(p). Then, Eq+(C)yyp is given as follows:

-0 (o) (12 (1 ) ),

where (, ) is the de Rham pairing
Dar(F~Vyp) x Dar(F Vi) — Dar(Kpp(1)) = Ky,

w

¢ s the finite order character nx~% and s is the p-order of the conductor of ¢.

Let us show that Theorem 3.13 is deduced from this proposition. In fact, the de Rham
module Fil’Dgg (V) is canonically isomorphic to Dar(F~V,,) by Lemma 3.2 and the

exp™

dual exponential map H'(Qp, V) — Dar(F~V,,) factors through:

exp*

HY(Qp, V Vip) — HY(Qp, F~ Vip) — Dar(FVyp).
We define E’d to be the following composite map:
HY(Q,,T) — HY(Q,, F~T) =25 R.
The map E:i satisfies the desired interpolation property. The cokernel of the natural map

HY(Q,,T) — HYQ,,F~T) is a submodule of H*(Q,, F*T) = F+'T(—1)GQP. Since
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F+7'(—1)GQP is pseudo-null by Lemma 4.8, the cokernel of Ezl is a pseudo-null R-module.

As explained in §3, the map Eﬁi factors through:
HY(Qp, T) — H}((Q,, T) =% R.

Since H/lf(Qp,?) is a torsion free R-module of rank one by Corollary 4.13, the map

=4 H/1 f((@p,’T') — R is an injective R-homomorphism whose cokernel is a pseudo-null
R-module. Thus, we deduce Theorem 3.13 from Proposition 5.1.
Let us recall the definition of the exponential map of Bloch-Kato.

Definition 5.2. Let V' be a p-adic representation of Gg,. We have the following short
exact sequence of Gg,-modules (see (3.8.4) of [BK]):

0—V — BSleBR)®V — BreV — 0.

crys

The exponential map Dagr(V)/Fil’Dar(V) —5 H'(Q,, V) is the map induced by the
connecting homomorphism of the long exact sequence of the Galois cohomology of Gg,:

0 — H°(Q,, V) — DIZL(V) @ Fil’Dar (V) — Dar(V) — HY(Q,, V).

crys

Let us denote by Z the height two ideal (a(Frob,) — 1,7 — 1) of R, where v is a
topological generator of G,. We have the following proposition:

Proposition 5.3. Assume the condition (MW) for T. Let D be as in Definition 3.5.
Then we have an injective R-linear homomorphism

B+ 1 Z(DRLy[[Gocll) — H'(Qp, FFT)

with the following properties :

1. The cokernel of 24 is a pseudo-null R-module.
2. Let (7,p) € Xarith(Goo) X Xarign(H) satisfying 0 < w — 1 < w' for w = w(n) and
w' = w(p). Then, we have the following commutative diagram :

HY (@ F1T) = I(DEL,[Gu]])
Spnml lSpmp
Hl(vaF+Vw) e DdR(FJrVn,p)?
where my, , s the map

(1) (w — 1)! ( 9 >_S (1 - W) (1 - ‘W) - exp.

pw -1 ap pw

Let us fix a pair of integers (w, w’). Let 3 b the height three ideal (@gﬁ’wl),p“) of

s,tu

R (see §1 for the definition of (I):;,w’)) for positive integers s, ¢, u and let us denote by R 1,
the ring R/ ") for short. Since we assume that R is a Gorenstein Zp|[Goo % Dol

s,tu
algebra, Homy, ((.. x Doo]] (R Zp[[Goo X Dwcl]) is free of rank one as an R-module. Hence
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Hom(z/puz)(Gyx D] (Rs tous (Z/P"Z)[Gs x Dy]) is free Ry y-module of rank one. On the
other hand, we have

Homy, uz (R tus Z/p"Z) — Homyz jpuzyic, x 0y (Res,tus (Z/p"Z)[Gs x Dy])

defined by f — > gf(g~"x). Thus Homypuz(Res tu, Z/p"Z) is a free Ry y-module
g€GsxDg

of rank one, where Gy (resp. D) is the group Goo /G (resp. DOO/D?)’:). Hence Ry is
a zero dimensional Gorenstein ring in the sense of [E, §21]. We have the following lemma:

Lemma 5.4. Let S be a cofinitely generated R-module and let SV be the Pontryagin dual
of S. Assume that R is Gorenstein. Then there exists an isomorphism l(instuS[q)g“;Z )] =
Hompg (SY,R) for each fized pair of integers (w,w’).

