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Abstract. At the first half of this article, we present a conjecture (cf. Conjecture 1.10)
to associate “the p-adic L-function” to a family of Galois representation. In recent years,
we have plenty of examples for families of Galois representations of the absolute Galois
group of �. However, because of lack of examples of explicit constructions, formulating
a conjecture was difficult. We give conjectures in §1.4 based on our detailed study
[O3] of the Iwasawa theory for the two-variable Hida deformation and various other
examples coming from Hida theory on higher dimensional modular forms, Coleman
theory, convolution product, etc.

At the later half of this article, we explain the example of the two-variable Hida
deformation by showing that it will be the first evidence (except the cyclotomic de-
formations) which satisfies our generalized Iwasawa main conjecture (cf. Conjecture
1.12).
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1. Overview of our program

For a “pure motive” M defined over the rational number field Q with coefficients in a
number field K, we define the Hasse-Weil L-function as follows:

L(M, s) =
∏

l∈{primes}

1
det(1− Froblt;Het(M�, Kλ)Il)

∣∣∣∣∣
t=l−s

,
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where λ is a prime of K. The L-function L(M, s) is convergent at the right half-plane
Re(s) > wt(M )

2 + 1 and is conjectured to be meromorphically continued to the whole
complex plane C. One of the simplest examples of pure motives is the Tate motive Q(n).
The L-function L(Q(n), s) is nothing but ζ(s+n) where ζ(s) is Riemann’s zeta function.
L(M, s) is conjectured to be holomorphic when M contains no component isomorphic to
a Tate motive Q(n).

1.1. Complex and p-adic periods. We fix an embedding ι∞ : Q ↪→ C throughout
the paper. Let us assume that M is critical in the sense of Deligne (see [De] for the
definition of critical motives). Then, we have the following isomorphism induced from
the de Rham’s theorem:

Per±M,∞ : HBetti(M)± ⊗�C
∼−→ HdR(M)± ⊗�C,

where HBetti(M)± is the ±-eigen spaces with respect to the action of the complex con-
jugate and HdR(M)+ (resp. HdR(M)−) is Fil0HdR(M) (resp. HdR(M)/Fil0HdR(M)).
The following definition of period as well as the notion of “critical” was given in [De]:

Definition 1.1. The complex period Ω±
M,∞ ∈ (K ⊗�C)× is defined to be det(Per±M,∞)

with respect to a fixed K-basis of HBetti(M)± and HdR(M)±.

Via the fixed embedding K ↪→ C, we identify Ω±
M,∞ as an element in C.

Remark 1.2. 1. Let M be Hd(X)(r) for a certain projective smooth variety X over
Q. Then, HdR(M)± ⊗�C is given as follows (we have p+ q = d below):

HdR(M)+ ⊗�C = ⊕p≥rH(X(C))p,q,

HdR(M)− ⊗�C = ⊕p<rH(X(C))p,q,

We fix a Q-basis {b±i } of HBetti
d (X(C),Q)± ∼= Hom�(Hd

Betti(X(C),Q)±,Q) and a
Q-basis {ω±

j } of HdR(M)±. The complex period Ω±
M,∞ ∈ C is the determinant of

the matrix (
∫
b±i
ω±
j )i,j of period integrals.

2. Ω±
M,∞ depends on the choice of K-bases of HBetti(M)± and HdR(M)±. However it

is independent as an element in C×/K×.

The following conjecture was formulated in [De]:

Conjecture 1.3. Let M be a critical motive in the sense of Deligne.

1. There exist complex numbers C±
M,∞ ∈ C such that

L(M, χ, r)

(2π
√
−1)r−1C

(−1)rχ(−1)
M,∞

∈ Q for

every integers r and for every Dirichlet characters χ making M(r) ⊗ χ a critical

motive, where L(M, χ, s) is the twist
∑
n≥1

χ(n)an(M)
ns

of L(M, s) =
∑
n≥1

an(M)
ns

and

M(r) is the r-th Tate twist of M . Especially, we have
L(M, 0)
C+
M,∞

∈ Q.

2. C±
M,∞ is equal to Ω±

M,∞ in C×/Q
×.
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Let us fix an odd prime number p and an embedding ιp : Q ↪→ Qp throughout the
paper. At the same time, we fix a norm-compatible sequence of p-power roots of unity
{ζpn}n≥1. We introduce a p-adic period associated to a motive M , which is a p-adic
counter part of the complex period given above. We denote by BHT the ring of Hodge-
Tate period’s . The fixed norm-compatible sequence induces the following isomorphism:

BHT = Cp[t, t−1]

where t is an element of BHT on which G�p = Gal(Qp/Qp) acts via the cyclotomic
character and Cp is the completion of Qp with respect to the p-adic absolute value. By the
comparison theorem of p-adic Hodge theory proved by Faltings and Tsuji independently,
we have the following isomorphism:

HBetti(M)⊗�BHT
∼−→ HdR(M)⊗�BHT.(1)

Recall that we can discuss the following

Per±M,p : HBetti(M)± ⊗�BHT −→ HdR(M)± ⊗�BHT,

by decomposing the above isomorphism (1).

Definition 1.4. The determinant det(Per±M,p) ∈ K ⊗� BHT with respect to a fixed
K-basis of HBetti(M)± and HdR(M)+ can be regarded as an element of BHT via the
morphism K ⊗� BHT −→ BHT induced by the fixed embedding K ↪→ Qp ↪→ BHT.
Further, it is not difficult to see that det(Per±M,p) is supported on a certain single com-
ponent Cpt

m ⊂ BHT. The p-adic period Ω±
M,p ∈ Cp is defined to be the coefficient of this

monomial in tm.

Remark 1.5. 1. As is also discussed in Proposition 1.6 in detail, the p-adic period
Ω±
M,p ∈ Cp is dependent on the choice of the fixed embeddings ι∞ : Q ↪→ C and

ιp : Q ↪→ Qp. For certain choice of ι∞, Ω±
M,p ∈ Cp can be zero. (cf. a vanishing

example by Y. André explained in [H3, §3.3])
2. The comparison isomorphisms (1) are also proved by Niziol by using K-theory.

Thus, there are three major different proofs for the comparison isomorphisms of
p-adic Hodge theory (Faltings, Tsuji and Niziol). In the case of curves or abelian
varieties, several other constructions are obtained by Tate, Fontaine and Coleman
etc. As already remarked in [H3](and also remarked by Illusie), comparison isomor-
phisms proved by these different methods are not known to be equivalent to each
other. Hence, we have an ambiguity of the definition of p-adic periods according to
which comparison theorem to choose.

