Greenberg's view on generalizing Iwasawa theory via Galois deformations

Tadashi Ochiai (Osaka University)

June 14th, 2005

Hida ··· deformations of modular forms Mazur ··· deformations of Galois rep's

+

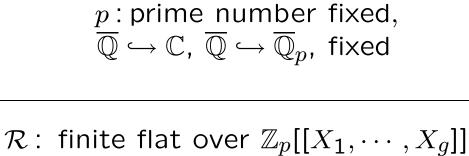
Iwasawa theory of <u>cyclotomic</u> deformation of motives(Mazur, Greenberg, etc) ⇒ Iwasawa theory for <u>general</u> Galois deformations (Greenberg)

Related articles by Greenberg

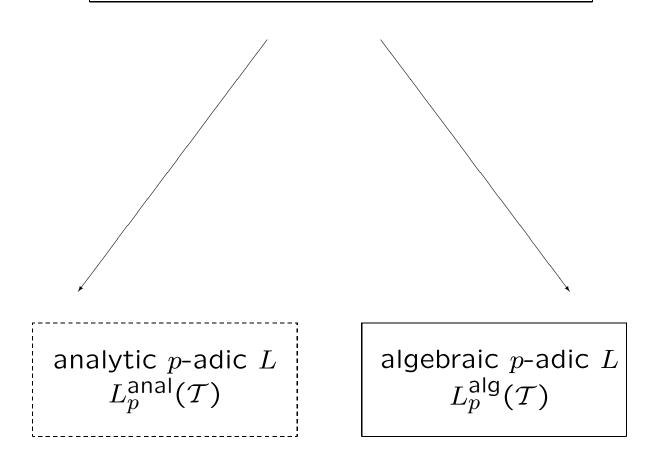
[1] "p-adic L-functions and p-adic periods of modular forms" (with Stevens),(1993)

[2] "Iwasawa theory and p-adic deformations of motives "(1994)

[3] "Elliptic curves and p-adic deformations " (1994)



 $\mathcal{T} \cong \mathcal{R}^{\oplus d} \curvearrowright^{\rho} G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ nearly ordinary filtration $F^+\mathcal{T} \subset \mathcal{T}$



General open problems

★ Construction of analytic *p*-adic *L*-function $L_p^{\text{anal}}(\mathcal{T}) \in \mathcal{R}$ for various \mathcal{T} ★ Iwasawa Main conjecture $(L_p^{\text{anal}}(\mathcal{T})) = (L_p^{\text{alg}}(\mathcal{T}))$ for various \mathcal{T} ★ Zero and pole of $L_p^{\text{anal}}(\mathcal{T})$ in Spec(\mathcal{R}) • Trivial zero of $L_p^{\text{MTT}}(E,s)$ for the cyclotomic deformation of an elliptic curve split multiplicative at *p* (Greenberg-Stevens[1]) • Order of the two-variable *p*-adic *L*-function $L_p(f_k, j)$ along diagonal divisor $j = \frac{k}{2}$ in the case of nearly ordinary Hida deformation (Conjecture by Greenberg).

★ Iwasawa theory non nearly ordinary Galois deformations

 Iwasawa theory for Coleman family for modular forms with positive slope?
etc.

Hida's deformation

• Γ' : the group of diamond operators on $\{Y_1(p^t)\}_{t\geq 1}$ • $\chi': \Gamma' \xrightarrow{\sim} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times}$ • $\mathcal{F} = \sum_{n\geq 1} A_n q^n$: ordinary Λ -adic newform of tame conductor N• $\mathbb{H} = \mathbb{Z}_p[[\Gamma']] [\{A_n\}_{n\geq 1}]$: finite extension of $\mathbb{Z}_p[[\Gamma']]$

Interpolation property of \mathcal{F}

 $\mathbb{H} \xrightarrow{\kappa} \overline{\mathbb{Q}}_{p}: \text{ arithmetic character of weight } k \geq 2 \quad (\text{i.e. } \exists U \underset{\text{open}}{\subset} \Gamma', \ \exists k \in \mathbb{Z} \text{ such that } \kappa|_{U} = \chi'^{k}) \\ \Rightarrow f_{\kappa} = \sum_{n \geq 1} a_{n}(f_{\kappa})q^{n} \in S_{k}(\Gamma_{1}(Np^{*})) \quad (a_{n}(f_{\kappa}) = \kappa(A_{n}))$