Proof. For the proof of this lemma, it suffices to give the following isomorphism for each
s,tyu > 0:

(5) S[@“)) = Homy,puy (5 /@0

s,tau

gV ,Z/p"7)
= HomRstu(Sv/@ w,w! SV Rstu)-

stu

s,tau

Since Homg, , ,, (Sv/ég o sV, Res,t,u) is isomorphic to Homg (SY, R)®r R t.u, the lemma
is proved by taking the projective limit with respect to s,t,u once we have (5). The first
equality of (5) is nothing but the definition of the Pontryagin dual. In fact, since S is

equal to (SV)V, we have

s,tau Sv Z/puz)

S[(D(wW)] HomZp(S QP/Z )[ stu )] HomZ/p“Z(sv/(I)

stu

The last isomorphism of (5) is due to the fact that R4, is a zero dimensional Goren-
stein ring. For the fundamental properties of zero dimensional Gorenstein rings and the
modules over zero dimensional Gorenstein rings, we refer the reader to [E, §21]. O

Now, we deduce Proposition 5.1 from Proposition 5.3.

Proof of Proposition 5.1. Let F~A be F~T ®z R" where R" is the Pontryagin dual of
R. We have the following map:

(QZ”F T —>L Hl(QP7F T/(I)stu F- T)

s,tau
55 lim HY(Q,, F~A)[@%%"] % Homp (H'(Qy, F¥T), R)
s,tau
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The last isomorphism is due to Lemma 5.4 and the fact that H 1((@p, F*T) is the Pon-
tryagin dual of H! (Qp, F*.,Tl). The map € is defined to be the composite:

lim HY(Q,, F~7 /@00 FT) 5 lim HY(Q,, F-A[@Lw))
s,tau s,tau

S pim HY(Q,, T A, ][]

s,tau

22 lim HY(Qy, F-A[SM)) [, p"]
(

»

7t7

S

HY(Qp F- A7)

s,tu

=

7t7

%)
<

where <I>§“’) and ‘Ilﬁw/) are as defined before 4.8. The first isomorphism is obtained
by the assumption that R is Gorenstein and is induced by an isomorphism R, =
Homy /uz(Rs tu, Z/p*Z) as an R-module. Note that the kernel and the cokernel of each
&; are annihilated by the annihilator of the module H O(QP, F~A), which is a height two
ideal of R. Thus, we obtained an R-linear homomorphism:

HY(Q,,F~T) — Homg (Hl(@p, FHT), R)

whose kernel and cokernel are pseudo-null R-modules. We define an R-linear map =
to be the composite map:

(6) H'(QpF~T)— Homg(H'(Q,,F™T),R)
— Homg (Z(DRZ,[[Go]): R) = Homg (DRZ,[[Gool], R).

where the first map is the one constructed above, the second one is the dual of =, .
Let us show the last isomorphism. By applying e;, it suffices to show that the natural
injection

«; : Homp, (D@Zp[[GOO/A]],RA) — Homgp , (ei(I)(D®Zp[[Gw/A]])7RA)

is an isomorphism for each 0 < i < p — 2, where ¢;(Z) C Ra is the projection to
ei(R) = Ra. Since e;(Z) is a height two ideal of R, the localization (o;)q of «; is an
(Ra)g-linear isomorphism for every height one prime q of Ra. Since we assume that Ra
is normal, this implies that a; is an isomorphism for each 0 < ¢ < p — 2. Hence the last

isomorphism of (6) is given by the inverse of the map o €<9 %
<i<p—

Let us fix a basis d of the H-module D. We define an R-linear map Z4 to be the
composite map:

S fdel, )

HY(Q,, F~T) =5 Homp (DEZ,[[Gx0]], R) R.

