On the two-variable Iwasawa theory

Tadashi Ochiai (Osaka University)

2004

Main Reference

[1] "A generalization of the Coleman map for Hida deformation", the American Journal of Mathematics, 2003.

[2] "Euler system for Galois deformation", preprint, 2002, submitted.

[3] "On the two-variable Iwasawa Main conjecture for Hida deformations", in preparation.

Contents of the talk

- ★ Family of Galois representations
- ★ Two-variable p-adic L-function
- ★ Selmer groups
- ★ Two-variable Iwasawa Main conjecture

★ Examples, applications and problems (specializations to various one-variable deformations etc)

Situation

p: prime number, \mathcal{R} : finite over $\mathbb{Z}_p[[X_1, \cdots, X_g]]$ $\mathcal{T} \cong \mathcal{R}^{\oplus d} \curvearrowright G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

How much such big rep's T?

• Example from Hida deformation (since early 80's)

• "Deformation theory" by Mazur (since late 80's)

Study of Arithmetic for $(\mathcal{R}, \mathcal{T})$? $\star g = 0$ case (over C.D.V.R) \Rightarrow (Tamagawa Number Conjecture) \star cyclotomic deformation $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \xrightarrow[]{\sim}{} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times}$ $\widetilde{\chi}: G_{\mathbb{O}} \twoheadrightarrow \Gamma \hookrightarrow \mathcal{O}[[\Gamma]]^{\times}$ $T \cong \mathcal{O}^{\oplus d} \curvearrowleft G_{\mathbb{O}}$ $\mathcal{T} = T \otimes \mathcal{O}[[\Gamma]](\widetilde{\chi}), \ \mathcal{R} = \mathcal{O}[[\Gamma]]$ (Mazur, Greenberg, · · · , Perrin-Riou, Kato, \cdots) \star "R = T Theorem" by Wiles etc

Hida's deformation

• Γ' : the group of diamond operators on $\{Y_1(p^t)\}_{t\geq 1}$

• $\chi' : \Gamma' \xrightarrow{\sim} 1 + p\mathbb{Z}_p \subset (\mathbb{Z}_p)^{\times}$

•
$$\mathcal{F} = \sum_{n \ge 1} A_n q^n$$
: ordinary Λ -adic

newform of tame conductor N

• $\mathbb{H} = \mathbb{Z}_p[[\Gamma']] [\{A_n\}_{n \ge 1}]$: finite extension of $\mathbb{Z}_p[[\Gamma']]$

Interpolation property of \mathcal{F} $\mathbb{H} \xrightarrow{\kappa} \overline{\mathbb{Q}}_p$: arithmetic character of weight $k \ge 2$ (i.e. $\exists U \underset{\text{open}}{\subset} \Gamma'$, $\exists k \in \mathbb{Z}$ such that $\kappa|_U = \chi'^k$) \Rightarrow $f_{\kappa} = \sum_{n \ge 1} a_n(\kappa)q^n \in S_k(\Gamma_1(Np^*))$ $(a_n(\kappa) = \kappa(A_n))$ $\bullet\mathfrak{M}_{\mathbb{H}}$: the maximal ideal of \mathbb{H} $\bullet\mathbb{F}=\mathbb{H}/\mathfrak{M}_{\mathbb{H}}$

• $\overline{\rho}$: $G_{\mathbb{Q}} \to GL_2(\mathbb{F})$ semi-simple with Trace($\overline{\rho}(\operatorname{Fr}_l)$) $\equiv A_l \mod$ ulo $\mathfrak{M}_{\mathbb{H}}$ for almost all l (such $\overline{\rho}$ always exists)

Assume the following condition: (Ir) $\overline{\rho}$ is irreducible.

Then we have $\exists \mathbb{T} \cong \mathbb{H}^{\oplus 2} \And \rho : G_{\mathbb{Q}} \longrightarrow GL(\mathbb{T})$ $\mathsf{Trace}(\rho(\mathsf{Fr}_l)) = A_l \text{ for almost all } l$ $\begin{pmatrix} \varprojlim H^1_{\mathrm{\acute{e}t}}(X_1(Np^t)_{\overline{\mathbb{Q}}}, \mathbb{Z}_p)^{\mathrm{ord}} \xrightarrow{\to} \mathbb{T} \\ \text{fin. degree} \end{pmatrix}$

