
BERTINI THEOREM FOR NORMALITY ON LOCAL RINGS IN MIXED
CHARACTERISTIC (APPLICATIONS TO CHARACTERISTIC IDEALS)

TADASHI OCHIAI AND KAZUMA SHIMOMOTO

ABSTRACT. In this article, we prove a strong version of local Bertini theorem for normality

on local rings in mixed characteristic. The main result asserts that a generic hyperplane

section of a normal, Cohen-Macaulay, and complete local domain of dimension at least

3 is normal. Applications include the study of characteristic ideals attached to torsion

modules over normal domains, which is fundamental in the study of Euler system theory

and Iwasawa main conjectures.

1. INTRODUCTION

The classical Bertini theorem says that a generic hyperplane section of a smooth com-
plex projective variety is smooth. A (local) Bertini theorem may be stated for a local ring
(R,m, k) as follows. Let P be a ring-theoretic property (e.g. regular, reduced, normal,
seminormal and so on). Then if R is P and x ∈ m is a non-zero divisor, then is it true that
R/xR is so for a generic choice of x? A local Bertini theorem (in a slightly weak form)
was first raised by Grothendieck ([6], Exposé XIII, Conjecture 2.6) and was proved by
Flenner [2] and Trivedi [15]. In this article, for an ideal I ⊆ R, we denote by D(I) the set
of all primes of R which do not contain I, and by V(I) the complement of D(I) in Spec R.
Before stating our main theorems, let us recall the follow ing result from [2]:

Theorem 1.1 (Flenner-Trivedi). Let (R,m) be a local Noetherian ring and let I ⊆ m be an ideal.
Assume that Q is a finite subset of D(I). Then there exists an element x ∈ I such that:

(1) x /∈ p(2) for all p ∈ D(I);
(2) x /∈ p for all p ∈ Q;

for p(n) := pnRp ∩ R, the n-th symbolic power ideal of p.

We make a remark on the second symbolic power of ideals. Let (R,m) be a local ring,
let x ∈ p be a non-zero divisor and let x /∈ p(2) for a prime ideal p ⊆ R. Then Rp is regular
if and only if Rp/xRp is regular. Many ring-theoretic properties such as regular, normal,
reduced can be verified at the localization Rp, which is the reason why we require x /∈ p(2)

(but not merely x /∈ p2), which is equivalent to the condition: x /∈ p2Rp ∩ R. A strong
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version of local Bertini theorem similar to our main theorem below was already proved
for local rings containing a field in [2]. To extend his result to the mixed characteristic
case, we need to introduce some new ideas. Theorem 1.1 does not suffice for our purpose,
since it only assures us that there is an element x ∈ m for which R/xR is normal.

Here is our notation which will be used throughout: We denote by Pn(S) (resp. An(S))
the projective space (resp. an affine space) for a commutative ring S. In case when S is
a field or a discrete valuation ring, we will consider these spaces as sets of points in the
ring S endowed with some topology (see discussions in § 2). In these cases, every point
a = (a0 : · · · : an) ∈ Pn(S) is normalized so that ai is a unit for some i. This implies that,
for a complete discrete valuation ring A with residue field k, we have a specialization map
SpA : Pn(A)→ Pn(k), which is well-defined. Let us now state one of our main theorems
(see Theorem 4.3 together with Theorem 4.2 in § 4).

Main Theorem A (Local Bertini Theorem). Let (R,m, k) be a complete local domain of
mixed characteristic p > 0 and suppose the following conditions:

(1) let A→ R be a coefficient ring map for a complete discrete valuation ring (A, πA);
(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;
(3) R is normal, of depth R ≥ 3, and the residue field k is infinite.

Then there exists a Zariski dense open subset U ⊆ Pd(k) satisfying the following prop-
erties. For any a = (a0 : · · · : ad) ∈ Sp−1

A (U), the quotient R/xaR is a normal domain of
mixed characteristic p > 0, where we put

xa :=
d

∑
i=0

aixi.

We will also discuss a version of the above theorem for the case when the residue field
is finite at the end of § 4. This theorem allows us to find sufficiently many normal local
domains of mixed characteristic as specializations. The above theorem does not tell us
how to find U, but we will show how to find U in Example 4.8. It is worth pointing
out that if dim R = 2, the local Bertini theorem fails due to a simple reason. In fact, if
the quotient R/yR is normal, then it is a discrete valuation ring, so R must be regular.
By Cohen structure theorem, there is a surjection A[[z0, . . . , zd]] � R, where d + 1 is the
number of minimal generators of m, so that the minimal generators of m are just the image
of z0, z1, . . . , zd under this surjection. Related to our main result, if (R,m) is a local ring
and y ∈ m is a non-zero divisor such that R/yR is normal, then R is normal ([5] 5.12.7).

In § 7, we prove some basic results on characteristic ideals over general normal do-
mains. As an application, we prove another main theorem (see Theorem 8.7 in § 8) in our
paper.
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Main Theorem B (Control Theorem for Characteristic Ideals). Let (R,m, k) be a complete
local domain of mixed characteristic p > 0 satisfying the conditions (1), (2) and (3) of
Main Theorem A. Assume that M and N are finitely generated torsion R-modules. Then,
for certain infinite subsets LÔur(MÔur) and LÔur(NÔur) of the projective space Pd(Ôur)

defined in a natural way (cf. Definition 8.1), the following statements are equivalent:

(1) charR(M) ⊆ charR(N), where charR(−) means the characteristic ideal (cf. Defini-
tion 7.1).

(2) For all but finitely many height-one primes:

xaRÔur ∈ LÔur(MÔur) ∩ LÔur(NÔur),

there exists a finite étale extension of discrete valuation rings O → O′ such that
we have xa ∈ RO′ and

charRO′/xaRO′ (MO′/xa MO′) ⊆ charRO′/xaRO′ (NO′/xaNO′).

(3) For all but finitely many height-one primes:

xaRÔur ∈ LÔur(MÔur) ∩ LÔur(NÔur),

we have

charRÔur /xaRÔur
(MÔur /xa MÔur) ⊆ charRÔur /xaRÔur

(NÔur /xaNÔur).

Main Theorem B will be crucial in a forthcoming paper [11], where we plan to com-
pare characteristic ideals of certain torsion modules arising from Iwasawa theory as de-
veloped in [10] (for example, those torsion modules arising as the Pontryagin dual of
Selmer groups associated with two-dimensional Galois representations of certain type
with values in a complete local ring with finite residue field).

2. SPECIALIZATION MAP AND THE TOPOLOGY FOR BERTINI-TYPE THEOREMS

Let us discuss the specialization map. Let A be a complete discrete valuation ring and
let a := (a0 : · · · : an) ∈ Pn(A). Then we may normalize a so that a = (b0 : · · · : bn) ∈
Pn(A) and some bi is a unit of A. So we may think of the projective space as

Pn(A) = {(a0 : · · · : an) ∈ Pn(A) | |ai| = 1 for some i}

for the normalized valuation | · | : A → R≥0. Let k be the residue field of A. Then
reducing a to a point a = (b0 : · · · : bn) ∈ Pn(k), we have constructed the map:

SpA : Pn(A)→ Pn(k),

called the specialization map. This map does not depend on the choice of the representative
of a ∈ Pn(A) as above. The set Pn(k) is endowed with the Zariski topology, while Pn(A)

is endowed with the topology induced by the valuation on A. Hence, we simply regard
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Pn(A) as a set of points equipped with this topology. For more details, see the remark
below. We refer the reader to [3] for the rigid geometry and the following fact.

Lemma 2.1. The specialization map SpA : Pn(A)→ Pn(k) is continuous and surjective.

We begin to pin down the suitable topology for formulating Bertini-type theorems in
mixed characteristic. Let (R,m, k) be a local Noetherian ring. Then we say that a reduced
local ring (R,m, k) is of mixed characteristic p > 0, if every component of the total ring of
fractions of R is of characteristic zero and the residue field k is of characteristic p.

Now we assume that (A, πA, k) is a complete discrete valuation ring such that πA A =

pA and there is an injection A ↪→ R of rings, which induces an isomorphism on residue
fields, say k = A/πA A ' R/m. Such A is called a coefficient ring of R.

Example 2.2. Let R := Zp[[x, y]]/(p− xy). Then R is a finite extension of Zp[[x + y]] by
the Eisenstein equation t2 − (x + y)t + p = 0 and Zp is a coefficient ring of R.

In what follows, a coefficient ring will be considered as a fixed one. We denote by
Loc.alg/A the category of local A-algebras that are obtained as quotients of all local rings
having A as their fixed coefficient ring. Note that objects of Loc.alg/A also include local
k-algebras.

Definition 2.3. With the notation as above, assume that P is a ring-theoretic property on
Noetherian rings and fix (R,m, k) ∈ Loc.alg/A. We say that the “local Bertini theorem”
holds for P, if a set of minimal generators x0, . . . , xn of m is given, then there exists a
Zariski dense open subset U ⊆ Pn(k) such that R/xaR has P for all a = (a0, . . . , an) ∈
Sp−1

A (U) ⊆ Pn(A), where we put

xa =
n

∑
i=0

aixi.

The “local Bertini theorem” can be formulated in a different way. For example, the
maximal ideal m may be replaced with a smaller ideal. But we adopt the above definition.