By the above argument, the kernel and the cokernel of =, ;. are pseudo-null R-modules.
Before describing the interpolation property of the map EdﬂL, we recall the following

lemma:
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Lemma 5.5 ([Kal], Chap. II, Theorem 1.4.1). For each (1,p) € Xarith(Goo) X Xaritn (H)
with 0 < w(n) — 1 < w(p), the dual exponential map H' (Qp, F~V, ) — Dar(F~ V)
coincides with the composite map:
HY(Qp FVyp) = Homg, , (HY(Qp, F Vi), Kopy)
— Homg, , (Dar(F"V;p), Kyp) = Dar(F~ Vi),

where the first isomorphism s the local Tate duality for the Galois cohomology, the second
map 18 the K, p-linear dual of the exponential map 0fF+V77,p, and the third map is induced
by the pairing:

Dar (FV;yp) X Dar(F~Vipp) — Dar(Kyp(1)) = Kyyp.
Let us denote by [ , | the R-linear paring:
HYQp, F~T) x H(Q,,F*T) — R

given by (1). For an arithmetic character n (resp. arithmetic point p) of G (resp. H),
we have:

E4+(Chnp = [C.E4(dBD)],
-5 w—1 —1
we a pY  o(p ap®(p
=t () (1= ) (1= 20 (e enp(a )
-5 w—1 —1
we a P o(p ap$(p .
= w0t () (=P ) (1= 252 e )
Thus Proposition 5.1 is reduced to Proposition 5.3. O

Before giving the proof of Proposition 5.3, we review classical results by Coleman and
Perrin-Riou. As in the definition given in §2, the finite part H}( 75 V) is defined by the

kernel of the map H*( e V) — HY( sV ® Berys)-
Definition 5.6. We define a subring H of Q,[[X]] to be:

9= a:X' €QIX]] | 3hy € N such that_lim n~"]a,, = 0
>0

where | |, is the p-adic absolute value normalized so that |p|, = ]%. Recall that we

have an isomorphism Z,[[Goo/A]] ——— Z,[[X]] once we fix a topological generator
y—=X+1

v of Goo/A. Let Func(X¥(Go/A),Qp) be the ring of Qp-valued functions on the space
X(Go/A) of continuous characters from Goo/A into Q. Since we fix a topological
generator v of Goo/A, this gives us an injection Hoo — Func(X¥(G/A),Qp) by g =
Y a; X' — {p € X(Goo/A) = Y ai(p(y) — 1)'}. We also check that the subalgebra
i>0 i>0

Moo of Func(X(Goo/A),Qp) does not depend on the choice of the topological generator
7. We denote by Hoo(Goo), the extension Hoo ®z, Zp[A]. Hoo(Goo) is a subring of
Func(X(Goo/A), Qp) ®z, Zy[A] which contains Z,[[G ]|
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Perrin-Riou [P2] interpolates the Bloch-Kato exponential maps for crystalline rep-
resentations T of the Galois group of an absolute unramified complete discrete val-
uation field of mixed characteristic in the cyclotomic tower. Let w > 1. For each

lim 7Y (Q (pe), Zp(w)) o
HO(Qp (pp)s Zp(w))  2,((Gecl]
Hoo(Goo) — HY QP (11ps), Qp(w)). Let D (Qp(w)) e be the canonical integral lattice

of Dgjys(Qp(w)). By abuse of notation, we denote by the same symbol Py, the Z,[[Goo]]-
linear homomorphism Dgiy  (Qp(w))ime ® Z;r[[G 1] — Difys (Qp(w)) @ @;r(,ups) induced

by t®g — :L‘®C£s, where x € D, ((Qp(w))mnt and g € Goo. For the trivial representation

crys

T = Zyp of Gy = Goyr, her result is stated as follows:
%) P

s > 0, we denote by P the natural projection map

Proposition 5.7. [P2, Theorem 3.2.3] For each integer w > 1, we have a Zp|[[Go)]-
linear map:

@1 sHl (er(ﬂp% Zp(w))