 $\mathcal{T} = (\mathbb{T}\widehat{\otimes}\mathbb{Z}_p[[\Gamma]](\widetilde{\chi})) \otimes \omega^i$ $\mathcal{R} = \mathbb{H}\widehat{\otimes}_{\mathbb{Z}_p}\mathbb{Z}_p[[\Gamma]] = \mathbb{H}[[\Gamma]]$ Our questions on \mathcal{T} ? \star *p*-adic *L*-function for *T* \star Selmer group for \mathcal{T} \star Iwasawa Main Conj. for \mathcal{T} ★ Similar studies as above on $\mathcal{T}/I\mathcal{T}$ for various ideals $I \subset \mathcal{R}$ $\left(\mathfrak{X}(\mathcal{R}) := \{ characters on \mathcal{R} \} \right)$ $\mathfrak{X}(\mathcal{R}) \xrightarrow{\text{finite cover}} D(0;1) \subset \overline{\mathbb{Q}}_p^{\oplus 2}$ \mathcal{T} is a family of Galois representations over $\mathfrak{X}(\mathcal{R})$ $V(I) \subset \mathfrak{X}(\mathcal{R})$ closed subspace **Two-variable** *p*-adic L function

 $\mathcal{L}_p(\mathcal{T}) \in \mathcal{R}$ with the interpolation property:

 $(\chi^{j-1} \circ \kappa)(\mathcal{L}_p(\mathcal{T}))/C_{p,\kappa} =$

$$(-1)^{j-1}(j-1)! \left(1 - \frac{\omega^{i-j}(p)p^{j-1}}{a_p(f_{\kappa})}\right) \times \left(\frac{p^{j-1}}{a_p(f_{\kappa})}\right)^{q(i,j)} G(\omega^{j-i}) \times \frac{L(f_{\kappa},\omega^{i-j},j)}{(2\pi\sqrt{-1})^{j-1}C_{\infty,\kappa}}$$

for $1 \leq j \leq k - 1$ $(k = weight of \kappa)$ $q(i,j) = \operatorname{ord}_p(\operatorname{Cond}(\omega^{i-j}))$ $G(\omega^{j-i})$: Gauss sum for ω^{j-i} $C_{p,\kappa}, C_{\infty,\kappa}$: *p*-adic and archimedian period for f_{κ}

(Mazur, Kitagawa, Greenberg-Stevens, Ohta, ..., Panchishkin, Fukaya, Delbourgo, · · ·) **Two-variable Selmer groups** $\mathcal{A} = \mathcal{T} \otimes_{\mathcal{R}} \operatorname{Hom}_{\mathbb{Z}_p}(\mathcal{R}, \mathbb{Q}/\mathbb{Z}_p) \curvearrowleft G_{\mathbb{Q}}$ $\operatorname{Sel}_{\mathcal{T}} \subset H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q},\mathcal{A})$ unramified condition at $l \nmid p$ condition at p by $G_{\mathbb{Q}_p}$ -filtration: $0 \longrightarrow \mathsf{F}^+ \mathcal{A} \longrightarrow \mathcal{A} \longrightarrow \mathsf{F}^- \mathcal{A} \longrightarrow 0$ The Pontrjagin dual $(Sel_{\mathcal{T}})^{\vee}$ is a finitely generated torsion \mathcal{R} -module (Rubin-Kato + control theorem).

 $\frac{\text{Conjecture}(\text{Two-variable I.M.C})}{\text{char}_{\mathcal{R}}(\text{Sel}_{\mathcal{T}})^{\vee} = (\mathcal{L}_p(\mathcal{T}))}$

Theorem A ([1]) We have

$$\equiv : H^{1}(\mathbb{Q}_{p}, \mathsf{F}^{-}\mathcal{T}^{*}(1)) \longrightarrow \mathcal{R}$$
with the following properties:
• \equiv is an \mathcal{R} -linear pseudo-isom.
• $\chi^{j} \circ \kappa(\equiv(\mathcal{C}))$ is equal to
 $\left(1 - \frac{\omega^{i-j}(p)p^{j-1}}{a_{p}(f_{\kappa})}\right) \left(\frac{p^{j-1}}{a_{p}(f_{\kappa})}\right)^{q(i,j)}$
 $\times \left(1 - \frac{\omega^{i-j}(p)a_{p}(f_{\kappa})}{p^{j}}\right)^{-1} \exp^{*}(c^{(j,\kappa)})$
for each $\mathcal{C} \in H^{1}(\mathbb{Q}_{p}, \mathsf{F}^{-}\mathcal{T}^{*}(1))$
and for each (j,κ) with $1 \leq j \leq k-1$ (k =weight of κ).
 $(c^{(j,\kappa)} \in H^{1}(\mathbb{Q}_{p}, \mathsf{F}^{-}\mathcal{T}^{*}_{f_{\kappa}}(1-j) \otimes \omega^{j-i})$
means $\chi^{j} \circ \kappa(\mathcal{C})$)

Theorem A is true for more general nearly ordinary deformations (modularity condition is not necessary!).