Remark 2.4. The naturality of the above formalism is explained as follows. We endow
Pn(k) with the Zariski topology. Let f ∈ k[x0, . . . , xn] be a non-zero homogeneous poly-
nomial, let f ∈ A[x0, . . . , xn] be any fixed homogeneous lifting of f , and let U f ⊆ Pn(k)

be an open subset defined by f 6= 0. Then the inverse image of the open subset U f under
the map SpA : Pn(A)→ Pn(k) can be described as follows. We have

Sp−1
A (U f ) = {a = (a0 : · · · : an) ∈ Pn(A) | | f (a)| = 1}

for the normalized valuation | · | : A → R≥0, which is an admissible open subset of
Pn(A). Our objective is to show that this topology is adequate in formulating the local
Bertini theorem in the mixed characteristic case.
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The following proposition is indispensable for the proof of Theorem 4.2 and Theorem
4.3. However, the proposition fails for a finite field.

Proposition 2.5 ([14]; Proposition 3.3). Let U ⊆ An(L) be any non-empty Zariski open subset
for an infinite field L. Then U is dense. Furthermore, if K → L is any field extension such that K
is infinite, the intersection U ∩An(K) is also a Zariski dense open subset. The above assertions
hold over the projective space as well.

3. DISCUSSION ON BASIC ELEMENTS

Let (R,m) be a local Noetherian ring and let M be a finitely generated R-module. The
depth of M, denoted by depthR M, is the the maximal length of M-regular sequences. For
p ∈ Spec R, µp(M) stands for the number of minimal generators of the Rp-module Mp.
The following notion is due to Swan.

Definition 3.1 (Swan). Let M be a module over a ring A and let p be its prime ideal. An
element m ∈ M is called basic at p, if µp(M)− µp(M/A · m) = 1. More generally, a set
of elements m1, . . . , mn of M is called k-fold basic at p, if µp(M)− µp(M/ ∑n

i=1 A ·mi) ≥ k;
that is, N = A ·m1 + · · ·+ A ·mn contains at least k minimal generators at p.

Let M(r) := M/ ∑r
i=1 A ·mi for a set of elements m1, . . . , mk of M and r satisfying 0 ≤

r ≤ k− 1 and pick a prime ideal p of A. Then

µp(M(r))− µp(M(r)/A ·mr+1) = 1 ⇐⇒ mr+1 /∈ pM(r)
p

for 0 ≤ r ≤ k− 1 by Nakayama’s lemma. In other words, m1, . . . , mk form partial gener-
ators of the k(p)-vector space M⊗A k(p).

We shall use (finite) Kähler differentials. For a complete local ring (R,m) with its co-
efficient ring A, the usual module of Kähler differentials ΩR/A is not a finite R-module.
Instead, one uses the completed module Ω̂R/A. This is the m-adic completion of ΩR/A

and it is a finite R-module. It can be also defined as follows. Let I denote the kernel of the
map µ : R⊗̂AR → R defined by µ(a⊗ b) = ab. Then Ω̂R/A := I/I2. The connection of
Kähler differential modules with the symbolic power ideals is expressed by the following
simple fact (see [2], Lemma 2.2 for its proof).

Lemma 3.2. Let M be a module over a ring R, let p be a prime of R, and let d : R → M be a
derivation. If for x ∈ R, dx ∈ M is basic at p, then x /∈ p(2).

For a ring A and an open subset U ⊆ Spec A, we set

dimU(R/I) := dim(V(I) ∩U)

for an ideal I of A. If M is a finite projective R-module, an element m ∈ M is basic at all
primes of R if and only if R · m ⊆ M is a direct summand. The property that m ∈ M is
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basic at p ∈ Spec A is stable under taking quotient and localization of A. We denote by
MinR(I) the set of all minimal prime divisors of an ideal I ⊆ R. The authors are grateful
to Prof. V. Trivedi for explaining the proof of following lemma ([2], Lemma 1.2).

Lemma 3.3 (Flenner). Suppose that R is a Noetherian ring, M is a finite R-module, U ⊆
Spec R is a Zariski open subset, and {m1, . . . , mn} is a set of elements of M, which generates the
submodule N ⊆ M. Suppose that we have t ∈ Z (which can be negative) such that

µp(M)− µp(M/N) ≥ dimU(R/p)− t

for every p ∈ U. Let φ−1(U) be the inverse image of U under the map φ : Spec R[X1, . . . , Xn]→
Spec R. Then there exists an ideal (F1, . . . , Fr) ⊆ R[X1, . . . , Xn] such that

dim(φ−1(U) ∩V(F1, . . . , Fr)) ≤ n + t

and the element
n

∑
i=1

mi ⊗ Xi ∈ M⊗R R[X1, . . . , Xn]

is basic on D(F1, . . . , Fr) ∩ φ−1(U).

Corollary 3.4. Let R be a Noetherian ring and suppose M is a finite R-module. Fix x ∈ M and
define Ux as the subset of Spec R such that x ∈ M is basic at every point of Ux. Then Ux is a
(possibly empty) constructible subset of Spec R.

Proof. Recall that for a finite projective R-module N, x ∈ N is basic at p ∈ Spec R if and
only if Rp · x spans a direct summand of Np, which is an open property. We may assume
that R is reduced, so that there exists f ∈ R for which M[ f−1] is a free R[ f−1]-module.
Hence there exists an open subset V ⊆ Spec R[ f−1] such that x ∈ M is basic at p ∈ Spec R
⇐⇒ p ∈ V. By Noetherian induction applied to V( f ), we find a maximal constructible
subset Z ⊆ V( f ) on which x ∈ M is basic. So Ux := V ∪ Z is the sought one. �

4. MAIN THEOREMS

In this section, we establish main theorems. Let us collect some facts for later use. A
local domain S is catenary, if and only if ht p+ dim S/p = dim S for all p ∈ Spec S.

Lemma 4.1. Let (A, πA, k) be a discrete valuation ring and let f ∈ A[y1, . . . , yd] be a non-zero
(possibly constant) polynomial. Then there exists t ∈ Z≥0 such that π−t

A f ∈ A[y1, . . . , yd] and
the reduction of π−t

A f modulo πA is a non-zero (possibly constant) polynomial in k[y1, . . . , yd].

Proof. The proof goes by induction on d. If d = 1, we write f = amym
1 + am−1ym−1

1 + · · ·+
a0 with ai ∈ A. Let 0 ≤ h ≤ m be such that the valuation v(ah) is the smallest in the set
{v(ai) | 0 ≤ i ≤ m} and write ah = (unit) · πt

A. Dividing f by πt
A, we get the desired

polynomial.
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In general, write f = bnyn
d + bn−1yn−1

d + · · ·+ b0 for bi ∈ A[y1, . . . , yd−1]. Applying the
induction hypothesis to every bi, we may find ti ∈ Z≥0 such that π−ti

A bi has the desired
property. Let ts := min{ti | 0 ≤ i ≤ n}. Then the term π−ts

A bsys modulo πA is non-zero
and it is clear that π−ts

A f is contained in A[y1, . . . , yd]. Hence it suffices to put t := ts. �

Theorem 4.2. Let (R,m, k) be a complete local domain of mixed characteristic p > 0 and suppose
the following conditions:

(1) let A→ R be a coefficient ring map for a complete discrete valuation ring (A, πA);
(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;
(3) the residue field of R is infinite.

Then there exists a Zariski dense open subset V ⊆ Pd(k) such that we have

xa =
d

∑
i=0

aixi /∈ p(2)

for every prime p of R and a = (a0 : · · · : ad) ∈ Sp−1
A (V).

It is noted that x0, x1, . . . , xd are not a system of parameters of R unless it is regular.

Proof. It is clear that for a ∈ Ad+1(A), p ∈ Spec R and u ∈ A×,

d

∑
i=0

aixi /∈ p(2) ⇐⇒ u
( d

∑
i=0

aixi
)

/∈ p(2).

This implies that our statement for xa holds on Pd(A). Note that the R-module Ω̂R/A is
generated by dx0, . . . , dxd and Supp Ω̂R/A = Spec R. We first establish the theorem on
D(m). It follows from ([2], Lemma 2.6, or [15], Lemma 2) that for p ∈ D(m)

µp(Ω̂R/A) ≥ dim(R/p)− 1 = dimD(m)(R/p).

Under the notation as above and applying Lemma 3.3 for the R-module Ω̂R/A, there is
an ideal (F1, . . . , Fr) ⊆ R[X0, . . . , Xd] such that

dimφ−1(D(m)) R[X0, . . . , Xd]/(F1, . . . , Fr) ≤ d + 1 · · · (∗),

where φ−1(D(m)) is the inverse image of D(m) under the map φ : Spec R[X0, . . . , Xd] →
Spec R and

d

∑
k=0

dxk ⊗ Xk ∈ Ω̂R/A ⊗R R[X0, . . . , Xd]

is basic on D(F1, . . . , Fr) ∩ φ−1(D(m)). Let T denote the localization of R[X0, . . . , Xd] at
the prime ideal mR[X0, . . . , Xd]. Then we have a flat local map of local rings: (R,m) →
(T,mT) in which all rings are catenary local domains, and dim R = dim T.

In what follows, it suffices to consider the case that (F1, . . . , Fr)T is a proper ideal. Let
P ⊆ T be any minimal prime divisor of (F1, . . . , Fr)T. Then combining the dimension
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equality for the catenary local domain T, together with (∗) above, it follows that ht P =

dim T − 1. Since T is local, Z := V(F1, . . . , Fr) ⊆ Spec T is a finite set, and

d

∑
k=0

dxk ⊗ Xk

is basic on U := Spec T\Z (the complement of φ(U) is a finite set of primes). By
Noetherian induction, it suffices to consider the proof on D(g) ⊆ Spec T for some
g ∈ R such that Ω̂R/A ⊗R T[g−1] is a T[g−1]-free module. Then there exists a G ∈
R[X0, . . . , Xd]\mR[X0, . . . , Xd] such that

d

∑
k=0

dxk ⊗ Xk

is basic on D(g · G) ⊆ Spec R[X0, . . . , Xd]. Assume that G(a) /∈ m for a = (a0, . . . , ad) ∈
Ad+1(A) (such a point exists, because #k = ∞). Then

d

∑
k=0

akdxk ∈ Ω̂R/A

is basic on φ(U) ⊆ Spec R in view of ([2], Lemma 1.1). Now we get the following impli-
cation. Take G(a) /∈ m. Then for all p ∈ φ(U) = Spec R\{p1, . . . , pr,m}, it follows from
Lemma 3.2 that

xa =
d

∑
k=0

akxk /∈ p(2).