=0 D (@) ® 211Gl — S ) Zo(w) 2

HOO(GOO))

with the following properties:

1. We have the following commutative diagram for each integer s > 0:

@ SH (Q;r (tps ), Zp(w)) Zur,(w) ~
Hoo(Go) E D (@) © B[
Qg i) Zyw)) gyl O T Dol @l i 711G

e B

Hl (Q;r (Nps)7 Qp(w)) # Dggys(@p(w)) ® (@;r('u,ps )7
where my, s s the map:
o\ ° .
(=1)»=Hw —1)lexp o (pw_1> if s >0,

w— -1
(=1)* ! (w —1)lexpo (1 Sy - 1) (1 - ;) if s = 0.

2. For each w > 1, we have

EUHD = (—1)(©{Gp }s20) 0 BN 0 (@351 1))-

If w = 1, the above map ="(1) is given by the theory of Coleman power series. The

cohomology group H}(er(ups), Z,(1)) is identified with the group of principal units U}
of @;r(,ups) in the group H'! (QpF (pps), Zp(1)) = L(@ur(up )*/p™) and the Bloch-Kato

exp

exponential map Dgji (Qp(1)) ® @;r(ﬂps) — Hf (Q“r(,up ), Qp(1)) is identified with the
classical p-adic exponential map @;r(up ) — R Ul ®z, Qp Let ¢ be the operator on
Zy'([Z]] which maps (1+ Z) to (14 Z)P and which acts on er by (arithmetic) Frobenius
automorphism o. Via ¢ : Zy'[[Z]] — Z,[[Z]], Zy'[[Z]] is free of rank p over Z;[[Z]].

We denote by T, (resp. Ny) its trace (resp. norm).
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Lemma 5.8 (Coleman). There is an isomorphism of groups:
1~ ~ Ny=0
Col : lim U} = (1+ (0, 2)Z01120)
which sends a norm compatible system u = (ug)s>1 € @sUsl to a power series g, €
(1 + (p, Z)Z?ﬂ[Z]]) " c (Z;r[[Z]])X such that g,((ps — 1)° " = us for each s > 1.
The group G acts on 2;“[[Z]] so that g-(1+Z) = (14 2)X9 for g € G. We denote
by 2;r[[Goo]](1 + Z) the rank one i;r[[Goo]]-module generated by (1 + Z).

Lemma 5.9. [P1, Theorem 2.3
(1) The image of the map

Ny=

(1= Ehiog: (14 (. 22 (12)) T — Q2]

is equal to Z;r[[Z]]T%":O.

(2) The ZY-submodule Z¥[[Z])"=0 of Z([Z]] is identified with Z¥[[Gool](1 + Z) by
g-1+2)= 1+ 2)x9,

(3) We have an exact sequence:

(1— %)ologoCol

0 — Zp(1) — lim U} ZY Gl + Z) — 0.

This gives us a commutative diagram of the interpolation of the exponential maps
=ur,(1)

when 7' = Z,, and w = 1 by putting = to be the inverse map of (1 — %) o log o Col:

Lim s H } (Qp (11p+), Zp(1)) . S ’
ur . ur Goo
HO(Q (1<), Zp(1)) Tav((1— £ )ologoCol) o s (Qp(1))mt ® Zp*[[Gool]

e Jr.

HHQ (1), Qp(1) e DI (Qp(1) @ QL (110,
expoo * if s >0,
where the map my is equal to -1
P a expo (1—o1) (1—2) it s =0,

Since the twist operators

LﬂlsHl(QEr(Nps)? Zp(w)) ®{Cps Fs>0 ]{iﬁlsHI(Q;r(Nps)a Zp(w +1))
HO(QEY(Mpw),Zp(w)) HO(QEr(ﬂp‘”)’ZP(w +1))

and
l ®0,(1)

Dgys(@p(w + 1))t ® i;r“GOOH

lim B Q) (1pe), Zp(w))
HO(Qp (pp=), Zp(w))

i H(Q (). Z(0) s (O (). 2y ()