• $\mathfrak{M}_{\mathbb{H}}$: the maximal ideal of \mathbb{H} , $\mathbb{F} = \mathbb{H}/\mathfrak{M}_{\mathbb{H}}$ • $\overline{\rho} : G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ semi-simple with Trace($\overline{\rho}(\operatorname{Fr}_l)$) $\equiv A_l$ modulo $\mathfrak{M}_{\mathbb{H}}$ for almost all l ("residual representation" $\overline{\rho}$ always exists) Assume the following conditions: (**Ir**) $\overline{\rho}$ is irreducible. (**Fr**) $\exists \mathbb{T} \cong \mathbb{H}^{\oplus 2} \And \rho : G_{\mathbb{Q}} \longrightarrow GL(\mathbb{T})$ Trace($\rho(\operatorname{Fr}_l)$) = A_l for almost all l

We study the two-variable representation: $\mathcal{T} = \left(\mathbb{T}\widehat{\otimes}\mathbb{Z}_p[[\Gamma]](\widetilde{\chi})\right) \otimes \omega^i$ (*i* is a fixed integer with $0 \le i \le p-2$) $\mathcal{R} = \mathbb{H}\widehat{\otimes}_{\mathbb{Z}_p}\mathbb{Z}_p[[\Gamma]] = \mathbb{H}[[\Gamma]]$ where $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \xrightarrow{\sim}_{\chi} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times}$ $\widetilde{\chi} : G_{\mathbb{Q}} \twoheadrightarrow \Gamma \hookrightarrow \mathbb{Z}_p[[\Gamma]]^{\times}$ Algebraic *p*-adic *L*-function $L_p^{\text{alg}}(\mathcal{T})$

$$\begin{split} \mathcal{A} &= \mathcal{T} \otimes_{\mathcal{R}} \operatorname{Hom}_{\mathbb{Z}_p}(\mathcal{R}, \mathbb{Q}/\mathbb{Z}_p) \curvearrowleft G_{\mathbb{Q}} \\ \operatorname{Sel}_{\mathcal{T}} &:= \operatorname{Ker} \Big[H^1(\mathbb{Q}, \mathcal{A}) \\ & \to \prod_{l \neq p} H^1(I_l, \mathcal{A}) \times H^1(I_p, \mathcal{A}/\mathsf{F}^+\mathcal{A}) \Big] \\ (\text{Definition given } \underline{\text{by Greenberg in [2]}} \\ L_p^{\operatorname{alg}}(\mathcal{T}) &:= \operatorname{char}_{\mathcal{R}}(\operatorname{Sel}_{\mathcal{T}})^{\vee} \end{split}$$

Analytic *p*-adic L function $L_p^{\text{anal}}(\mathcal{T})$

We want $L_p^{\text{anal}}(\mathcal{T}) \in \mathcal{R}$ with the interpolation: $(\chi^{j-1} \circ \kappa)(\mathcal{L}_p(\mathcal{T}))/C_{p,\kappa} =$ $(-1)^{j-1}(j-1)! \left(1 - \frac{p^{j-1}}{a_p(f_\kappa)}\right)$ $\times \frac{L(f_\kappa, j)}{(2\pi\sqrt{-1})^{j-1}C_{\infty,\kappa}}$

for each arithmetic point $\kappa \in \text{Hom}_{\mathbb{Z}_p}(\mathbb{H}, \overline{\mathbb{Q}}_p)$ of weight $k \geq 2$ and for each $1 \leq j \leq k-1$ $(i \equiv j \mod p-1)$

 $C_{p,\kappa}, C_{\infty,\kappa}: \ p\text{-adic}$ and archimedian period for f_{κ}

Known results for $L_p^{\text{anal}}(\mathcal{T})$

- Construction via <u>Modular symbol</u>:
- Mazur, Kitagawa, Greenberg-Stevens, etc
- Construction via <u>Rankin-Selberg integral</u>: Panchishkin, Ochiai, Fukaya, etc

<u>Remark</u>

1. The relation between different constructions are not clear. (In each construction, the definitions of $C_{p,\kappa}$ is slightly different) 2. Kitagawa's $L_p^{\text{Ki}}(\mathcal{T})$ is globally defined over $\text{Spec}(\mathcal{R})$.