The following type of non-vanishing of p-adic periods are given in [H3, Theorem 3.4.1].
A result with more general situation is stated in the above reference. Since, the author
could not follow the argument in [H3, Theorem 3.4.1] when he prepared this article, we
give here a result with a slightly special condition different from the formulation there
and we try to prove it in a very elementary way:

Proposition 1.6. Assume that M is a critical motive of rank-two with coefficient in a
number field K. We denote by Hp,ét(M) the p-adic étale realization of M , which is a
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two-dimensional Qp-vector space on which G� = Gal(Q/Q) acts continuously. Let us
assume the following conditions:

1. The diagonal component of the Hodge structure for M� is trivial.
2. The Zariski closure of the image of the representation ρM,p : G�−→ Aut(Hp,ét(M))

contains SL2(Qp).
Then, by replacing ι∞ by ι∞ ◦σ for certain σ ∈ G� if necessary, Ω±

M,p ∈ Cp is a non-zero
element in Cp.

Proof. For simplicity, we assume that the coefficient field K of M is Q. By the first
condition, the ±-eigen space for complex conjugation HBetti(M)± has dimension-one
over Q for each of + and −. We will only show the assertion for Ω+

M,p since the proof for
Ω−
M,p is done in the same manner. The comparison map (1) is decomposed as follows:

(2) HBetti(M)+ ⊗�BHT ↪→ H∗
Betti(M� ,Q)⊗�BHT

∼→ H∗
p,ét(M�,Qp)⊗�p

BHT

∼→ HdR(M�p)⊗�p BHT
∼→ HdR(M)⊗�BHT � HdR(M)+ ⊗�BHT

The isomorphism H∗
Betti(M� ,Q)⊗�BHT

∼−→ H∗
p,ét(M�,Qp) ⊗�p

BHT is an extension of
the comparison map:

H∗
Betti(M� ,Q)⊗�Qp

∼−→ H∗
p,ét(M� ,Qp)

∼−→
ι∞

H∗
p,ét(M�,Qp),(3)

where the first isomorphism is canonical and the second one is induced by the fixed
embedding ι∞ : Q ↪→ C.

Note that Ω±
M,p can vanish only when the one-dimensional subspace:

Ker
[
H∗
p,ét(M�,Qp)⊗�p

BHT −→ HdR(M)+ ⊗�BHT

]
inH∗

p,ét(M�,Qp)⊗�p
BHT is equal to the image ofHBetti(M)+⊗�BHT ⊂ H∗

Betti(M� ,Q)⊗�
BHT via the base extension ⊗�p

BHT of the isomorphism (3). Since HBetti(M)+ is in-
dependent of the choice of ι∞, we can replace ι∞ by ι∞ ◦ σ with certain σ ∈ G� if
necessary so that this coincidence does not happen (We used the second assumption of
the proposition here). Thus, we prove that there exists σ ∈ G� such that Ω+

M,p ∈ Cp is
non-zero if we replace our fixed embedding ι∞ : Q ↪→ C by ι∞ ◦ σ.

Both a complex period Ω±
M,∞ ∈ C and a p-adic period Ω±

M,p ∈ Cp depends on the
choice of a K-basis η = (η±1 , · · · , η±r±) of H±

Betti(M) and a K-basis δ = (δ±1 , · · · , δ±r±) of
H±

dR(M). They should have been denoted by Ω±
M,∞(η; δ) and Ω±

M,p(η; δ) to show that
they are dependent on choice of η and δ. The following observation is important for the
interpolation property of p-adic L-function discussed later (cf. §1.3 and §1.4).

Proposition 1.7 (Blasius, Hida). Suppose that Ω±
M,p(η; δ) is not zero. Then for any

other choice of basis η and δ, Ω±
M,p(η

′, δ′) is non-zero element in Cp such that the ratio
Ω±
M,p(η; δ)/Ω±

M,p(η
′; δ′) is an algebraic number. Further we have an equality

Ω±
M,∞(η; δ)/Ω±

M,∞(η′; δ′) = Ω±
M,p(η; δ)/Ω±

M,p(η
′; δ′)

in Q.
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We omit the proof of this proposition since it is straight-froward from the definition
of these periods.

1.2. p-adic Galois deformations. For each i with 1 ≤ i ≤ d, let Γ(i) be a group
with canonical isomorphism χ(i) : Γ(i) ∼−→ Zp . We denote by Λ(i) the Iwasawa algebra
Zp[[Γ(i)]]. Let us denote by X(Λ(i)) the set of continuous homomorphisms of Zp-algebras
from Λ(i) to Qp. Obviously, X(Λ(i)) is identified with the following set:

Char(Γ(i)) = {κ : Γ(i) −→ Qp | κ is continuous},

which is regarded as an open unit ball around 1 ∈ Qp in Qp with radius 1. Let Λ =
Λ(1)⊗̂�p · · · ⊗̂�pΛ(d) = Zp[[Γ(1) × · · · × Γ(d)]]. Then we have the following isomorphism
similarly as above:

X(Λ) ∼= Char(Γ(1)×· · ·×Γ(d)) ∼= Char(Γ(1))×· · ·×Char(Γ(d)) ∼= X(Λ(1))×· · ·×X(Λ(d)).

For a local domain R which is finite flat over Λ, we denote by X(R) the set of continuous
homomorphisms of Zp-algebras from R to Qp. X(R) is naturally regarded as a finite
cover of X(Λ). The following notation of arithmetic points, which are used frequently for
a long time, is useful to describe interpolation properties of Galois representations:

Definition 1.8. An element κ ∈ X(Λ) is called an arithmetic point (of weight (w1, · · · , wd))
if, for each i, there exists an open subgroup Ui of Γ(i) and an integer wi such that κ|Ui is
equal to (χ(i))wi |Ui . More generally, an element κ ∈ X(R) is called an arithmetic point
(of weight (w1, · · · , wd)) if the image via the finite cover X(R) −→ X(Λ) is an arithmetic
point (of weight (w1, · · · , wd)) in the above sense. We denote by Xarith(R) the subset of
X(R) which consists of all arithmetic points.

Definition 1.9. Let T be a free module of finite rank over R with continuous action of
G� and let P ⊂ Xarith(R) be a subset which is dense in X(R). A pair (T , P ) is called a
geometric pair if it satisfies the following conditions:

1. There exists a finite number of primes Σ containing {∞} such that the action of
G� on T is unramified outside Σ.

2. The specialization of T at κ ∈ P is a G�-stable lattice of the p-adic étale realization
of Mκ for a critical motive Mκ.