Idea of the construction of \equiv Classical Coleman theory on $\mathbb{Q}_p^{\mathrm{ur}}(\mu_{p^{\infty}})/\mathbb{Q}_p^{\mathrm{ur}}$ + nearly ordinary \Longrightarrow the interpolation property for $\exp^*(c^{(j,\kappa)})$

weight-monodromy condition on the "Frobenius" action on D_{pst} of $\kappa(\mathbb{T})$

 \implies Ξ is a pseudo-isom.

we have a Beilinson-Kato element $\mathcal{Z} \in H^1(\mathbb{Q}_{\sum_p}/\mathbb{Q}, \mathcal{T}^*(1))$

- $egin{aligned} z^{(j,\kappa)} &\in H^1(\mathbb{Q}_p,\mathsf{F}^-T^*_{f_\kappa}(1-j)\otimes\omega^{j-i})\ &\downarrow \exp^*\ \exp^*(z^{(j,\kappa)})\in \ \overline{\mathbb{Q}}_p \end{aligned}$
- $\exp^{*}(z^{(j,\kappa)}) = C_{p,\kappa} \cdot \frac{L_{(p)}(f_{\kappa}, \omega^{i-j}, j)}{(2\pi\sqrt{-1})^{j-1}C_{\infty,\kappa}}$ $(L_{(p)}(f_{\kappa}, \omega^{i-j}, s) \text{ is the Hecke } L\text{-}$ function with removed p-factor)

Corollary A $\operatorname{char}_{\mathcal{R}}(H^1(\mathbb{Q}_p, \mathsf{F}^-\mathcal{T}^*(1))/\mathcal{ZR}))$ $= (\mathcal{L}_p(\mathcal{T}))$

Theorem B ([2]) Assume (H) $\mathcal{R} \cong \mathcal{O}[[X_1, X_2]]$ (G) $\exists \tau \in G_{\mathbb{Q}}$ which is conjugate to $\begin{pmatrix} 1 & P_{\tau} \\ 0 & 1 \end{pmatrix}$ in $GL(\mathcal{T}) \cong GL_2(\mathcal{R})$ where $P_{\tau} \in \mathcal{R}^{\times}$. $\exists \tau' \in G_{\mathbb{Q}}$ acting on $\mathcal{T}/\mathfrak{M}\mathcal{T}$ via the multiplication by -1.

Then we have:

 $\mathsf{char}_{\mathcal{R}}^{}(\mathsf{Sel}_{\mathcal{T}})^{\vee} \supset$ $\mathsf{char}_{\mathcal{R}}^{}(H^{1}(\mathbb{Q}_{p},\mathsf{F}^{-}\mathcal{T}^{*}(1))/\mathcal{ZR}).$ For "general" $\eta : \mathcal{R} \to \overline{\mathbb{Q}}_p$ $\# III(\eta(\mathcal{T}^*(1))) \leq$ $\# H^1(\mathbb{Q}_{\Sigma_p}/\mathbb{Q}, \eta(\mathcal{T}^*(1)))/\eta(\mathcal{Z})$

(by (G) + E.S theory over D.V.R)

\Downarrow (**H**) + "specialization method"

$char_{\mathcal{R}}(\operatorname{III}(\mathcal{T}^{*}(1))) \supset$ $char_{\mathcal{R}}(H^{1}(\mathbb{Q}_{\sum_{p}}/\mathbb{Q}, \mathcal{T}^{*}(1))/\mathcal{ZR}))$ ↓

Theorem B follows from: $H^{1}(\mathbb{Q}_{\Sigma_{p}}/\mathbb{Q}, \mathcal{T}^{*}(1)) \rightarrow H^{1}(\mathbb{Q}_{p}, \mathsf{F}^{-}\mathcal{T}^{*}(1))$ $\rightarrow (\operatorname{Sel}_{\mathcal{T}})^{\vee} \rightarrow \operatorname{III}(\mathcal{T}^{*}(1))$ **Corollary B** Assume the conditions (H) and (G). Then we have the inequality:

 $\operatorname{char}_{\mathcal{R}}(\operatorname{Sel}_{\mathcal{T}})^{\vee} \supset (\mathcal{L}_p(\mathcal{T})).$

Corollary B \Rightarrow applications to "Iwasawa theory" on $(\mathcal{T}/J\mathcal{T}, \mathcal{R}/J)$ for height one ideals $J \subset \mathcal{R}$ (reference [3])