3. In Kitagawa's $L_p^{Ki}(\mathcal{T})$, the *p*-adic period $C_{p,\kappa}$ is a *p*-adic unit at each κ .

\Downarrow

Two-variable Iwasawa Main Conjecture

Under the condition (**Ir**), $(L_p^{\text{alg}}(\mathcal{T})) = (L_p^{\text{Ki}}(\mathcal{T}))$

Under the conditions (Ir) and (Fr), we have the following result:

Theorem. (Ochiai) Assume

(**H**) $\mathcal{R} \cong \mathcal{O}[[Y_1, Y_2]]$

(**G**) $\exists \tau \in G_{\mathbb{Q}}$ which is conjugate to $\begin{pmatrix} 1 & P_{\tau} \\ 0 & 1 \end{pmatrix}$ in

 $GL(\mathcal{T}) \cong GL_2(\mathcal{R})$ where $P_{\tau} \in \mathcal{R}^{\times}$. $\exists \tau' \in G_{\mathbb{Q}}$ acting on $\mathcal{T}/\mathfrak{MT}$ via the multiplication by -1.

Then we have:

 $(L_p^{\mathsf{alg}}(\mathcal{T})) \supset (L_p^{\mathsf{Ki}}(\mathcal{T})).$

Strategy of the proof

<u>Theorem A</u> (Ochiai, [2003] + preprint) The condition (**Ir**) \Longrightarrow an ideal of Euler system (ES) $\subset \mathcal{R}$ obtained by modifying (twisting) Beilinson-Kato elements Further, we have (ES) = $(L_p^{\text{Ki}}(\mathcal{T}))$

<u>Theorem B</u> (Ochiai, [2005]) Assume the condition (**H**) and (**G**). Then we have the following inequality: $(L_p^{alg}(\mathcal{T})) \supset (ES)$ Further progress

1. Study of $Sel_{\mathcal{T}/J\mathcal{T}} \longrightarrow Sel_{\mathcal{T}}[J]$ (preprint) <u>Proposition</u>

For each height-one prime $J \subset \mathcal{R}$,

(One-variable) Iwasawa Main Conjecture for $T/JT \iff (Two-variable)$ Iwasawa Main Conjecture for T

$$J = (\gamma - \chi'(\gamma')\gamma')$$
 (interpolating $L(f_k, k-1)$)

- Sel(T/JT) defined by Greenberg's method
- $L_p^{\text{anal}}(\mathcal{T}/J\mathcal{T})$ defined by $L_p^{\text{Ki}}(\mathcal{T})$ modulo J
- \bullet Iwasawa Main Conjecture for $\mathcal{T}/J\mathcal{T}$

 $(L_p^{\text{anal}}(\mathcal{T}/J\mathcal{T})) = E \cdot (L_p^{\text{alg}}(\mathcal{T}/J\mathcal{T}))$ where $E = (1 - A_p(\mathcal{F}))$ or (1) (extra factor).

 $\frac{J = (\gamma' - \kappa(\gamma')) \text{ (cyclo. deformation of } f_{\kappa})}{\text{Corollary of Proposition}}$ Cyclo. I.M.C. for $f_{\kappa} \iff$ Cyclo. I.M.C. for $f_{\kappa'}$ (for every arithmetic specilizations f_{κ} , $f_{\kappa'}$ of \mathcal{F}) (without assuming $\mu = 0$) **2. Residually reducible cases** (in preparation)

When (Ir) or (Fr) is false,

• $\mathcal{T} \sim \mathcal{T}'$ isogenious $\longrightarrow \operatorname{Sel}_{\mathcal{T}}/\operatorname{Sel}_{\mathcal{T}'}$ is studied. (generalization of Perrin-Riou's result for variation of μ -invariant under isogeny in the cyclotomic deformation case)

• Iwasawa Main conjecture in the case without (**Ir**).