3. At each point κ ∈ P , Mκ does not have a component isomorphic to a Tate-twist of
a Dirichlet motive.

1.3. “Periods” + “Galois deformations” =⇒ “p-adic L-functions”. Suppose that
we are given a geometric pair (T , P ) over R. We expect that there exists a p-adic L-
function which interpolates the special value of Hasse-Weil L-function at each arithmetic
point divided by a complex period. In a special case, where our p-adic family is the
cyclotomic deformation of a certain p-ordinary motive M over Q (cf. Remark 3.3), such
conjecture was formulated by [CP].

However, general deformations other than the cyclotomic deformations of p-ordinary
motives are much more difficult to treat. Several important philosophical contributions

5



are given by Greenberg, Hida and Panchishkin. 1

Previous Contributions
1. Hida[H3] studied the interpolation properties characterizing the analytic p-adic L-

function Lp(T ) when T is an “admissible” Galois deformation, which is equipped
with a certain local filtration with respect to the action of the decomposition group
at p. In [H3], the p-adic periods are introduced and the idea of “balanced interpo-
lation properties” (cf. Proposition 1.7 and Remark 1.11) are introduced in order
to overcome the difficulties that we have no canonical choice of complex periods
Ω±
M,∞.

2. Greenberg [Gr2], instead of the characterization of the analytic p-adic L-function
itself, discuss the relation with the algebraic p-adic L-function which should be
called the “Iwasawa Main Conjecture”. This is the first reference which insists on
the importance of such generalization of the Iwasawa Main Conjecture.

3. The above two contributions are devoted only to “admissible” Galois deformations.
Panchishkin [P1] discusses p-adic L-functions for various Galois deformations. His
formulation as well as several other work by Perrin-Riou give us a perspective on a
well-formulated conjecture for the cyclotomic analytic p-adic L-function of a critical
motive which is not necessarily ordinary. Note that non-ordinary motive such as
supersingular elliptic curves are not “admissible”. Panchishkin’s important idea in
[P1] is to define “Hasse invariant of a critical motive M” to be the difference of
the Hodge polygon and the Newton polygon of M . The p-adic L-function for M is
an element in a certain extension of the cyclotomic Iwasawa algebra which allows
certain logarithmic growth of denominators according to Hasse invariant of M .

Let us introduce the sub-ring Hr of Qp[[T ]] defined to be

Hr := {f(T ) =
∑

an(T − 1)n | lim
n→∞

|an|n−r = 0}.

We have the inclusion

Zp[[Γ]] ⊂ H1 ⊂ H2 ⊂ H3 ⊂ · · · ⊂ Hr ⊂ · · · ,

where Γ = Gal(Q∞/Q) and Zp[[Γ]] is embedded in H1 via the isomorphism Zp[[Γ]] ∼−→
Zp[[T ]] which sends a topological generator γ of Γ to 1 + T .

Naive Expectation . Let (T , P ) be a geometric pair over R. Assume that we have
d+-functions Ã(1), · · · , Ã(d+) ∈ R, a character η̃ : Gal(Q(µp∞)/Q) −→ Zp[[Γ]]×, a free
R-module T̃ with continuous G�-action and p : R⊗̂�pZp[[Γ]] � R so that we have the
following conditions:

1. We have T ∼= (T̃ ⊗̂�pZp[[Γ]](η̃))⊗R�⊗�p�p[[Γ]] R.

2. For each κ ∈ P , T̃κ is isomorphic to the p-adic étale realization of M∗
κ such that

det(t− ϕ;Dcrys(M∗
κ)) is divisible by

∏
1≤i≤d+(t− α(i)

κ ), where α(i)
κ = κ(A(i)).

1During the preparation of this article, I learned from there is a paper by Fukaya-Kato [FK] for the
formulation of the framework of the p-adic L-functions from the viewpoint of non-commutative Iwasawa
theory.
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3. There exists a set of d+ non-negative rational numbers e = {e1, · · · , ed+} such that
ordp(α

(i)
κ ) = ei at every non-trivial specializations κ : R −→ Qp.

Let Rp,e be the extension ofR obtained by the specialization of R⊗̂�pH
e� via the above
map p, where �e is the smallest integer which is greater than or equal to e1 + · · ·+ ed+ .
Then, there exists Lp(T ) ∈ Rp,e such that we have:

Lp(T )(κ)
C+
κ,p

=
∏

1≤i≤d+

(
pw

∗(κ)−1

α
(i)
κ

)c∗(κ) ∏
d+<i≤dp

(
1− ηκ(p)α

(i)
κ

pw
∗(κ)−1

)

×
∏

1≤i≤d+

(
1− η−1

κ (p)pw
∗(κ)

α
(i)
κ

)
L(Mκ, 0)

Ω+
κ,∞

for each κ ∈ P , where dp ≤ d is the rank of Dcrys(M∗
κ) and α(d++1), · · · , α(dp) is the

other Frobenius eigenvalues on Dcrys(M∗
κ), w

∗(κ) is the weight of the character κ ◦ η̃ :

Γ ↪→R⊗̂�pZp[[Γ]]
p
� R κ→ Qp and c∗(κ) is the p-order of the conductor of (κ ◦ η̃)/χw∗(κ),

C+
κ,p ∈ Qp is an error term which is “naturally” arise from the construction.

In the above “Naive Expectation”, the formulation are detailed enough, but we left
ambiguity in the definition of C+

κ,p and Ω+
κ,∞. The normalized factors C+

κ,p are ad hoc
and not enough to characterize the p-adic L-function. On the other hand, the complex
period Ω+

κ,∞ for the motive Mκ depends on the choice of the rational bases of the Betti
realizations and the de Rham realizations of Mκ for which canonical choice of the optimal
period. For example, in the case of Hida’s nearly ordinary deformation discussed in a
later section of this paper, we have C+

κ,p = 1 in the Ranking-Selberg type construction
(Panchishkin, Fukaya, Ochiai). In the modular symbol construction for Hida family, C+

κ,p

seems to be non-trivial, but is not a p-adic period in the sense of Definition 1.4. Later in
Section 4, I will discuss the relation between such different constructions and I explain
about a modification [O3] my previous construction [O1].

1.4. Conjectures. Based on the preparation and the observation given in the previous
subsection, we try to present conjectures on p-adic L-functions and the Iwasawa Main
Conjecture.

Conjecture 1.10. Assume that we have d+-functions Ã(1), · · · , Ã(d+) ∈ R, a character
η̃ : Gal(Q(µp∞)/Q) −→ Zp[[Γ]]×, a free R-module T̃ with continuous G�-action and
p : R⊗̂�pZp[[Γ]] � R so that we have the following conditions:

1. We have T ∼= (T̃ ⊗̂�pZp[[Γ]](η̃))⊗R�⊗�p�p[[Γ]] R.

2. For each κ ∈ P , T̃κ is isomorphic to the p-adic étale realization of M∗
κ such that det(t−

ϕ;Dcrys(M∗
κ)) is divisible by

∏
1≤i≤d+ (t− α(i)

κ ), where α(i)
κ = κ(A(i)).