So it remains to deal with the issue on a finite set {p1, . . . , pr,m}. First, if ai ∈ A× for
some i, then xa /∈ m2 by the minimality of x0, . . . , xd. So modifying G, we may assume
henceforth that xa /∈ p2 is satisfied for all p ∈ Spec R\{p1, . . . , pr}, whenever G(a) /∈ m.

Put V0 := D(G(x)) ⊆ Ad+1(k)\{0} (the origin of Ad+1(k) is excluded). Then
define an open subset V0 ⊆ Pd(k) as the image of V0 under the geometric quotient:
Ad+1(k)\{0} → Pd(k). To deal with the issue on {p1, . . . , pr}, take the homogeneous
polynomial:

F(X0, . . . , Xd) :=
d

∑
i=0

xiXi ∈ R[X0, . . . , Xd].

It suffices to force ∑d
i=0 aixi /∈ pj for all 1 ≤ j ≤ r. Then for each 1 ≤ j ≤ r, we have

xa =
d

∑
i=0

aixi /∈ pj ⇐⇒ F(a0, . . . , ad) 6= 0 in R/pj · · · (∗∗),

which is stable under taking multiplication by elements of A×.
Our final goal is to identify the set of points of Pd(A) satisfying the condition (∗∗) and

describe it as the inverse image of an open subset under the map SpA : Pd(A) → Pd(k).
It is clear that the ideal of R generated by the set: {F(a0, . . . , ad) | (a0, . . . , ad) ∈ Pd(A)}
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is the maximal ideal m. Since the union of all primes p1, . . . , pr is strictly contained in m,
there exists (a0, . . . , ad) ∈ Pd(A) for which F(a0, . . . , ad) /∈ pi for all i.

Case1: Assume that πA ∈ pj for some j. Let Rj be the localization of R at pj. Then
A → Rj is a flat local map of local rings, say Rj is of mixed characteristic. Let mj be the
maximal ideal of Rj and let kj := Rj/mj. Then we have a mapping:

Pd(k)→ Pd(kj).

The condition that the reduced polynomial F(a0, . . . , ad) is non-zero on the projective
space Pd(kj) defines an open subset Uj ⊆ Pd(kj). By Proposition 2.5, Vj := Uj ∩Pd(k) is
a dense open subset, as the field k is infinite.

Case2: Assume that πA /∈ pj for some j. In this case, notations being as in (i), we have
a mapping:

Pd(Frac(A))→ Pd(kj).

The condition F(a0, . . . , ad) 6= 0 on the projective space Pd(kj) defines a Zariski open
subset Uj ⊆ Pd(kj).

Proposition 2.5 implies that Uj ∩Pd(Frac(A)) is a dense open subset which is covered
by basic open subsets. Let U f be one of those basic open subsets for a homogeneous
polynomial f , where U f has the usual meaning. We may assume that f ∈ A[X0, . . . , Xd].
Furthermore, by applying Lemma 4.1 to f , it can be normalized into g so that g ∈
A[X0, . . . , Xd] and 0 6= g ∈ k[X0, . . . , Xd]. Consider the subset:

U|g|=1 := {a = (a0 : · · · : ad) ∈ Pd(A) | |g(a)| = 1} ⊆ Pd(A)

for any fixed valuation | · | : A → R≥0. Then we see that F(a0, . . . , ad) /∈ pj for all (a0 :
· · · : ad) ∈ U|g|=1 and U|g|=1 is non-empty, since |g(a)| = 1 if and only if g(SpA(a)) 6= 0.
Moreover, this implies that Sp−1

A (Ug) = U|g|=1. By taking the union of all affine pieces Ug

coming from a basic open covering of Uj ∩Pd(Frac(A)), we obtain a desired open subset
Vj ⊆ Pd(k), as in Case1.

Combining both Case1 and Case2 together, V1 ∩ · · · ∩ Vr is a non-empty open subset
of Pd(k). Hence V is defined as the intersection V0 ∩V1 ∩ · · · ∩Vr, where V0 is defined by
G(x) as previously. This completes the proof of the theorem. �

The techniques used in the proof of the above theorem will play an important role in
the next main theorem.

Theorem 4.3 (Local Bertini Theorem). Let (R,m, k) be a complete local domain of mixed char-
acteristic p > 0 and suppose the following conditions:

(1) let A→ R be a coefficient ring map for a complete discrete valuation ring (A, πA);
(2) let x0, x1, . . . , xd be a fixed set of minimal generators of m;
(3) R is normal, of depth R ≥ 3, and the residue field k is infinite.
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Then there exists a Zariski dense open subset U ⊆ Pd(k) satisfying the following properties.
For any a = (a0 : · · · : ad) ∈ Sp−1

A (U), the quotient R/xaR is a normal domain of mixed
characteristic p > 0, where we put

xa :=
d

∑
i=0

aixi.

Proof. The first step of the proof of the theorem has been completed in Theorem 4.2. Tak-
ing V ⊆ Pd(k) as given in Theorem 4.2 and denoting by Reg(R) the regular locus of R,
we find that

Reg(R) ∩V(xa) ⊆ Reg(R/xaR) · · · (1)

for all a = (a0, . . . , ad) ∈ Sp−1
A (V). Let us explain some basic ideas. In this proof, after

some preparations, we give a candidate of U ⊆ Pd(k) for our theorem as a Zariski open
subset U ⊆ V. In Step1 below we prove that U is non-empty. Then in Step2, we will
show that the quotients R/xaR with a ∈ Sp−1

A (U) satisfy the well-known conditions (R1)

and (S2) and thus are normal. Finally in Step3, we will show that the quotients R/xaR
with a ∈ Sp−1

A (U) are of mixed characteristic.
Step1: Let X := Spec R−V(m). Then since R is a complete local domain, the singular

locus Sing(X) is a proper closed subset. Hence the set of minimal primes in Sing(X) is
finite, and let

Q1 := {p ∈ X | p is a minimal prime in Sing(X)}.

Note that every prime in Q1 has height≥ 2 (due to the (S2) condition on R). On the other
hand,

Q2 := {p ∈ X | depth Rp = 2 and dim Rp > 2}

is also a finite set ([2], Lemma 3.2 and the (S2) condition on R). Now let Q1 ∪ Q2 :=
{p1, . . . , pm} and let F(X0, . . . , Xd) = ∑d

i=0 xiXi ∈ R[X0, . . . , Xd] as previously. Then for
each 1 ≤ j ≤ m, it follows that

xa =
d

∑
i=0

aixi /∈ pj ⇐⇒ F(a0, . . . , ad) 6= 0 in R/pj.

Then as argued in Case1 and Case2 in the proof of Theorem 4.2, we obtain Z1, . . . , Zm,
which are non-empty open subsets of Pd(k). Put Z := Z1 ∩ · · · ∩ Zm · · · (2).

Next pick p ∈ X ∩V(xa) such that ht p ≥ 2 and assume that xa = ∑d
i=0 aixi satisfies (1)

and xa avoids all primes in Q1 ∪Q2.
Step2: (i) If ht p > 2, then since xa avoids all primes in Q2, it follows that dim(R/xaR)p ≥

2 and depth(R/xaR)p ≥ 2.
(ii) If ht p = 2, then since xa avoids all primes ideal in Q1 and the height of every

prime in Q1 is at least 2, it follows that Rp is regular. By (1), one finds that (R/xaR)p is
a discrete valuation ring. On the other hand, the hypothesis that depth(R) ≥ 3 implies
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that depth(R/xaR) ≥ 2. Hence R/xaR is a normal domain in view of Serre’s normality
criterion.

Finally, it remains to make the quotient R/xaR into a local ring of mixed characteristic
p > 0.

Step3: Let {q1, . . . , qn} be a set of all height-one primes of R lying above πA. Then
again, applying the discussion of Case1 and Case2 in the proof of Theorem 4.2 to
{q1, . . . , qn}, we find a non-empty open subset W ⊆ Pd(k) · · · (3), which avoids the
union q1 ∪ · · · ∪ qn.

Combining (1), (2), together with (3), and taking a non-empty open subset U := V ∩
W ∩ Z ⊆ Pd(k), it turns out that Sp−1

A (U) ⊆ Pd(A) has the required property. �

Remark 4.4. In particular, if R is a Cohen-Macaulay normal local domain, then R/xaR is
Cohen-Macaulay and normal. One can continue this process until dim R = 2 is attained.
Note that the module-finite extension of local rings A[[z1, . . . , zn]] → R is flat if and only
if R is Cohen-Macaulay, by the Auslander-Buchsbaum formula.

Next, let us consider the case when the residue field is finite. Let (R,m, F) be a com-
plete normal local domain of mixed characteristic p > 0 with finite residue field F. In
other words, R is a finite extension of W(F)[[z1, . . . , zn]], where W(F) is the ring of Witt
vectors of F. Let O := W(F) for simplicity and let Ôur be the completion of the maximal
unramified extension of O. Then W(F) = Ôur. Put

RÔur := R⊗̂OÔur (resp. ROur := strict henselization of R).