3. Examples (preprint + in preparation) $\Delta = q \prod_{n \ge 1} (1 - q^n)^{24} \in S_{12}(SL_2(\mathbb{Z}))$

p:ordinary prime for Δ $(p \ge 11, p \ne 2411, \cdots)$ R =Z_p[[$\Gamma \times \Gamma'$]].

 $\mathcal{T} = \mathbb{T} \widehat{\otimes} \mathbb{Z}_p[[\Gamma]](\widetilde{\chi}) \otimes \omega^i \quad (0 \le i \le 10)$ such that $\mathbb{T}/(\gamma' - \chi'(\gamma')^{12}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong V_{\Delta}.$

<u>Lemma</u>

Except for (p, 1) with anomalous primes p of Δ , we have $\operatorname{Sel}_{\mathcal{T}} = 0$ and $L_p^{\operatorname{Ki}}(\mathcal{T})$ is a unit. $p = 11, 23, 691, \cdots$ are anomalous primes. $(p, i) = (11, 1) \Rightarrow$ $(\operatorname{Sel}_{\mathcal{T}})^{\vee} \cong \mathbb{Z}_p[[\Gamma \times \Gamma']]/(\gamma^2 - \gamma'^{-1})$ $(L_p^{\operatorname{alg}}(\mathcal{T})) = (L_p^{\operatorname{Ki}}(\mathcal{T})) = (\gamma^2 - \gamma'^{-1})$ (I.M.C. is true). $(p,i) = (691,1) \Rightarrow$ Lattices \mathcal{T} are not unique. There is a minimal lattice \mathcal{T}_0 so that $(L_p^{\text{alg}}(\mathcal{T}_0)) = (L_p^{\text{Ki}}(\mathcal{T}_0)) = \mathcal{R}$. For other lattices $\mathcal{T} \sim \mathcal{T}_0$, $L_p^{\text{alg}}(\mathcal{T})/L_p^{\text{alg}}(\mathcal{T}_0)$ and $L_p^{\text{anal}}(\mathcal{T})/L_p^{\text{anal}}(\mathcal{T}_0)$ are compared. $(p,i) = (23,1) \Rightarrow$ The condition (**G**) is not satisfied. (The residual representation is dihedral)

At the end, we will propose several problems related to results mentioned above...

<u>Problem 1</u> Weaken the condition (\mathbf{H}) in Theorem B.

Greenberg-Stevens[1] \implies Example of the cases where Hecke algebra might have singularity.

<u>Problem 2</u> Weaken the condition (**G**) in Theorem B. (Euler system should work for every "non-CM" deformations!) Related to Problem 2, we are led to the following conjecture:

Conjecture

Let $\mathcal{T} \cong \mathbb{Z}_p[[X_1, \cdots, X_g]]^{\oplus d}$ and let $G \subset GL(\mathcal{T})$ be an analytic subgroup. Assume that $\exists \phi \in \operatorname{Hom}(\mathbb{Z}_p[[X_1, \cdots, X_g]], \overline{\mathbb{Q}}_p)$ such that $G_\phi \subset GL_d(\overline{\mathbb{Q}}_p)$ is a reductive *p*-adic Lie group.

Then, $H^i(G, \mathcal{A})^{\vee}$ is a finitely generated torsion $\mathbb{Z}_p[[X_1, \cdots, X_g]]$ -module for every *i*.

<u>Remark</u>

1. Conjecture in the case g = 0 is Lazard's result in his paper in 1965.

2. Example of G for g > 0 is nearly ordinary Hida deformation \mathcal{T} and $G = \text{Image}[G_{\mathbb{Q}} \rightarrow GL(\mathcal{T})].$

3. Condition (**G**) implies $H^1(G, \mathcal{A}) = 0$ in the case of Hida deformation.