3. We have L(Mκ, 0) �= 0 for every κP except those contained in a certain Zariski closed
subset of X(R).
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4. There exists a set of d+ non-negative rational numbers e = {e1, · · · , ed+} such that
ordp(α

(i)
κ ) = ei at every non-trivial specializations κ : R −→ Qp

2.

Then, there exists Lanal
p (T ) ∈ Rp,e⊗̂O�p such that we have:

Lanal
p (T )(κ)

Ω+
M∗

κ ,p

=
∏

1≤i≤d+

(
pw

∗(κ)−1

α
(i)
κ

)c∗(κ) ∏
d+<i≤dp

(
1− ηκ(p)α

(i)
κ

pw
∗(κ)

)

×
∏

1≤i≤d+

(
1− η−1

κ (p)pw
∗(κ)−1

α
(i)
κ

)
L(Mκ, 0)
Ω+
Mκ,∞

for each κ ∈ P , where the basic notations are the same as those in “Naive expectation”
at the end of the previous subsection.

I remark about the contribution of Conjecture 1.10 on the existence of the p-adic
L-function.

Remark 1.11.
1. The introduction of the universal character η̃ to give a precise formulation interpolation

is not found in any previous reference. As we remark below, this formulation seems to
be useful to answer the questions:

When p-adic L-function exist for a given family of Galois representation T ?

What is the natural algebra where the p-adic L-function for T (if exists) should live?
How is a precise interpolation of the p-adic L-function?

2. The interpolation property in Conjecture 1.10 is independent of the choice of rational
bases on H±

Betti(Mκ) and H±
dR(Mκ). In fact, we remarked in Proposition 1.7 that Ω±

Mκ,p

and Ω±
Mκ,∞ changes by the same difference when we replace rational bases on H±

Betti(Mκ)
and H±

dR(Mκ) to another ones. This is an idea of “balanced interpolation property” due
to Blasius and Hida as discussed in [H3]. However, I believe that we need to introduce
Ω±
M∗

κ ,p
and Ω±

Mκ,∞ to be consistent with known construction including the cyclotomic
deformation of an ordinary cusp form and Hida families associated to an ordinary cusp
form. This idea on “modified balanced interpolation property” is one of a new point in
our formulation.

3. The rank of Dcrys(M∗
κ) and Dcrys(Mκ) is not the same in general. To be precise for this

difference, it is also necessary to introduce the character η̃ at the beginning.
4. For most of the case, the choice of the set {Ã(1), · · · , Ã(d+)} of d+-functions in R is auto-

matically determined from T . However, there are certain cases where we have ambiguity
in the choice of the set {Ã(1), · · · , Ã(d+)}. One of the most basic example for such case is
the cyclotomic deformation of an elliptic curve E which has supersingular reduction at
p. We also remark that the p-adic L-function Lanal

p (T ) does depend on the choice of the
set {Ã(1), · · · , Ã(d+)} when we have several choices.

2It seems that we need a slight modification on the choice of e to exclude the choice of the non-unit
root of Euler p-polynomial for the cyclotomic deformation of an ordinary cuspform, where the p-adic
L-function is not associated. However, we leave such problem at the moment.

8



5. Our formulation will include the case of Coleman’s family T of modular forms with a
fixed slope (Note that the p-adic L-function does not live in the p-adic Hecke algebra R
in this case).

In Iwasawa theory, it is important to discuss the relation between the analytic p-adic
L-function Lanal

p (T ) studied above and the another object so called “the algebraic p-adic
L-function Lalg

p (T )”, which is defined to be the characteristic ideal of the Pontrjagin dual
(SelT )∨ of “SelT ”.

Naive Expectation . Let T be a Galois representation over R, which makes a geomet-
ric pair (T , P ) with a certain choice of P ⊂ Xarith(R). Then the following conditions are
equivalent:

1. We have a choice of Ã(1), · · · , Ã(d+) which are all units in R×.
2. (SelT )∨ is a finitely generated torsion R-module.

From this expectation, the algebraic p-adic L-function Lalg
p (T ) (if suitably defined)

is non-trivial if and only if we have Ã(1), · · · , Ã(d+) ∈ R× satisfying the condition of
Conjecture 1.10. On the other hand, if we have such Ã(1), · · · , Ã(d+), they determine
G�p-stable subspace F+T ⊂ T of rank d+ over R. We define a two-variable Selmer
group SelT to be

SelT = Ker

⎡⎣H1(Q,A) −→ H1(Ip,F−A)×
∏
l =p

H1(Il,A)

⎤⎦ ,
where A = T ⊗R R∨ and F−A = A/F+A, Iv is the inertia subgroup of G� at any finite
prime v. I we assume that R is integrally closed in the fraction field Frac(R), we define
Lalg
p (T ) to be a generator of the characteristic ideal CharR(SelT )∨.

Conjecture 1.12 (Iwasawa Main conjecture). Suppose thatR is integrally closed in Frac(R)
and that we have a choice of Ã(1), · · · , Ã(d+) which are all units in R×. Then we have:

1. Lalg
p (T ) is non-zero, or equivalently, SelT )∨ is a torsion R-module.

2. We have the equality (Lanal
p (T )) = (Lalg

p (T )) in R⊗̂O�p .

At the end of this section, we remark that the Iwasawa Main conjecture is a very slight
modification of the one proposed by Greenberg [Gr2].

2. Complex periods for elliptic cuspforms

Let N be a fixed natural number. Let f =
∑
an(f)qn ∈ Sk(Γ1(N )) be a normalized

eigen cuspform.

Theorem 2.1 (Shimura). Let us fix a Dirichlet character ψ with ψ(−1) = (−1)k−1 such
that L(f, ψ, k− 1) �= 0. Define complex periods Ω±,(ψ)

f,∞ by

Ω+,(ψ)
f,∞ =

〈f, f〉
L(f, ψ, k− 1)

, Ω−,(ψ)
f,∞ = L(f, ψ, 1)

9



where 〈f, g〉 is the Peterson inner product
1

vol(H/Γ1(N ))

∫
�/Γ1(N )

f(z)g(z)yk−2dxdy. Then,

we have
L(f, χ, j)

πj−1Ω±,(ψ)
f,∞

∈ Q

for any Dirichlet character χ and for any integer j with 1 ≤ j ≤ k − 1, where ± =
(−1)j−1χ(−1).