Example when $J = (\text{Ker}(\kappa))$ • $\mathcal{T}/J\mathcal{T} = T_{f_{\kappa}} \otimes \mathcal{O}[[\Gamma]](\widetilde{\chi}) \otimes \omega^{i}$ • $\mathcal{R}/J = \mathcal{O}[[\Gamma]]$

•
$$(\operatorname{Sel}_{T_{f_{\kappa}}\otimes\mathcal{O}[[\Gamma]](\tilde{\chi})\otimes\omega^{i}})^{\vee}$$
 is a tor-
sion \mathcal{R}/J -module (Kato-Rubin)
• $\exists L_{p}^{\mathsf{MTT}}(f_{\kappa}\otimes\omega^{i})\in\mathcal{O}[[\Gamma]]$
with the interpolation property:
 $\chi\eta(L_{p}^{\mathsf{MTT}}(f_{\kappa}\otimes\omega^{i})) =$
 $(1-\frac{\omega^{i-1}\eta(p)}{a_{p}(f_{\kappa})})\left(\frac{1}{a_{p}(f_{\kappa})}\right)^{q(i,1,\eta)}G(\omega^{1-i}\eta^{-1})$
 $\times \frac{L(f_{\kappa},\omega^{i-1}\eta,1)}{\chi}$

for finite order characters η of Γ .

Conjecture (cyclotomic I.M.C) $char_{\mathcal{O}[[\Gamma]]}(Sel_{T_{f\kappa}\otimes\mathcal{O}[[\Gamma]](\tilde{\chi})\otimes\omega^{i}})^{\vee} \\ = (L_{p}^{\mathsf{MTT}}(f_{\kappa}\otimes\omega^{i}))$

 $C_{\infty,\kappa}$

Proposition. (i) Assume (**G**) and (**H**). Then the cyclotomic I.M.C for one of $f_{\kappa} \otimes \omega^i$ implies the two-variable I.M.C for \mathcal{T} . (ii) The I.M.C for \mathcal{T} implies the cyclotomic I.M.C of $f_{\kappa} \otimes \omega^i$ for every f_{κ} in the Hida family \mathcal{F} .

 \rightsquigarrow an example of the equality of I.M.C for infinite family $\{f_{\kappa}\}$

No assumption on μ -invariant. (cf. Emerton-Pollack-Weston) *p*-adic *L*-function side $\bullet(\kappa(\mathcal{L}_p(\mathcal{L}))) = (L_p^{\mathsf{MTT}}(f_{\kappa}))$ Selmer group side • $(\operatorname{Sel}_{\tau})^{\vee}/\operatorname{Ker}(\kappa)(\operatorname{Sel}_{\tau})^{\vee}$ $\rightarrow (\mathsf{Sel}_{T_{f_{\kappa}}\otimes\mathcal{O}[[\Gamma]](\tilde{\chi})\otimes\omega^{i}})^{\vee}$ is pseudo-isom as $\mathcal{O}[[\Gamma]]$ -module. • $(\operatorname{Sel}_{\mathcal{T}})_{p-\operatorname{null}}^{\vee}/\operatorname{Ker}(\kappa)(\operatorname{Sel}_{\mathcal{T}})_{p-\operatorname{null}}^{\vee}$ is a pseudo-null $\mathcal{O}[[\Gamma]]$ -module for every arithmetic specialization κ of weight > 2.

Example (reference [3])

- $\Delta = q \prod_{n \ge 1} (1 q^n)^{24} \in S_{12}(SL_2(\mathbb{Z}))$
- $\mathcal{R} = \mathbb{Z}_p[[\Gamma \times \Gamma']]. \ 0 \le i \le 10.$
- $p \leq 10,000$: ordinary prime for Δ
- $(p \ge 11, p \ne 2411),$
- $\mathcal{T} = \mathbb{T}\widehat{\otimes}\mathbb{Z}_p[[\Gamma]](\widetilde{\chi}) \otimes \omega^i.$

Proposition.

(i) Except for (p,i) = (11,1), (23,1) and (691,1), we have Sel_T = 0 and $\mathcal{L}_p(T)$ is a unit. (ii) $(p,i) = (11,1) \Rightarrow$ $(Sel_T)^{\vee} \cong \mathbb{Z}_p[[\Gamma \times \Gamma']]/(\gamma^2 - \gamma'^{-1})$ $(\gamma^2 - \gamma'^{-1}) = (\mathcal{L}_p(T))$ (I.M.C.) ((23,1), (691,1): work in preparation)