HO(Qpr (ppee ), Zp(w)) HO(Qpr (ppee), Zp(w)) zp[%mn
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Hoo(Goo) when T' = Zy,. Let DR(V) = (V ® BdR)GQ;'r for a p-adic representation V' of
Gq,- If V is a crystalline representation of Gg,, we have the canonical isomorphisms
Dar (V) = Dgrys (V) and Dgg (V © Qp[Gi]) = D (V) © QpF (ps) = Degys (V) © QpF (paps)-
Thus in the case where T' = Z,,, Proposition 5.7 gives the following proposition:

Proposition 5.10. We have a Z,[[G]]-linear isomorphism:

HY(Qy, Zp[[Gocll(X))
HOQpZp)

B ZY[Gool] —

with the following commutative diagram for each 1 € Xaith (Goo) with w(n) > 1:

HY(Q), Zp[[G]l(X))  zr
HO( ;r’Zp) P

San{ lspy,

HY QW Ky(n)) " DY (Ky(n)).

In the above diagram, my, is the map

o () (-2 (-2

where ¢ is the finite order character nx~™" of Gs and s is the p-order of the conductor

of ¢.

Let T be a nearly ordinary deformation. For each n and each p, we define a special-

U ([Goo]@z, FTT — DL (F+V;,,) to be the composite:

ization map Spm10 /
"~ Sp,®1 s
P, 2 (Gal) ™25 FHV; 02, Z((Guc]
1®Sp r r
—" F'V, @k, ik, Dak(Ky(n)) = DaR(F Vi)

By taking the formal tensor product @ZPFJFT of the diagram obtained in Proposition
5.10, we have the following proposition:

Proposition 5.11. Let T be a nearly ordinary deformation. We have an R-linear iso-
morphism:

1
H( ;r,FJrT)
HO(Qpr, F+T)
with the following commutative diagram for each 1 and each p satisfying 0 < w(n) —1 <
w(p) :

EY : Z)[[Goo)|®2,FTT —

HY(Qy F*T) =y
HO(Qur, F+T)

Spn,pl lSme

HY QW FtV,p) <22 DU (FTV,,).
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In the above diagram, my,y is the map

where ¢ is the finite order character nx "™ of Gos and s is the p-order of the conductor

of @.

HQET) L HN@ 2GR
HO(Qu, F+T) is isomorphic to HO(Q, Z,)

is an unramified representation of Gig,. We define the desired map =" to be EUQIdp+r.
The map =Y is an R-linear isomorphism because =% is a Z,[[G'x]]-linear isomorphism.
Since the exponential map for F*V,, ,, is the connecting homomorphism of the cohomology
of GQgr—modules associated to the short exact sequence:

Proof. In fact, ®z,FFT since F+T

0— F"V,, — (Bi3le BlR) ®F"V,y — Bir ®FV,, — 0,

crys

we have the following commutative diagram :

HH Q" Ky (n) ®05, i, FH T Dk (Kn(1) @04, i, F Ty

exp

HY(Q)" F V) — DR (F Vi),

exp®Id
%

where the map exp in the upper line is the exponential map of a Ggur-module K, (n) and
the map exp in the lower line is the exponential map of a GQgr—module F*V, ,. Hence
we obtain the desired commutative diagram. O

To deduce Proposition 5.3 from Proposition 5.11, we prepare the following lemma:

Lemma 5.12. Assume the condition (MW) for T. Let (1n,p) € Xarith(Goo) X Xarith (H)
be a pair satisfying 0 < w(n) — 1 < w(p). Then the following statements hold:
(1) The Gal(Qp*/Qp)-invariant part of DL (F¥V; ) is equal to Dar(FTV; ).
(2) The operator o on DYy (F*V,, ) induces the multiplication by ay on the Gal(Qy" /Qy)-
invariant part Dar(FTV, ).
(3) The restriction map Hl(@paF+Vn,p) - Hl(QzlolraFJFVnm)Gal(Q;r/Qp) 1S an isomor-
phism.
(4) We have an exact sequence:

H( ;%f,Fw))Ga‘(QW@“

70/ T 1/ mur +
HO(Qw,F+T) — H(Q)/Qy,FTT).