Then ROur is local Noetherian, but not complete. By the main result of [4], RÔur is the
completion of ROur and a normal local domain. From algebraic number theory, Our is
obtained from O by adjoining all n-th roots of unity for (n, p) = 1. There is a structure
map Ôur → RÔur . We define the multiplicative map (not additive)

θÔur : F→ Ôur

as just the Teichmüller map F → W(F). In particular, we have q ◦ θÔur = IdF, where
q : Ôur → F is the residue field map. There is a set-theoretic mapping:

〈θÔur〉 : Pd(F)→ Pd(Ôur)

defined by 〈θÔur〉(a) := (θÔur(a0) : · · · : θÔur(ad)). Note that 〈q〉 = SpÔur and 〈θÔur〉 is
well-defined, since θÔur is multiplicative. Furthermore, since the composite 〈q〉 ◦ 〈θÔur〉 is
an identity map, 〈θÔur〉 is injective.

Corollary 4.5 (Finite Residue Field Case). Let the hypothesis be as in Theorem 4.3 for
(R,m, F), except that the residue field F is finite. Then there exists a non-empty open subset
U ⊆ Pd(F) such that for any fixed a ∈ 〈θÔur〉(U), there is a finite étale extension O → O′ of
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discrete valuation rings such that xa ∈ RO′ := R⊗O O′ and RO′/xaRO′ is a normal domain of
mixed characteristic p > 0.

The proof will be done by constructing a multiplicative map θ̃Ôur : F → Our, which
extends to the map θÔur : F→ Ôur.

Proof. We keep the notation as in Theorem 4.3. First, note that 〈θÔur〉(U) ⊆ Pd(Our)

and that x0, x1, . . . , xd are the minimal generators of the maximal ideal of RÔur . Then
the hypotheses of Theorem 4.3 are fulfilled for the complete local domain RÔur . First,
let us construct a multiplicative map θ̃Ôur : F → Our which extends to the map θÔur .
The local ring Our is constructed as the direct limit of finite unramified extensions of O;
Our = lim−→λ∈Λ

Oλ with Oλ = W(Fλ) and we have the Teichmüller mapping Fλ → Oλ

for the residue field Fλ of Oλ. Then we have a commutative diagram:

Fλ′
Teich−−−→ Oλ′x x

Fλ
Teich−−−→ Oλ

which naturally forms a direct system, so the desired map θ̃Ôur is given by its direct limit.
On the other hand, it is easy to see that the map θÔur : F→ Ôur factors as

F
θ̃Ôur−−−→ Our −−−→ Ôur,

and thus we have xa = ∑d
i=0 aixi ∈ ROur for any a ∈ 〈θÔur〉(U). Since the map

ROur /xaROur → RÔur /xaRÔur

is local flat, ROur /xaROur is a normal local domain.
By what we have said above, all the coefficients of a linear form xa = ∑d

i=0 aixi are
contained in some finite subextension O → O′ → Our. In other words, for a finite étale
extension R→ RO′ of normal domains, the quotient RO′/xaRO′ is normal. �

Remark 4.6. Let φ : (R,m) → (S, n) be a flat local map of local rings. Then one might
think of the relationship between R/xR and S/xS for a non-zero divisor x ∈ m. In fact,
in order to use the local Bertini theorem for S in terms of R, for example, assume that R
and all fibers of φ are normal. Then for any x such that R/xR is normal, S/xS is so.

It is important and necessary to answer the following question:

Question 4.7. Resume the hypothesis of Theorem 4.3 and assume that xa = uxa′ for a unit
u ∈ R×. Then is it true that u ∈ A×?
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This question asks the following: Which subset of Pd(A) does parametrize the set
of height-one primes {xaR}. In other words, does it give mutually distinct height-one
primes of R? In the next section, we will answer the above question. In fact, we need to
restrict to the set of those points which are in the image of the Teichmüller mapping. This
fact will be important in the proof of the control theorem, which will be discussed later.
We end this section with an example, which applies Theorem 4.3 and its proof for a given
normal domain R.

Example 4.8. This example deals with the finite residue field case, but the result is valid
for any discrete valuation coefficient ring. Suppose that p ≥ 3 and

R := Zp[[x1, x2, x3]]/(x2
1 + x2

2 + x2
3),

which is a three-dimensional Cohen-Macaulay normal local domain. By Theorem 4.3,
there exists an open set U ⊆ P3(Fp) which does the job. Now we keep track of the
following steps to find U explicitly.

(i) Need to have dxa ∈ Ω̂R/Zp basic at every p ∈ Spec R.
(ii) Need to determine two finite sets of primes Q1 and Q2 in Theorem 4.3.
(iii) Need to avoid Q1 and Q2 as above.

Then we know

Ω̂R/Zp '
Rdx1 ⊕ Rdx2 ⊕ Rdx3

R(x1dx1 + x2dx2 + x3dx3)
,

the singular locus of R is defined by the ideal (x1, x2, x3), Q1 = {(x1, x2, x3)} and Q2 = ∅.
To get a normal ring of mixed characteristic, take xa := a0 p + ∑3

i=1 aixi such that

a = (a0 : a1 : a2 : a3) ∈ U := U(z0) ∩
( 3⋃

i=1

U(zi)
)
⊆ P3(Fp)

for the homogeneous coordinate (z0 : z1 : z2 : z3). Then xa /∈ Q1. If we assume a1 is a unit
for simplicity, we see that

Ω̂R/Zp

[ 1
x3

]
' R

[ 1
x3

]
dx1 ⊕ R

[ 1
x3

]
dx2

is a free module, in which the image of dxa spans a direct summand. On the other hand,
for R := R/(x3),

Ω̂R/Zp /x3 · Ω̂R/Zp '
Rdx1 ⊕ Rdx2 ⊕ Rdx3

R(x1dx1 + x2dx2)
.

To show that the image of dxa is basic on Ω̂R/Zp /x3 · Ω̂R/Zp , keep track of the same steps
as above by inverting and killing first x2, and then x1.

Finally, if one takes R := Zp[[x]], then p /∈ p(2) for every prime p of R, since p is a
regular parameter. But dp = 0 and so the notion of basic elements is stronger than that
of non-containment in the second symbolic power of a prime ideal.
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5. DISTINCT HYPERPLANE SECTIONS IN LOCAL BERTINI THEOREM

In this section, we give an answer to Question 4.7. Assume that (R,m, k) is a complete
local normal domain with perfect residue field of characteristic p > 0 with its coeffi-
cient ring W(k), the ring of Witt vectors. Then as previously, we have the mapping:
〈θW(k)〉 : Pd(k) → Pd(W(k)). The following proposition asserts that the parameter
set of specializations in the local Bertini theorem may be identified with an open subset
U ⊆ Pd(k). In the case πW(k) /∈ m2, we put

xa = a0πW(k) +
d

∑
i=1

aixi.

Proposition 5.1. Let the notation and the hypothesis be as above, and let U ⊆ Pd(k) be a non-
empty subset. Moreover, put x0 = πW(k) in the case πW(k) /∈ m2. Suppose that xa = uxa′ for
a, a′ ∈ 〈θW(k)〉(U) and u ∈ R×. Then we have u ∈W(k)×.

Proof. We need to divide the proof, according to the case πW(k) ∈ m2 or πW(k) /∈ m2.
Case1: Assume πW(k) ∈ m2 and denote by ai the image of ai ∈ W(k) under the

surjection W(k)[[X0, . . . , Xd]] � R (Xi 7→ xi). Let P be its kernel and let k→W(k) be the
Teichmüller mapping. Then we prove that

P ⊆ πW(k)W(k)[[X0, . . . , Xd]] +M2,

where M := (X0, . . . , Xd). Let f ∈ P be a non-zero element. Assume that

f /∈ πW(k)W(k)[[X0, . . . , Xd]] +M2

and derive a contradiction. For the proof of the claim, we may reduce W(k)[[X0, . . . , Xd]]

by πW(k). Then we find that f /∈M
2 in k[[X0, . . . , Xd]]. The number of minimal generators

of the maximal ideal of R/πW(k)R is equal to

dimk m/(πW(k)R +m2) = dimk m/m2,

due to πW(k) ∈ m2. So x0, . . . , xd are the minimal generators of the maximal ideal of
R/πW(k)R. Then there is a surjection

k[[X0, . . . , Xd]] � R/πW(k)R.

Now choose s such that

f =
∞

∑
i=0

hiXi
s ∈ k[[X0, . . . , Xd]],

hi ∈ k[[X1, . . . , Xs−1, Xs+1, . . . , Xd]] for all i ≥ 0, and h1 is a unit. Indeed, if h1 is not a unit,
then since f /∈ M

2, h0 contains a non-zero linear term after presenting it as an (inifinite)
sum of homogeneous polynomials. Then replacing s by a suitable one, we can assume
that h1 is a unit.
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Taking reduction of f = ∑∞
i=0 hiXi

s by P, we get ∑∞
i=1 hixi

s = −h0 in R/πW(k)R, and h1

is a unit of R/πW(k)R. Thus,

xs · (unit) = −h0.

But this gives a contradiction to the fact that x0, . . . , xd are the minimal generators of
the maximal ideal of R/πW(k)R and that −h0 ∈ (x0, . . . , xs−1, xs+1, . . . , xd). Hence, P ⊆
πW(k)W(k)[[X0, . . . , Xd]] +M2.

In the next place, fix an arbitrary lifting ũ ∈ W(k)[[X0, . . . , Xd]] of u under the map
W(k)[[X0, . . . , Xd]]→ R. We write:

ũ = ∑
s0,...,sd

(
∞

∑
r=0

b(s0,...,sd)
r πr

W(k))Xs0
0 · · ·X

sd
d ,

where (s0, . . . , sd) signifies the multi-index, and all the elements b(s0,...,sd)
r are the Te-

ichmüller lifts. Since ũ is a unit, b(0,...,0)
0 6= 0. By lifting the relation xa = uxa′ to

W(k)[[X0, . . . , Xd]], we have

d

∑
i=0

aiXi ≡
(

∑
s0,...,sd

(
∞

∑
r=0

b(s0,...,sd)
r πr

W(k))Xs0
0 · · ·X

sd
d

)( d

∑
i=0

a′iXi
)

(mod P).