We denote by Ln(Z) the space of homogeneous polynomials in variables s, t with coef-
ficients in Z, which is a free Z-module of rank n+1 generated by sn, sn−1t, · · · , stn−1, tn.
For any Z-algebra A, we define Ln(A) to be Ln(Z)⊗�A. Let D0 be the group of degree
0 divisors on P1(Q) = Q ∪ {i∞} which is regarded to be on the boundary of the upper
half plane H, on which the group SL2(Z) acts via natural linear transformation. Recall
that the module of modular symbols MS(Γ1(N ), Ln(A)) is defined as follows:

MS(Γ1(N ), Ln(A)) := HomΓ1(N )(D0, Ln(A)) ∼= H1
c (Y1(N )(C), Fn(A)),

We have natural decomposition

MS(Γ1(N ), Ln(A)) = MS(Γ1(N ), Ln(A))+ ⊕MS(Γ1(N ), Ln(A))−

under complex conjugate when 2 is invertible inA. LetHk(Γ1(N );A) ⊂ End(Mk(Γ1(N );A))
be the Hecke algebra. MS(Γ1(N ), Ln(A)) is naturally a finitely generated module over
Hk(Γ1(N )). Let Of be the ring of integers of Kf = Q({af (n)}). By the ring homomor-
phism λf : Hk(Γ1(N )) −→ Of , Tn �→ an(f), we define

MS(f)± = MS(Γ1(N ), Ln(Of [1/2]))[Ker(λf)].

The modules MS(f)± are free of rank one over Of [1/2].

Definition 2.2. Let η± be a basis of MS(f)± over Of [1/2]. Note that the module
MS(f)± is identified with an Of [1/2]-lattice of the Betti realization HBetti(Mf). When
the notation Ω±

Mf ,∞(η±, f) seems to be complicated, we denote it by Ω±,MS
f,∞ forgetting the

dependence on η±. Thus, Ω±,MS
f,∞ not defined as an element in C, but it is a well-defined

element in C×/Of [1/2]×.

We close this section with the following remark.

Remark 2.3.1. Let f be an eigen cuspform of weight k ≥ 2 and let j be an inte-
ger satisfying the inequality 1 ≤ j ≤ k − 1. The p-order of an algebraic number
L(f, j)/(2π

√
−1)j−1Ω(−1)j−1,MS

f,∞ is independent of the choice of the basis of MS(f)±,
since the change of the basis of MS(f)± induces multiplication by a unit of Of [1/2]. By
the Tamagawa number conjecture formulated by Bloch-Kato, the special value modulo
period is an algebraic number satisfying the equality:

ordp

⎛⎝ L(f, j)

(2π
√
−1)j−1Ω(−1)j−1,MS

f,∞

⎞⎠ = �(Sel(f, j){p∞})

most of the time except certain special cases.
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2. The p-order ordp
(

Ω±,MS
f,∞

/
Ω±,(ψ)
f,∞

)
of the ratio of two periods is not necessarily trivial

for a Dirichlet character ψ. It seems to be not known if there exists a finite even Dirichlet
character ψ so that this becomes zero.

3. Both cases, we have no canonical choice of complex periods. The period Ω±
Mf ,∞ is de-

pendent on the choice of a basis η± of HBetti(Mf )±. For this reason, the conjecture on
the existence of p-adic L-functions is difficult to formulate.

3. Cyclotomic one-variable p-adic deformation

Let Γ(1) = Gal(Q∞/Q), where Q∞ ⊂ Q(µp∞) be the cyclotomic Zp-extension. We
have the canonical isomorphism χ(1) : Γ(1) ∼−→ 1+pZp via the cyclotomic character χ(1).
Let Ôf be the p-adic completion of Of . Let f be a p-stabilized eigen cuspform of weight
k ≥ 2 and level Np. By Deligne, we have a continuous irreducible Galois representation
Tf ∼= (Ôf )⊕2 �ρf G� satisfying the following properties:

1. The representation ρf is unramified at every finite primes not dividing Np.
2. For each prime l � Np, we have Tr(ρf(Frobl)) = al(f), where al(f) is the l-th

Fourier coefficient of f .
Let Λ(1)(χ̃) be a free rank-one Λ(1)-module on which G� acts via the character χ̃ : G��
Gal(Q∞/Q) ↪→ Λ(1). In this section, we define T to be T := Tf ⊗�p Λ(1)(χ̃) on which
G� acts diagonally. The representation T is free of rank two over R := Ôf [[Γ(1)]]. In
this case, the construction of the p-adic L-function is known for long time (cf. [MS] and
[MTT]) as follows:

Theorem 3.1 (Mazur/Swinnerton-Dyer, Manin, Amice-Velu, Mazur/Tate/Teitelbaum).
Assume that ap(f) is a p-adic unit. Then, we have a p-adic L-function LMTT

p (f) ∈ R
associated to the above T and R which satisfies the following interpolation property:

LMTT
p (f)(κ) =

(
p(j−1)

ap(f)

)c(ε)(
1− ε−1(p)pc(ε)

ap(f)

)
G(ε−1)

L(f, ε, j)

(2π
√
−1)j−1Ω±,MS

f,∞

at each arithmetic point κ ∈ Xarith(R) of weight j with 1 ≤ j ≤ k−1, where ε = ω1−jκ/χj

is a finite order character of Γ(1) and c(ε) is the p-order of the conductor of ε.

The construction was done by the method of modular symbol. We have another
construction as follows:

Theorem 3.2 (Kato, Panchishkin). Assume that ap(f) is a p-adic unit. Suppose that
we have a Dirichlet character ψ with ψ(−1) = (−1)k−1 such that L(f, ψ, k − 1) �= 0.
Then, we have a p-adic L-function L

(ψ)
p (f) ∈ R associated to the above T and R which

satisfies the following interpolation property:

L(ψ)
p (f)(κ) =

(
p(j−1)

ap(f)

)c(ε)(
1− ε−1(p)pc(ε)

ap(f)

)
G(ε−1)

L(f, ε, j)

(2π
√
−1)j−1Ω±,(ψ)

f,∞

at each arithmetic point κ ∈ Xarith(R) of weight j with 1 ≤ j ≤ k − 1.
11



The construction by Kato factors through the Galois cohomology and Perrin-Riou’s
theory of the interpolation of exponential maps of local Galois cohomology in the cyclo-
tomic tower. Panchishkin’s theory are more direct method using a family of Eisenstein
series. However, both are based on the Shimura’s method of algebraicity of critical val-
ues of Hecke L-function of modular forms. Kato’s method has advantage that the p-adic
L-function is related to the Selmer group of f .