0 — HY(Qp,FTT) — (
(5) The module H'(Qp/Qp, F*T) is annihilated by the height two ideal T = (y —
1, a(Frob,) — 1) C R.

Proof. The assertion (1) is nothing but the definition of DY, (F™V},,) and Dar(F*V;,,).
Since we have D, (FTV,, ) = Dar (K5 (0))®K,nK, D4y (FTV},) and DH%(FJFVP)Gal(QEr/Qp) —
Dgr(F*V}), it suffices to show that the arithmetic Frobenius o on D}j; (F™V}) induces the

multiplication by ap on Dgr(F*V}). Since F*V, is an unramified representation of Gg,,
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DY (F™V,) is isomorphic to FV;, ®@;r and the operator o on DYj (F*V}) is identified
with the operator 1 ® o on FV, ® Qp", which is equal to o~ ® 1 = Frob, ® 1 on the
invariant part Dagr(FTV,) = (FTV, ® @zr )°®?. This completes the proof of (2). For the
proof of (3), the restriction map H'(Q,, F*V; ) — H'(Q}', FtV, )@ %) s sur-
jective since Gal(Q,"/Qj) has cohomological dimension one. The kernel of the restriction
map is isomorphic to H'(Qu'/Q,, (F*anp)GQgr), which is zero since (F*Vn,p)GQEr =0.
For the assertion (4), let us consider the following commutative diagram:

H\(Qy F*T)

0 H(Qw,F*T HY(Qu,F* 0
B ( p ) B ( p T) HO(QEr,F+T)
1—Frob, J{ J{ 1—Frob, J{ 1—Frob,
Hl ur,FJrT

0 —— HYQY,F'T) —— HY(QW,FTT) (Q ) 0.

HO(Qpr, F+T)

By the condition (MW), we have (F+T)%2(@"/Q) — 0. Since (]F‘*"T)G%r = 0, the
restriction map H'(Q,, F*T) — H 1((@;r,FJF’T)Gal(@;r/ @) is an isomorphism. By ap-
plying the snake lemma to the above commutative diagram, we obtain the desired short
exact sequence. This completes the proof of (4). For (5), note that H'(Qy"/Q,, F*T)
is annihilated by the ideal (y — 1) since F*T = F*T/(y — 1)F*T by definition. On the
other hand, the Galois group Gal(Qy"/Q,) acts on F*T via the unramified character a.
This completes the proof of (5). O

Let us return to the proof of Proposition 5.3

Proof of Proposition 5.3. Recall that Gal(Q}"/Qp)-invariant part of the Z[[G'oc X Dol

module F+’]I‘<§>szzu,r[[Goo]] is DRz, Zp|[Goo)] by definition. By Lemma 5.12, the image of
the restriction of the map:

5 =y (H'(@yPr7))
D®szp[[GOOH HO(Qur, F+T)
p b

HY( ;r,F+T))Ga1<@ET/@p> N
. e

HO(Qpr, F+T)
denote by =, the map ID®y, Zy[[Goo)] — H'(Qp, FTT) thus obtained. For each 1 and
each p satisfying 0 < w(n) — 1 < w(p), we have the following commutative diagram:

to ZD®Rz,Zy[[Gx]] is contained in HY(Q,,F+T) C <

H( EraFJrVn,p)GQp 2 DY (FFV,,) 9

| H

HYQp FHVyp) 2 Dar(FtV,),

where the map exp in the upper (resp. lower) line is the Bloch-Kato exponential map
of F*V, , as a GQEr—module (resp. Gg,-module). The equalities in the diagram are

obtained by Lemma 5.12. The commutativity of the diagram is due to the fact that
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the exponential map of FJerJ as a GQgr—module (resp. Gg,-module) is the connecting
homomorphism of the Galois cohomology for the short exact sequence:

0—F"V,, — (BiSle Bl) ®F"V,y — Bir®@FV,, — 0,

crys

of Gg,-modules. Hence we have the commutative diagram of Proposition 5.3. O
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