Rewrite the above presentation as:

d

∑
i=0

(ai − a′ib
(0,...,0)
0 )Xi ≡

(
∑

s0,...,sd

(
∞

∑
r=1

b(s0,...,sd)
r πr

W(k))Xs0
0 · · ·X

sd
d

)( d

∑
i=0

a′iXi
)

+
(

∑
(s0,...,sd)
6=(0,...,0)

b(s0,...,sd)
0 Xs0

0 · · ·X
sd
d

)( d

∑
i=0

a′iXi
)

(mod P).

Then by mapping the above formula to the quotient k[[X0, . . . , Xd]], comparing the de-
grees on both sides, and then using the fact P ⊆ πW(k)W(k)[[X0, . . . , Xd]] +M2, we find
that

ai = a′ib
(0,...,0)
0 + πW(k) · vi

for some vi ∈W(k). However if vi 6= 0, this implies that ai is not a Teichmüller lift, which
is false. So we have vi = 0 for all i and the following relation holds:

(
∑

s0,...,sd

(
∞

∑
r=1

b(s0,...,sd)
r πr

W(k))Xs0
0 · · ·X

sd
d

)( d

∑
i=0

a′iXi
)

+
(

∑
(s0,...,sd)
6=(0,...,0)

b(s0,...,sd)
0 Xs0

0 · · ·X
sd
d

)( d

∑
i=0

a′iXi
)
∈ P.
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Since P is a prime ideal, we deduce that(
∑

s0,...,sd

(
∞

∑
r=1

b(s0,...,sd)
r πr

W(k))Xs0
0 · · ·X

sd
d + ∑

(s0,...,sd)
6=(0,...,0)

b(s0,...,sd)
0 Xs0

0 · · ·X
sd
d

)
∈ P

and thus ũ ≡ b(0,...,0)
0 (mod P) and u ∈W(k). Hence u ∈W(k)×, as desired.

Case2: Assume πW(k) /∈ m2. Then taking x0 = πW(k), we may consider the surjection
W(k)[[X1, . . . , Xd]] � R (Xi 7→ xi) and let P be its kernel. In this case, we claim that

P ⊆M2,

where M := (πW(k), X1, . . . , Xd). Indeed, any non-zero element f ∈ P can be presented
in the form:

∑
s1,...,sd

(
∞

∑
r=0

b(s1,...,sd)
r πr

W(k))Xs1
1 · · ·X

sd
d .

Assume that f /∈ M2. Then we have f /∈ M
2 in R and the calculation of f = 0 in R as

in Case 1 shows that f contains a linear term with respect to either πW(k), or some Xi,
which leads to a contradiction to the minimality of πW(k), x1, . . . , xd, as discussed in Case
1. Assume that xa = uxa′ for some u ∈ R×. Then by applying the final step of Case 1
together with the fact that P ⊆M2, we conclude that u ∈W(k)×, as desired. �

Now Proposition 5.1 assures us that there are sufficiently many normal hyperplane
sections for a normal local domain, which is as follows.

Corollary 5.2. In addition to the hypothesis of Proposition 5.1, assume that k is an infinite perfect
field of characteristic p > 0 and U ⊆ Pd(k) is an infinite subset. Then {xaR | a ∈ 〈θW(k)〉(U)}
is an infinite set of mutually distinct height-one primes. In particular, we have⋂

a∈〈θW(k)〉(U)

xaR = 0.

Proof. By the above proposition, the subset 〈θW(k)〉(U) ⊆ Pd(W(k)) parametrizes the set
of height-one primes {xaR} and it is infinite, since U is so by assumption. Since R is a
Noetherian domain, every non-zero nonunit element of R has only finitely many prime
divisors (of height one). Therefore, we have the claim. �

The authors believe that Proposition 5.1 holds for any infinite residue field. Via the
proof of the proposition, we obtain the following corollary, which is necessary in dealing
with only the unramified case.

Corollary 5.3. In addition to the notation of Theorem 4.3, assume that πA is part of minimal
generators of m and x0 = πA. Then πA is part of minimal generators of the maximal ideal of
R/xaR for every a ∈ Pd(A).
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Proof. It is not necessary to assume that k is a perfect field. Let A[[X1, . . . , Xd]] � R be a
surjection with its kernel P, which is so constructed due to the assumption: πA /∈ m2.
Then P ⊆ (πA, X1, . . . , Xd)

2, as was seen in the proof of Proposition 5.1. Let x̃a =

a0πA + ∑d
i=1 aiXi be a lifting of xa. Since every point of Pd(A) is normalized, ai ∈

A is a unit for some 1 ≤ i ≤ d, we have an isomorphism: A[[X1, . . . , Xd]]/(x̃a) '
A[[X1, . . . , Xi−1, Xi+1, . . . , Xd]] together with πA /∈ (πA, X1, . . . , Xi−1, Xi+1, . . . , Xd)

2.
But since P ⊆ (πA, X1, . . . , Xi−1, Xi+1, . . . , Xd)

2, where P is the image of P in the quo-
tient A[[X1, . . . , Xd]]/(x̃a), it follows that πA is part of minimal generators of the maximal
ideal of R/xaR, as required. �

6. SERRE’S CONDITIONS (Rn) AND (Sn)

Let us briefly state Bertini theorems for the punctured spectra of local rings in the case
when R satisfies Serre’s conditions. The essence for these cases already appears in the
proof of the Bertini theorem for normal rings. In the following corollary, the quotient
R/xaR may fail to be reduced. As usual, we put X = Spec R−V(m) and

xa =
d

∑
i=0

aixi

for a = (a0, . . . , ad) ∈ Ad+1(A).

Corollary 6.1. Suppose that (R,m, k) is a complete local reduced ring of mixed characteristic
p > 0, that conditions (1) and (2) of Theorem 4.3 hold, and that the residue field k is infinite.
If Rp has Serre’s (Rn) (resp. (Sn)) for all p ∈ X, then there exists a Zariski dense open subset
U ⊆ Pd(k) such that for every

a = (a0 : · · · : ad) ∈ Sp−1
A (U),

the quotient Rp/xaRp has (Rn) (resp. (Sn)) for all p ∈ X ∩V(xa).

Proof. We briefly sketch the proof of the corollary. Since R is complete local and reduced,
the singular locus of R is non-empty. Thus, the set

Q1 := {p ∈ X | p is a minimal prime in Sing(X)}

is finite. Let

Q2 := {p ∈ X | depth Rp = n and dim Rp > n},

which is also finite by ([2], lemma 3.2). The proof is similar to that of Theorem 4.3. So
it suffices to avoid the union of finite set of prime ideals in Q1 ∪ Q2. Namely, for any
a = (a0 : · · · : ad) ∈ Sp−1

A (U), the localization Rp/xaRp has (Rn) (resp. (Sn)) for all
p ∈ X ∩V(xa) and Reg(R) ∩V(xa) ⊆ Reg(R/xaR). �
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The above proof also shows that the Bertini theorem holds for mixed Serre’s condi-
tions. That is, if R has (Rs) + (Sr), then so does Rp/xaRp for all a = (a0 : · · · : ad) ∈
Sp−1

A (U) and all p ∈ X ∩ V(xa). For instance, we obtain the Bertini theorem for reduced
rings, since R is reduced ⇐⇒ R has (R0) + (S1). To be precise, we have the following
version of Bertini theorem:

Corollary 6.2. Suppose that (R,m, k) is a complete local normal domain of dimension 2 in mixed
characteristic p > 0, that conditions (1) and (2) of Theorem 4.3 hold, and that the residue field k
is infinite. Then there exists a Zariski dense open subset U ⊆ Pd(k) such that for every

a = (a0 : · · · : ad) ∈ Sp−1
A (U),

the quotient R/xaR is a reduced ring of mixed characteristic p > 0.

Proof. By the previous corollary, Rp/xaRp is reduced for all p ∈ X ∩ V(xa). Since R is a
local normal domain of dimension 2, we have depth R = 2. Hence R/xaR is reduced. To
make the quotient R/xaR into a ring of mixed characteristic, it suffices to choose U such
that πA is not a zero divisor of R/xaR. In fact, we may take xa so that it avoids the union
of finitely many minimal prime divisors of πAR, since every system of parameters of R
is a regular sequence. So the rest of the proof is similar to that of Theorem 4.3. �

Remark 6.3. In place of the hypothesis of Corollary 6.2, assume that R is only a domain.
Then can one find xa such that R/xaR is a domain as well? In the mixed characteristic
case, the answer to this question is not clear yet. But there is a two-dimensional complete
normal local domain over C without principal prime ideals at all (such an example is due
to Laufer, as mentioned in [2]. However, an explicit example is not given there). In light
of this, both Corollary 6.1 and Corollary 6.2 seem to be the best results.

7. CHARACTERISTIC IDEALS OF TORSION MODULES OVER NORMAL DOMAINS

Throughout this section, we assume that R is a Noetherian normal domain and M is a
finitely generated torsion R-module. Then the localization of R at every height-one prime
is a discrete valuation ring. We introduce an invariant of the module M. For an ideal I
of R, let M[I] denote the maximal submodule of M which is annihilated by I. We follow
the definition of characteristic ideals by Skinner-Urban as in [13]. For more results and
properties on characteristic ideals with its relation to the reflexive closure and the Fitting
ideal, see § 9.