Remark 3.3.
1. By the interpolation property of the p-adic L-function, the ratio L

(ψ)
p (f)/LMTT

p (f) is

nothing but the constant Ω±,MS
f,∞ /Ω±,(ψ)

f,∞ .
2. In general, the deformation T := T ⊗�p Λ(1)(χ̃) constructed from the p-adic realization
T of a certain motive M is called a “cyclotomic deformation”. As Theorem 3.1 shows,
there appears only one motive M in the cyclotomic deformation.

4. Two-variable p-adic deformations

We consider the tower of modular curves with level Γ1(pt)-structures {Y1(pt)}t≥1. Since
Y1(pt) parametrizes pairs (E, e) of an elliptic curve E with a point of order pt on E, we
have the group of diamond operators

Z×
p ⊂ Aut({Y1(pt)}t≥1),

where the diamond operator 〈a〉 corresponding to a ∈ Z×
p sends (E, e) to (E, a · e). Let

Γ(2) be the p-Sylow subgroup of the group of diamond operators. We have the canonical
isomorphism:

χ(2) : Γ(2) ∼−→ 1 + pZp

By this canonical character χ(2), we have arithmetic points on X(Λ(2)) as defined in §1.2.
Let N0 be a natural number prime to p.

Theorem 4.1 (Hida). Let f0 ∈ Sk0(Γ1(N0p)) be a p-stabilized eigen cuspform of weight
k0 ≥ 2 such that ap(f0) is a p-unit. We have a finite extension R(2) over Λ(2) = Zp[[Γ(2)]]
and an R(2)-adic eigen cuspform F =

∑
n>0An(F )qn which satisfies the following prop-

erties.
1. There exists an arithmetic point κ(2)

0 of weight k0 − 2, such that the specialization of F
at κ(2)

0 is equal to f0.
2. For each arithmetic point κ(2) of weight w(κ(2)) ≥ 2, fκ(2) ∈ Sk(Γ1(Np∗)) is an eigen

cuspform with k = w(κ(2)) + 2.

For a family of cuspforms F as above, we associate a family of Galois representation
as follows:

Theorem 4.2 (Hida, Wiles). Let F =
∑

n>0An(F )qn be an R(2)-adic eigen cusp form
which satisfies the properties as in Theorem 4.1. Then, we have a continuous irreducible
representation ρF of G� on a two-dimensional vector space V over Frac(R(2)) satisfying
the following properties:

1. The representation is unramified at prime not dividing N0p.
2. We have Tr(ρF(Frobl)) = Al(F ) for each prime number l � N0p.

12



Assume further the following conditions:
1. R(2) is Gorenstein algebra.
2. The formal q-expansion obtained by reduction modulo the maximal ideal of R(2) is not

congruent to an Eisenstein series.
Then, the representation ρF on V has a G�-stable lattice T̃F ⊂ V which is free of rank-two
over R(2).

Following the spirit of Conjecture 1.10 and Conjecture 1.12, we expect to have the
two-variable p-adic L-function associated to T . Let us recall a result of Kitagawa whose
main ingredient is the construction of Λ-adic modular symbols 3. Kitagawa studied the
following inverse limit

UM±
N0

= lim←− r,sH1(X1(N0p
r)(C), ∂X1(N0p

r)(C); Z/(ps)Z)±,

where H1(X1(N0p
r)(C), ∂X1(N0p

r)(C); Z/(ps)Z) is the Homology group with support
at the boundary ∂X1(N0p

r)(C) consisting of finite numbers of cusps. This UM±
N0

is
naturally endowed with a structure of a Λ(2)-module. By using UM±

N0
, Kitagawa defines

the module of Λ-adic modular symbols MS±N0
by MS±N0

= HomΛ(2)(UM±
N0
,Λ(2)). We

define the F -componentMS(F ) of MS±N0
as follows:

MS(F )± =MS±N0
⊗Λ(2) R(2)[λF ]

Proposition 4.3. Assume the following conditions
1. R(2) is Gorenstein.
2. The p-tame character of the action of G�p on the residual representation T /MT is ωi-

twist of ordinary representation with i �≡ 2 mod p.
Then, MS(F )± is free of rank-one over R(2) and the natural map:

MS(F )±/Ker(κ(2))MS(F )± −→MS(fκ(2))± ⊗Of
κ(2)
Ôf

κ(2)

is isomorphism for every arithmetic point κ(2) ∈ X(R(2)) with w(κ(2)) ≥ 0.

Let us fix a basis b± of MS(F )±. For each arithmetic point κ(2) ∈ X(R(2)) with
w(κ(2)) ≥ 0, we denote by b±

κ(2) ∈MS(fκ(2))± ⊗Of
κ(2)
Ôf

κ(2)
the image of b±.

Theorem 4.4. We have LKi
p (F ) = LKi,b+

p (F ) in R which satisfies the following interpo-
lation property at each arithmetic point κ = (κ(1), κ(2)) in X(R) = X(Λ(1)) × X(R(2)) of
weight (j, k− 2) with condition 1 ≤ j ≤ k − 1:

LKi
p (T )(κ)
C+

κ(2),p

=
(

p(j−1)

ap(fκ(2) )

)c(ε(1))
(

1− (ε(1))−1(p)pc(ε(1))

ap(fκ(2))

)
G((ε(1))−1)

L(fκ(2) , ε(1), j)
(2π
√
−1)j−1Ω+,MS

κ(2),∞
,

where ε(1) is the Dirichlet character ω1−jκ(1)/χj and C+
κ(2) ,p

∈ Ôf
κ(2)
⊂ Qp is an error

term defined to be b+
κ(2) = C+

κ(2),p
η+
κ(2) with respect to the basis η+

κ(2) which is involved in

the definition of complex period f = Ω+,MS

κ(2),∞η
+
κ(2) .

3Greenberg-Stevens[GS] also constructs a two-variable p-adic L-function by a similar method. (cf.
Remark 4.8)
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Among various construction of two-variable p-adic L-functions, we show that Kita-
gawa’s one has better property for the analytic p-adic functions. The following proposi-
tion is the first evidence for Conjecture 1.10 except cyclotomic deformations:

Proposition 4.5. Assume that the image of G�−→ AutR(2)(T̃F) ∼= GL2(R(2)) contains
a subgroup SL2(R(2)). Then, by replacing the fixed embedding ι∞ : Q ↪→ C if necessary,
there exists a unit U ∈ (R(2)⊗̂Ẑur)× ⊂ (R⊗̂Ẑur)× such that Lanal

p (T ) = LKi
p (T ) · U ∈

R⊗̂Ẑur satisfies the characterization of the Conjecture 1.10.

Proof. By an important property of Kitagawa’s construction, we have

MS(F )+/Ker(κ(2))MS(F )+ ∼−→MS(fκ(2))+ ⊗ Ôf
κ(2)

,(4)

at each arithmetic point κ(2) ∈ Xarith(R(2)) with w(κ(2)) ≥ 0. Note that MS(fκ(2))+

is a lattice of the Betti realization HBetti(Mκ(2))+. By the same argument as the proof
of Proposition 1.6, we prove that HBetti(Mκ(2)) ⊗ Qp

∼= Hp,ét((Mκ(2))�) induces the iso-
morphism from HBetti(Mκ(2))+ ⊗Qp to the one-dimensional subspace of Hp,ét((Mκ(2))�)
unramified under the action of G�p by replacing ι∞ : Q −→ C if necessary. Thus, we
have an isomorphism HBetti(Mκ(2))+ ⊗ BHT −→ HdR(Mκ(2))+ ⊗ BHT which is the base
extension of

HBetti(Mκ(2))+ ⊗ Q̂ur
p
∼= HdR(Mκ(2))+ ⊗ Q̂ur

p .(5)

Now, we suppose that w(κ(2)) = 0 (hence, the weight of fκ(2) is two). By a result in [O3],
the integral structure associated to the (plus-part of) integral Betti cohomology on the
lefthand side of (5) is equal to the integral structure on the righthand side generated by
fκ(2) ∈ HdR(Mκ(2))+. Let us take uκ(2) ∈ (OKẐur

p )× such that fκ(2) = uκ(2)b+
κ(2) . Let U be

an element in (R⊗̂Ẑur)× such that U(κ(2)) = uκ(2) . Note that uκ(2) ·C+
κ(2),p

= Ω+
κ(2),p

with

fκ(2) = Ω+
κ(2),p

η+
κ(2) . Thus, Lanal

p (T ) = LKi
p (T ) · U satisfies the interpolation property:

Lanal
p (T )(κ)

Ω+
κ(2),p

= ap(fκ(2))−c(ε
(1))

(
1− (ε(1))−1(p)pc(ε

(1))

ap(fκ(2))

)
G((ε(1))−1)

L(fκ(2) , ε(1), 1)

Ω+,MS

κ(2),∞

,

at every arithmetic point κ(1) ∈ Xarith(Λ(1)) with w(κ(1)) = 1, where we have and fκ(2) =
Ω+,MS

κ(2),∞η
+
κ(2) respectively in HdR(Mκ(2))+⊗Q̂ur

p and HdR(Mκ(2))+⊗C. Though U depends

on κ(2) and the point κ(2) is fixed in the above interpolation, it is not difficult to have
U ∈ (R(2)⊗̂Ẑur)× so that uκ(2) = U(κ(2)) is related to the p-adic period Ω+

κ(2),p
at every

κ(2) ∈ Xarith(R(2)) with w(κ(2)) ≥ 0. We do not continue the similar argument for the
existence of U ∈ (R(2)⊗̂Ẑur)× which covers every arithmetic point in Xarith(R(2)) of
weight ≥ 0. We only remark that the key of our proof is that the exact control as in
(4) are satisfied by every ideal I ⊂ R(2) of the form I = ∩Ker(κi) where κi runs finite
number of elements in Xarith(R(2)) with a fixed weight w = w(κi).

On the other hand, we have the following result on the algebraic side:

Proposition 4.6. The Pontrjagin dual (SelT )∨ of SelT is a finitely generated torsion R-
module and it is identified with the other construction using Bloch-Kato’s local condition.
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We define an algebraic p-adic L-function Lalg
p (T ) ∈ R to be the characteristic power

series of (SelT )∨. Thus, the Iwasawa Main Conjecture in this case is formulated as follows
(cf. Conjecture 1.12):

Conjecture 4.7 (Iwasawa Main Conjecture). Let T be the two-variable Galois defor-
mation associated to a certain Λ-adic cuspform F ∈ R(2)[[q]]. We assume technical
conditions such as Gorenstein property of R(2) as well as the irreducibility of the residual
representation of G� for T . Then, we have the equality:

(Lalg
p (T )) = (LKi

p (T ))

between ideals in R⊗̂Ẑur.

Remark 4.8. Conjecture 4.7 is a refinement of the two-variable Iwasawa Main conjec-
ture proposed by Greenberg [Gr2]. In the analytic side, the Iwasawa Main Conjecture
depends on which two-variable analytic p-adic L-function to choose among several con-
structions containing [GS], [F], [O1] and [P2]. For example, [GS] gives a two variable
p-adic L-function LGr

p (T ) ∈ Frac(R). by a similar method of “Module of Λ-adic modular
symbols”. However, the method is slightly different from the one by Kitagawa and their
construction does not give a priori the property (4) at every κ(2) simultaneously as they
remark in their paper. Thus, we are not sure if LGr

p (T ) satisfies the characterization as
in Proposition 4.5 and we are not sure if the ideal (LGr

p (T )) ⊂ R is equal to (LKi
p (T )).

The constructions [F], [O1] and [P2] are based on Shimura’s theory of the Rankin-Selberg
integral and the periods of modular forms. Thus, the ideal defined by these ones are not
equal to (LKi

p (T )) in general. In [O3], we also discuss different candidates for the defi-
nition of Selmer groups of T as well as several properties on the behavior of the Selmer
group with respect to the specializations of Galois representations at ideals of the ring
of coefficients. Since we have few examples for Iwasawa theory of Galois representations
other than cyclotomic deformations, we believe that such detailed study is important to
justify our formulation of the conjecture.

4.1. Comparison. We gave the following analogue of Perrin-Riou map, which give an
interpolation of dual exponential map on local Galois cohomologies in the case of two-
variable nearly ordinary Galois deformations.

Theorem 4.9. [O1] There exists

Ξ : H1
/f (Qp, T ) −→ R

which satisfies the following properties for each element C ∈ H1
/f (Qp, T ). For any arith-

metic point κ = (κ(1), κ(2)) of weight (w1, w2) with 1 ≤ w1 ≤ w2, we have

κ(Ξ(C)) = 〈exp∗(cκ), fκ(2)〉,
where cκ ∈ H1

/f (Qp, T /Ker(κ)T ) is the specialization of C under the map H1
/f (Qp, T ) −→

H1
/f (Qp, T /Ker(κ)T ).