Definition 7.1. Let the notation be as above. Then the characteristic ideal is an ideal of R
defined by

charR(M) = {x ∈ R | vP(x) ≥ `RP(MP) for any height-one prime P},
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where vP(−) is the normalized valuation of RP.

Since M is torsion, `Rp(Mp) = 0 for all but finitely many height-one primes p of R and
it suffices to take only height-one primes in the support of M in the definition. When M
is not a torsion R-module, we put charR(M) = 0.

Remark 7.2. The formation of characteristic ideals does not commute with base change in
general. For example, let R = Zp[[x, y]] and let M = R/xR. Then M is a torsion module
and charR(M) = xA. However, the R/xR-module M/xM is not torsion. Therefore,

0 = charR/xR(M/xM) ( xR = charR(M)R/xR

in this case. In general, even when M/xM is a torsion R/xR-module, it may happen that
charR/xR(M/xM) 6= charR(M)R/xR, which is caused by the presence of pseudo-null
submodules (see the definition below).

Definition 7.3. A finitely generated module M over a Noetherian normal domain R is
pseudo-null, if Mp = 0 for all height-one primes p ∈ Spec R. A homomorphism of R-
modules f : M→ N is a pseudo-isomorphism, if both ker( f ) and coker( f ) are pseudo-null
modules.

The proof of the next lemma is found in ([8], Proposition 5.1.7).

Lemma 7.4 (Structure Theorem). Let M be a finitely generated torsion module over a Noether-
ian normal domain R. Then there exist a finite set of height-one primes {Pi}i∈I (which is not
necessarily a redundant set of height-one primes) and a set of natural numbers {ei}i∈I such that
there is a homomorphism:

f : M→
⊕
i∈I

R/Pei
i

that is a pseudo-isomorphism. Moreover, both {Pi}i∈I and {ei}i∈I are uniquely determined.

Henceforth, we use the notation M ≈ N to indicate that there is a pseudo-isomorphism
between M and N. As mentioned before, the formation of characteristic ideals does not
commute with base change in general, which can produce extra error terms.

Proposition 7.5. Let M be a finitely generated torsion module over a Noetherian normal domain
R. Let x ∈ R be an element which satisfies the following conditions:

(1) R/xR is a normal domain (which implies that xR is a prime ideal);
(2) x is contained in no prime ideal of height one in the support of M (which implies that

M/xM is a torsion R/xR-module).

Then we have:

charR/xR(M/xM) =
(

charR/xR(M[x]) · ∏
ht p=1,
p∈Spec R

p(R/xR)`Rp (Mp)
)∗∗

.
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Proof. Recall from Proposition 9.6 in Appendix, that if 0 → L → M → N → 0 is a short
exact sequence of torsion R-modules, then charR(M) = (charR(L) · charR(N))∗∗, where
(−)∗∗ denotes the reflexive closure. The condition stated in the proposition implies that
all relevant modules are torsion. First off, we claim that

charR/xR

( ⊕
ht p=1

R/(p+ xR)`Rp (Mp)
)
=
(

∏
ht p=1,
p∈Spec R

p(R/xR)`Rp (Mp)
)∗∗

.

For the proof of this equality, let {P1, . . . , Pm} be a set of all height-one primes of R/xR
which contain p(R/xR). Then the localization (R/xR)Pi is a discrete valuation ring and

p(R/xR)Pi = P
`(R/xR)Pi

((R/(p+xR))Pi )

i (R/xR)Pi

for all i. Then the above equality immediately follows from this. Thus, it suffices to prove
the following equality:(

charR/xR(M/xM) · charR/xR(M[x])−1
)∗∗

= charR/xR

( ⊕
ht p=1,
p∈Spec R

R/(p+ xR)`Rp (Mp)
)

,

which is an element in the group of all reflexive fractional ideals of R. By considering
all torsion R-modules such that x ∈ R is contained in no height-one prime ideal in their
support, we show that both sides of the above formula is multiplicative on short exact
sequences. Let

0→ L→ M→ N → 0

be a short exact sequence of such R-modules. Then since the function `(−) is additive,
it follows that the right hand side of the above formula is multiplicative. On the other
hand, there follows the exact sequence:

0→ L[x]→ M[x]→ N[x]→ L/xL→ M/xM→ N/xN → 0

by the snake lemma. If p is a height-two prime ideal of R containing x ∈ R, we may
localize the above exact sequence at p, so it follows that the left hand side of the above
formula is multiplicative as well.

Hence we are reduced to the case that M = R/q for a prime ideal q by the prime
filtration argument. Assume first that ht q = 1. Then we clearly have Supp(M) = {q},
M[x] = 0, and `Rq(Mq) = 1, because Mq is a field. Now the formula is obviously true.
Next assume that ht q > 1. Then it is easy to see that both sides of the formula are equal
to a unit ideal, which completes the proof. �
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8. APPLICATIONS TO CHARACTERISTIC IDEALS

Our final goal is to prove Theorem 8.7. The aim of the main theorem is to establish
some techniques, which enables us to study Iwasawa Main Conjecture (see [11]), so we
need to deal with local rings with finite residue field. Let (R,m, F) be a complete normal
local domain of mixed characteristic with finite residue field. In other words, R is the
integral closure of Zp[[z1, . . . , zn]] in a finite field extension of the field of fractions of
Zp[[z1, . . . , zn]]. Let us recall the set-up of Corollary 4.5 and prove some preliminary
results.

Recall that RÔur := R⊗̂OÔur with its coefficient ring Ôur. Then if depth R ≥ 3, the com-
plete local ring RÔur fits into the hypothesis of Theorem 4.3. The Teichmüller mapping
F→ Ôur induces 〈θÔur〉 : Pd(F)→ Pd(Ôur) (there is an inclusion Pd(Our) ⊆ Pd(Ôur)).

To establish the fundamental theorem for characteristic ideals, we need to relate the
torsion R-modules to the RÔur-modules and then descend to R by faithful flatness. The
advantage of working with RÔur is that the residue field is infinite and perfect. We intro-
duce some notation. Denote by FittA(M) the Fitting ideal of the A-module M. We make
free use of results and notation from Appendix.

Definition 8.1. Under the notation as above, fix a set of minimal generators x1, . . . , xd of
the unique maximal ideal of R. Then we set

LÔur := {xaRÔur | a = (a0 : · · · : ad) ∈ 〈θÔur〉(U)}

for the mapping 〈θÔur〉 : Pd(F)→ Pd(Ôur). For a finitely generated torsion RÔur-module
M, we define a subset LÔur(M) ⊆ LÔur which consists of all height-one primes xaRÔur ∈
LÔsh such that the following conditions are satisfied:

(A) M/xa M is a torsion RÔur /xaRÔur-module.
(B) The following equalities of ideals hold in RÔur /xaRÔur :

charRÔur /xaRÔur
(M/xa M) = (charRÔur (M)RÔur /xaRÔur)

∗∗

= (FittRÔur (
m⊕

i=1

RÔur /Pei
i )RÔur /xaRÔur)

∗∗,

where (−)∗ = HomRÔur /xaRÔur
(−, RÔur /xaRÔur) and M ≈ ⊕m

i=1 RÔur /Pei
i is a fun-

damental pseudo-isomorphism.

When the base ring R is complete regular, this definition actually coincides with the
format as given in ([10], Definition 3.2.). The way of interpreting the condition (B) is
that one wants to see the characteristic ideals through Fitting ideals as an intermediate
invariant. Note that all of three ideals appearing in (B) may differ in general.
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Lemma 8.2. Let the notation and the hypothesis be as in Corollary 4.5 and let I ⊆ RÔur be an
ideal and consider the natural injection I → I∗∗ with its cokernel N. Then there exists a finite set
{Qi}1≤i≤` consisting of height-two primes of RÔur such that for

xaRÔur ∈
⋂

1≤i≤`
LÔur(RÔur /Qi)

and for all P ∈ Spec RÔur with the property that xa ∈ P and ht P ≤ 2, we have NP = 0.

Proof. By definition, the module N is supported on a closed subset of codimension two in
Spec R̂sh. So there are only finitely many height-two prime ideals contained in Supp N.
Hence it is sufficient to choose Q1, . . . , Q` as height-two prime ideals in Supp N. �

In the following discussion, we examine when equalities occur between various ideals
in the condition (B).

Discussion 8.3. Suppose M is a finitely generated torsion A-module. Then we have

FittA(M)∗∗ = charA(M)

(see Proposition 9.6 in Appendix). Take a fundamental pseudo-isomorphism:

M ≈
m⊕

i=1

RÔur /Pei
i

for a (not necessarily redundant) finite set of height-one primes {Pi} of RÔur . Choose
xa ∈ RÔur such that RÔur /xaRÔur is normal and M/xa M is a torsion RÔur /xaRÔur-module.
In particular, the multiplication map:⊕m

i=1 RÔur /Pei
i

xa−−−→ ⊕m
i=1 RÔur /Pei

i

is injective. Then since FittB(M ⊗A B) = FittA(M)B for any Noetherian A-algebra B,
letting B = RÔur /xaRÔur , it follows that

(charRÔur (M)RÔur /xaRÔur)
∗∗ = (FittRÔur (

m⊕
i=1

RÔur /Pei
i )RÔur /xaRÔur)

∗∗

= FittRÔur /xaRÔur
(

m⊕
i=1

RÔur /(xaRÔur + Pei
i ))
∗∗

as long as

xaRÔur ∈
⋂

1≤i≤`
LÔur(RÔur /Qi),

where {Qi}1≤i≤` is specified as in Lemma 8.2 (of course, we have assumed the normality
of RÔur /xaRÔur as well as the torsion property of M/xa M). It also yields that

(charRÔur (M)RÔur /xaRÔur)
∗∗ = charRÔur /xaRÔur

(
m⊕

i=1

RÔur /(xaRÔur + Pei
i )),
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which we will use below.