On the other hand, by taking the projective limit with respect to m, n of elements in
H1(Q, H1

ét(Y1(N0p
n)
�
,Zp) ⊗ Zp[Γ/Γp

m
](χ̃)) constructed by Kato and sending it via the
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natural finite map

H1(Q, lim←−m,nH
1
ét(Y1(N0p

n)
�
,Zp)⊗ Zp[Γ/Γp

m
](χ̃)) −→ H1(Q, T ),

we have an element Z(ψ) ∈ H1(Q, T ). The element Z(ψ) has the property that

〈exp∗(z(ψ)
κ ), fκ(2)〉 =

L(p)(fκ(2) , ε(1)ω1−j, j)

(2π
√
−1)j−1Ω+,(ψ)

κ(2),∞

at each arithmetic point κ = (κ(1), κ(2)) in X(R) = X(Λ(1))×X(R(2)) of weight (j, k− 2)
with the condition 1 ≤ j ≤ k − 1. Here, L(p)(fκ(2) , ε(1)ω1−j, s) is the Hecke L-function
with the p-factor removed.

Corollary 4.10. [O1] Ξ(Z(ψ)) ∈ R satisfies the following interpolation property at each
arithmetic point κ = (κ(1), κ(2)) in X(R) = X(Λ(1)) × X(R(2)) of weight (j, k − 2) with
the condition 1 ≤ j ≤ k − 1:

Ξ(Z(ψ))(κ) =

(
p(j−1)

ap(fκ(2))

)c(ε(1))(
1− ε−1(p)pc(ε)

ap(fκ(2))

)
G(ε−1)

L(fκ(2) , ε(1)ω1−j, j)

(2π
√
−1)j−1Ω+,(ψ)

κ(2),∞

,

We remark that the above element Ξ(Z(ψ)) ∈ R satisfies the two-variable interpolation
property which resemble to the one for the ideal two-variable p-adic L-function Lanal

p (T )
except the difference on the complex period and the p-adic period. There appears no
p-adic periods on the right hand side and the complex period Ω+,(ψ)

κ(2),∞ might not be well-
optimized.

Theorem 4.11. [O3] There exists an Euler system ZKi ∈ H1
/f (Qp, T ) such that

〈exp∗(zKi
κ ), fκ(2)〉 = C+

κ(2),p
·
L(p)(fκ(2) , ε(1)ω1−j, j)

(2π
√
−1)j−1Ω+,MS

κ(2),∞

at each arithmetic point κ = (κ(1), κ(2)) in X(R) = X(Λ(1))×X(R(2)) of weight (j, k− 2)
with the condition 1 ≤ j ≤ k − 1, where C+

κ(2) ,p
is an error term which appeared in

Kitagawa’s construction (cf. Proposition 4.4).

Corollary 4.12. We have Ξ(ZKi) = LKi
p (T ).

4.2. Application to Iwasawa theory. We established in [O2] “the Euler system theory
for Galois deformations” which works for certain general non-cyclotomic Galois deforma-
tions. According to this theory, the algebraic and analytic p-adic L-functions are related
to each other once we have constructed the analytic p-adic L-function via an Euler system
as in Theorem 4.11. Thus, we have:

Theorem 4.13. We have the following inequality:

(LKi
p (T )) ⊂ (Lalg

p (T ))

As an application of this inequality, we have:

Corollary 4.14. The following statements are equivalent:
16



1. There exists an arithmetic point κ(2) with w(κ(2)) ≥ 0 such that the cyclotomic Iwasawa
main conjecture for fκ(2) holds.

2. At every arithmetic point κ(2) with w(κ(2)) ≥ 0, the cyclotomic Iwasawa main conjecture
for fκ(2) holds.

3. The two-variable Iwasawa Main Conjecture 4.7 holds.
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and L-functions, Proc. Sympos. Pure Math., XXXIII Part 2, Amer. Math. Soc., Providence, R.I.,
247–289, 1979.

[F] T. Fukaya, Coleman power series for K2 and p-adic zeta functions of modular forms, Documenta
Mathematica, Extra Kato volume, 387–442, 2003.

[FK] T. Fukaya, K. Kato, A formulation of conjectureson p-adic zeta functions in non-commutative
Iwasawa theory, to appear.

[Gr1] R. Greenberg, Iwasawa theory for p-adic representations, Advanced studies in Pure Math. 17,
97–137, 1987.

[Gr2] R. Greenberg, Iwasawa theory for p-adic deformations of motives, Proceedings of Symposia in
Pure Math. 55 Part 2, 193–223, 1994.

[GS] R. Greenberg, G. Stevens, p-adic L-functions and p-adic periods of modular forms, Invent. Math.
111 no. 2, 407–447, 1993.

[H1] H. Hida, Galois representations into GL2(�p[[X ]]) attached to ordinary cusp forms, Invent. Math.
85, 545–613, 1986.

[H2] H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society
Student Texts 26, Cambridge University Press, 1993.

[H3] H. Hida, On the search of genuine p-adic modular L-functions for GL(n), Monograph, Memoires
SMF 67, 1996.

[Ka1] K. Kato, 50–163, Lecture Notes in Math., 1553, Springer, 1993.
[Ka2] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, preprint,
[Ki] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, p-adic monodromy

and the Birch and Swinnerton-Dyer conjecture, 81–110, Contemp. Math., 165, Amer. Math. Soc.,
Providence, RI, 1994.

[M] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cam-
bridge University Press, Cambridge, 1986.

[MS] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25, 1–61, 1974.
[MT] B. Mazur, J. Tilouine, Kähler et ”conjectures principales”, Inst. Hautes Etudes Sci. Publ. Math.

71, 65–103, 1990.
[MTT] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-

Dyer, Invent. Math. 84, no. 1, 1–48, 1986.
[MW1] B. Mazur, A. Wiles, Class fields of abelian extensions of �, Invent. Math. 76 no. 2, 179–330,

1984.
[MW2] B. Mazur, A. Wiles, On p-adic analytic families of Galois representations, Compositio Math. 59,

no. 2, 231–264. 1986.
[O1] T. Ochiai, A generalization of the Coleman map for Hida deformations, the American Jour. of

Mathematics, 125, 849–892, 2003.
[O2] T. Ochiai, Euler system for Galois deformation, Annales de l’Institut Fourier vol 55, fascicule 1,

pp 113-146, 2005.
[O3] T. Ochiai, On the two-variable Iwasawa Main conjecture for Hida deformations, submitted.

17



[P1] A. Panchishkin, Admissible non-Archimedean standard zeta functions associated with Siegel modu-
lar forms, Motives, 251–292, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence,
RI, 1994.

[P2] A. Panchishkin, Two variable p-adic L-functions attached to eigenfamilies of positive slope, Invent.
Math. 154, 551–615, 2003.

[Wi] A. Wiles, On λ-adic representations associated to modular forms, 94, 529–573, 1988.

Department of Mathematics, Osaka University, 1-16, Machikaneyama, Toyonaka, Osaka,

Japan, 560-0043.

E-mail address : ochiai@math.wani.osaka-u.ac.jp

18