Some preliminary results from [10] may be proved in a similar way over general nor-
mal domains with necessary modifications.

Lemma 8.4. Under the notation and the hypothesis as in Corollary 4.5, assume that M is a
finitely generated torsion RÔur-module. Then the following assertions hold:

(1) The set LÔur(M) is identified with the intersection:

{xaRÔur | M/xa M is a torsion RÔur /xRÔur-module} ∩LÔur(Mnull)∩
⋂

1≤i≤`
LÔur(RÔur /Qi),

where Mnull is the maximal pseudo-null submodule of M and {Qi}1≤i≤` is a set of height-
two primes as stated in Lemma 8.2.

(2) Assume that N is a finitely generated pseudo-null RÔur-module and {Q′i}1≤i≤k is a set of
all associated prime ideals of height two for the module N. Then we have:

LÔur(N) =
⋂

1≤i≤k

LÔur(RÔur /Q′i).

Proof. (1): This is taken from ([10], Lemma 3.4.), but we give its proof, as it requires some
modifications. Let Mnull be the maximal pseudo-null submodule of M. Then we have the
following commutative diagram with exact rows:

0 −−−→ M/Mnull −−−→
⊕m

i=1 RÔur /Pei
i −−−→ N −−−→ 0

xa

y xa

y xa

y
0 −−−→ M/Mnull −−−→

⊕m
i=1 RÔur /Pei

i −−−→ N −−−→ 0

for a (not necessarily redundant) set of heigh-one primes {Pi}1≤i≤m of RÔur and N is a
pseudo-null module.

Assume that M/xa M is a torsion RÔur /xaRÔur-module for xaRÔur ∈
⋂

1≤i≤` LÔur(RÔur /Qi)

with the notation as in Lemma 8.2. Then the map

⊕m
i=1 RÔur /Pei

i
xa−−−→ ⊕m

i=1 RÔur /Pei
i

is injective. So the snake lemma yields the following exact sequence:

0→ N[xa]→ M/(xa M + Mnull)→
m⊕

i=1

RÔur /(xaRÔur + Pei
i )→ N/xaN → 0.

There is a short exact sequence:

0 −−−→ N[xa] −−−→ N xa−−−→ N −−−→ N/xaN −−−→ 0
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of RÔur-modules, whereas both N[xa] and N/xaN are naturally RÔur /xaRÔur-modules.
Localizing this sequence at all height-two primes P of RÔur containing xa, a length com-
putation for the sequence localized at P reveals that

charRÔur /xaRÔur
(M/(xa M + Mnull)) = charRÔur /xaRÔur

(
⊕

1≤i≤m

RÔur /(xaRÔur + Pei
i )).

On the other hand, Discussion 8.3 shows that

(charRÔur (M)RÔur /xaRÔur)
∗∗ = charRÔur /xaRÔur

(
⊕

1≤i≤m

RÔur /(xaRÔur + Pei
i )).

Finally, since the multiplication on M/Mnull by xa is injective, we have an exact sequence:

0→ Mnull/xa Mnull → M/xa M→ M/(xa M + Mnull)→ 0.

Taking characteristic ideals to this exact sequence, we find that

xaRÔur ∈ LÔur(M) ⇐⇒ xaRÔur ∈ LÔur(Mnull),

because of the condition (B). This completes the proof of (1).
(2): This part is done in ([10], Lemma 3.5 together with Lemma 3.1) in the case RÔur is

regular, so we leave the proof with necessary modifications to the reader. �

The next objective is to identify the set LÔur(M) for a finitely generated torsion R-
module M. For the proof of the main theorem, we need to make sure that there are
sufficiently many specializations that are normal, and then study characteristic ideals by
combining Proposition 5.1, Lemma 8.2, and Lemma 8.4.

Lemma 8.5. Under the notation and the hypothesis as in Corollary 4.5, assume that M is a
finitely generated torsion RÔur-module. Then we have the following assertions:

(1) The subset LÔur(M) ⊆ 〈θÔur〉(U) may be identified with a non-empty open subset of
Pd(F) under the mapping 〈θÔur〉 : Pd(F)→ Pd(Ôur). In particular, it is infinite.

(2) There exists an infinite sequence {xai RÔur}i∈N ⊆ LÔur(M) such that the union of the
set of all minimal prime divisors:⋃

i∈N

MinRÔur (P + xai RÔur)

is infinite, where P appears as one of the components in charRÔur (M).

Proof. (1): By Lemma 8.4, it follows that xa ∈ LÔur(Mnull) if and only if xa ∈ LÔur avoids
the union of all height-two primes Q′1, . . . , Q′k contained in AssRÔur (Mnull). Let Q1, . . . , Q`

be as given in Lemma 8.2. By the assumption that dim R ≥ 3, all those primes together
with the set of height-one primes P1, . . . , Pm in Supp M are strictly contained in the max-
imal ideal of RÔur . So it remains to determine the non-empty Zariski open subset of
Pd(F) with the required properties. In other words, it suffices to choose xa such that
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xa /∈ (
⋃

1≤i≤m Pi) ∪ (
⋃

1≤i≤k Q′i) ∪ (
⋃

1≤i≤` Qi). However, this part may be ca rried out in
the same way as the final step of Theorem 4.2, so we leave the detail to the reader.

(2): We shall be done by completing inductive steps using (1) as follows. Let P be a
fixed divisor of char

R̂sh(M). Since P is a non-maximal prime ideal of RÔur , it corresponds
to a non-empty Zariski open subset of P(F) and we may find xa0 ∈ LÔsh(M), which is
not contained in P. Then this initial choice satisfies our requirement.

Choose xa1 so that it is not contained in a finite set of prime divisors MinRÔur (P +

xa0 RÔur) (which is possible due to dim R ≥ 3). Next, choose xa2 so that it is not contained
in the union of the finite set of prime divisors:

MinRÔur (P + xa0 RÔur) ∪MinRÔur (P + xa1 RÔur)

Hence we may keep this process and get a sequence xa0 , xa1 , xa2 , . . . satisfying the required
properties. �

Let M be a module over a complete local domain R with O its coefficient ring and
let O → O′ be a torsion-free extension of complete discrete valuation rings. Then we
set MO′ := M⊗̂OO′, which coincides with our previous notation. Let M be a finitely
generated torsion R-module. Then

charRO′ (MO′) = charR(M)RO′ ,

which may be verified directly from the definition.

Lemma 8.6. Let M, N be finitely generated torsion R-modules. Then we have

charR(M) ⊆ charR(N) ⇐⇒ charRÔur (MÔur) ⊆ charRÔur (NÔur).

Proof. The implication ⇒ is obvious. So let us prove the other implication. Since R →
ROur is ind-étale, it suffices to show that

charROur (M) ⊆ charROur (N) ⇐⇒ charRÔur (MÔur) ⊆ charRÔur (NÔur).

Note that ROur → RÔur is faithfully flat, with trivial residue field extension. Then the
claim follows from this. �

Let us prove the following main theorem on the inclusion of characteristic ideals,
which is fundamental for the study of Iwasawa theory and Euler system theory over
general normal domains.

Theorem 8.7 (Control Theorem for Characteristic Ideals). With the notation and the hypoth-
esis as in Corollary 4.5, assume that M and N are finitely generated torsion R-modules. Then the
following statements are equivalent:

(1) charR(M) ⊆ charR(N).
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(2) For all but finitely many height-one primes:

xaRÔur ∈ LÔur(MÔur) ∩ LÔur(NÔur),

there exists a finite étale extension of discrete valuation rings O → O′ such that we have
xa ∈ RO′ and

charRO′/xaRO′ (MO′/xa MO′) ⊆ charRO′/xaRO′ (NO′/xaNO′).

(3) For all but finitely many height-one primes:

xaRÔur ∈ LÔur(MÔur) ∩ LÔur(NÔur),

we have

charRÔur /xaRÔur
(MÔur /xa MÔur) ⊆ charRÔur /xaRÔur

(NÔur /xaNÔur).

Note that dim R ≥ 3 holds automatically, due to the hypothesis depth R ≥ 3.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious. So it remains to prove (3) ⇒ (1).
By Lemma 8.6, it suffices to show that

charRÔur (MÔur) ⊆ charRÔur (NÔur).

Take fundamental pseudo-isomorphisms for M and N:

M→
⊕

i

RÔur /Pei
i (resp. N →

⊕
j

RÔur /Q
f j
j )

for a (not necessarily redundant) finite set of height-one primes {Pi} (resp. {Qj}) of RÔur .

Put IM := (∏i Pei
i )
∗∗ and IN := (∏j Q

f j
j )
∗∗ and the condition (B) allows one to assume

that

M =
⊕

i

RÔur /Pei
i (resp. N =

⊕
j

RÔur /Q
f j
j ).

To simplify the notation, assume that {Pi} (resp. {Qj}) is a redundant set of prime ideals
and all relevant modules are defined over RÔur . We make a step-by-step study to com-
plete the proof. Let

{xai RÔur}i∈N ⊆ LÔur(MÔur) ∩ LÔur(NÔur)

be any infinite sequence of mutually distinct primes of RÔur satisfying the condition (3).
In particular, we have

⋂
i∈N xai RÔur = 0.

Step1: Let us establish Suppht=1 N ⊆ Suppht=1 M, where Suppht=1(−) is the set of
height-one primes contained in the support of a module. By assumption, we find that(

IM(RÔur /xai RÔur)
)∗∗ ⊆ (IN(RÔur /xai RÔur)

)∗∗
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for all i ∈N. Fix a divisor Qk. Then for every fixed i ∈N, in particular, we have

IM ⊆
⋂
a∈Λi

a,

where Λi is the set of symbolic power ideals associated to all minimal prime ideals of

AssRÔur (RÔur /(Qk + xai RÔur)).

The image of the natural map ⋂
a∈Λi

a→ RÔur /xai RÔur

is the reflexive closure of Qk(RÔur /xai RÔur). Moreover, we have an injection:

RÔur /
⋂

i∈N

⋂
a∈Λi

a ↪→ ∏
i∈N

(
RÔur /

⋂
a∈Λi

a
)
.

Since Qk is a prime ideal and since we could have chosen the set {xai}i∈N such that⋃
i∈N

MinRÔur (Qk + xai RÔur) =
⋃

i∈N

⋃
a∈Λi

MinRÔur (a)

is infinite in view of Lemma 8.5, it follows that

Qk =
⋂

i∈N

⋂
a∈Λi

a,

and thus, we have IM ⊆ Qk. Since Qk is arbitrary, IM ⊆ (∏j Qj)
∗∗, or equivalently,

Suppht=1 N ⊆ Suppht=1 M.
Step2: In this step, we deal with multiplicities of divisors in the characteristic ideal

and we complete this step by induction on the number of divisors appearing in IM.
First, assume IM = (Pe)∗∗ for e ≥ 1. Then we have Suppht=1 N = ∅ or {P} because of

Step1. If Suppht=1 N = ∅, there is nothing to prove. So assume Suppht=1 N = {P}. Both
M and N are assumed to be fundamental torsion RÔur-modules, thus M[xai ] and N[xai ]

are trivial modules and Proposition 7.5 yields that `(RÔur )P
(MP) ≥ `(RÔur )P

(NP).
In the general case, we prove by contradiction and thus, assume that IM * IN . Then

this implies that we have ek < fk for some k. Put

ĨM := (P−ek
k · IM)∗∗ (resp. ĨN := (P−ek

k · IN)
∗∗),

which are both integral reflexive ideals. There is a short exact sequence:

0→ ĨM/IM → RÔur /IM → RÔur / ĨM → 0 (resp. 0→ ĨN/IN → RÔur /IN → RÔur / ĨN → 0)

and it is clear that

charRÔur ( ĨM/IM) = charRÔur ( ĨN/IN) = (Pek
k )∗∗,
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which induces the following short exact sequences by the snake lemma:

0→ ĨM/(IM, xai ĨM)→ RÔur /(IM, xai)→ RÔur /( ĨM, xai)→ 0

and

0→ ĨN/(IN , xai ĨN)→ RÔur /(IN , xai)→ RÔur /( ĨN , xai)→ 0.

Taking characteristic ideals, we get by the assumption (3)

charRÔur /xai RÔur
(RÔur /( ĨM, xai)) ⊆ charRÔur /xai RÔur

(RÔur /( ĨN , xai)).

Since the number of primes divisors in AssRÔur (RÔur / ĨM) is just one less than that of
components of prime divisors in IM, the induction hypothesis on ĨM yields

charRÔur (RÔur / ĨM) ⊆ charRÔur (RÔur / ĨN).

However, we deduce from these observations that IM ⊆ IN , which is a contradiction to
our assumption IM * IN . Hence, we obtain IM ⊆ IN , as desired. �

Remark 8.8. It is worth pointing out that Theorem 8.7 holds for complete normal local
rings of mixed characteristic with arbitrary infinite perfect residue field as well. More
precisely, it can be proven that charR(M) ⊆ charR(N) ⇐⇒ charR/xR(M/xM) ⊆
charR/xR(N/xN) for sufficiently many x ∈ R.

In this article, we presented an application of Bertini theorem to characteristic ideals.
However, we believe that the main theorem has more interesting applications such as the
study of the restriction map on divisor class (Chow) groups.

9. APPENDIX

In this appendix, we study the relationship between Fitting ideals and characteristic
ideals. For Fitting ideals, we refer the reader to Northcott’s book [9], but we review the
basic part of the theory. Throughout, we assume that R is a Noetherian ring and M is a
finitely generated R-module.

Definition 9.1 (Fitting ideal). Let the notation be as above and assume that

F1 → F0 → M→ 0

is a finite free resolution of the R-module M, where the mapping F1 → F0 is defined via
a m× n-matrix X with rank(F1) = n and rank(F0) = m. Then FittR(M) is defined as an
ideal of R generated by all m-minors of X.

The Fitting ideal does not depend on the choice of a free resolution and it enjoys the
following properties.
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Proposition 9.2. Let M be a finitely generated module over a Noetherian ring R. Then we have
the following properties.

(1) Let I ⊆ R be an ideal. Then FittR(R/I) = I.
(2) Let S be any Noetherian R-algebra. Then FittS(M⊗R S) = FittR(M)S.
(3) Let AnnR(M) be the annihilator of the R-module M. Then

FittR(M) ⊆ AnnR(M).

(4) If 0→ L→ M→ N → 0 is a short exact sequence of R-modules, then

FittR(L) · FittR(N) ⊆ FittR(M).

(5) Assume that R is a discrete valuation ring with its uniformizing parameter b and M is a
torsion R-module. Then FittR(M) = (b)`R(M).

Proof. These facts are all well known. For (5), it simply follows from the elementary
divisors of modules over a principal ideal domain. �

For a Noetherian domain R and an R-module M, let M∗ := HomR(M, R), the dual of
M. We say that M∗∗ is the reflexive closure of M. Then we have the following lemma.

Lemma 9.3. Let R be a Noetherian domain and let I be a fractional ideal of R. Then the reflexive
closure I∗∗ is naturally regarded as a fractional ideal of R.

Proof. By assumption, there exists α ∈ R such that I ' α · I ⊆ R. Let J := α · I, an ideal of
R. The short exact sequence 0→ J → R→ R/J → 0 induces a short exact sequence

0 = HomR(R/J, R)→ R→ HomR(J, R)→ N → 0,

with N ⊆ Ext1
R(R/J, R) cokernel of R → HomR(J, R). Then applying HomR(−, R), we

get an exact sequence

0 = HomR(N, R)→ J∗∗ → R,

because J ·N = 0. This implies that J∗∗ is an ideal of R. Then I∗∗ = α−1 · J∗∗ is a fractional
ideal. �

Note that even when I and J are reflexive, the product I · J need not be reflexive. Any
principal ideal is reflexive. Let I be an ideal of a normal domain R. Then we recall the
following fact:

I∗∗ =
⋂
P

IP,

where P ranges over all height-one primes of R. The natural inclusion I → I∗∗ is a
pseudo-isomorphism, since IP → (I∗∗)P = (IP)

∗∗ for every height-one prime P ⊆ R. The
following lemma explains the naturality of reflexive ideals and gives a way to investigate
the inclusion relation between characteristic ideals.
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Lemma 9.4. Let R be a Noetherian normal domain and let I and J be reflexive ideals. Then I ⊆ J
if and only if vP(I) ≥ vP(J) for a valuation v attached to every height-one prime P of R. In
particular, the only reflexive integral ideal containing a prime ideal of R properly is R itself.

If R is only assumed to be Cohen-Macaulay, a similar result holds for invertible mod-
ules ([1], Lemma 5.3). We defined characteristic ideals as reflexive ideals and this is
natural from the viewpoint of Iwasawa theory, because the most interesting arithmetic
information may be captured at height-one primes. For finitely generated torsion R-
modules M, N, it follows from the above lemma that charR(M) ⊆ charR(N) if and only
if charR(M)P ⊆ charR(N)P for every height-one prime P ∈ Supp(M) ∪ Supp(N).

Example 9.5. Suppose I is reflexive and let a ⊆ R be such that R/a is a normal domain.
Then I(R/a) need not be reflexive. For a general ideal I ⊆ R, it can happen that

(I(R/a))∗∗ 6= (I∗∗(R/a))∗∗.

Here, I∗∗ is the reflexive closure with respect to R and (I(R/a))∗∗ is the reflexive closure
with respect to R/a. Let us take a look at the following simple example. Take R =

Zp[[x, y]], I = (x, y), and a = (x). Then (I∗∗(R/a))∗∗ = R/xR, since there is no height-
one prime of R containing I. But (I(R/a))∗∗ = y(R/xR).

Proposition 9.6. Let R be a Noetherian normal domain. Then the following hold.

(1) Let M be a finitely generated torsion R-module. Then we have

charR(M) =
(

∏
ht p=1

p`Rp (Mp)
)∗∗

= FittR(M)∗∗.

In particular, FittR(M) ⊆ charR(M) and if R is a UFD, then

FittR(M) ⊆ ∏
ht p=1

p`Rp (Mp) = charR(M).

(2) Let 0 → L → M → N → 0 be a short exact sequence of finitely generated torsion
R-modules. Then

charR(M) = (charR(L) · charR(N))∗∗.

Proof. (1): Since the characteristic ideal is reflexive, the first equality follows by taking
localization at all height-one primes of R. The second equality follows from the fact

FittRP(MP) = (PRP)
`RP (MP)

for any height-one prime ideal P ⊆ R. The second assertion is due to the fact that a
height-one prime in a UFD is principal.

(2): This is clear, since the length is additive with respect to short exact sequences. �
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Example 9.7. The ordinary power of a height-one prime in a normal domain is not neces-
sarily reflexive. Here is an example. Let R = Zp[[x2, xy, y2]] and let p = (x2, xy). Then
R is a normal domain and ht(p) = 1. Then p2 = (x4, x3y, x2y2) and p2 6= p(2). In fact,
x2 /∈ p2, but p(2) = (x2).

Now let q = (xy, y2) and M = R/(p ∩ q), which is torsion over R. Then one verifies
that

FittR(M) = p∩ q * ∏
ht p=1

p`Rp (Mp) = pq,

which tells us that Proposition 9.6 (1) is the most optimal.
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