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1. Introduction

Let p be an odd prime and let us fix the embeddings of the algebraic closure Q̄ of the
field of rationals into C and the algebraic closure Q̄p of the field of p-adic numbers. Let
T be a p-adic family of rank two Galois representations, that is, T is a free module of
rank two over a complete local noetherian ring R of characteristic zero with finite residue
field of characteristic p on which the absolute Galois group GF of a number field F acts
continuously. We fix a Zariski-dense subset S of Homcont(R, Q̄p). We assume that the
triple (T , R, S) satisfies the following properties:

(1) The action of GF on T is unramified outside a finite set of places Σ.
(2) For each κ ∈ S, the GF -representation Tκ = T ⊗R κ(R) is a lattice of the p-adic

étale realization Vκ is of a pure motive Mκ which is critical in the sense of [De79].
(3) For every κ ∈ S, the complex L-function L(Mκ, s) is meromorphically continued to

the whole complex plane.
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(4) There exists κ ∈ S such L(Mκ, s) is holomorphic at s = 0 and it does not vanish
at s = 0.

(5) For each p|p, the action of GFp on T is nearly ordinary, in the sense that the image
of the decomposition group GFp is contained in a Borel subgroup of AutR(T ) ∼=
GL2(R).

Under these hypotheses, it was suggested in [Gre91, Gre94] (see also [Och06]) that there
exists a non zero-divisor p-adic L-function Lp(T ) ∈ R interpolating the special values
L(Mκ, 0) in the sense that, for all κ ∈ S, κ(Lp(T )) is equal to L(Mκ, 0) divided by a
suitable complex period of Mκ and multiplied by Euler factors for all p|p.

Let A be the discrete GF -representation T ⊗RDP (R) where DP is the Pontrjagin dual.
Similarly, for each κ ∈ S, we denote by Aκ the discrete Galois representation Tκ ⊗κ(R)

DP (κ(R)) = Tκ ⊗Zp Qp/Zp.
Using the filtration obtained by the property (5), Greenberg [Gre94] has defined Selmer

groups SelA and SelAκ as subgroups of a suitable Galois cohomology group with coefficient
A and Aκ respectively. The module DP (SelA) (resp. DP (SelAκ)) is known to be of finite
type over R (resp. κ(R)). Further, the module DP (SelA) (resp. DP (SelAκ)) is conjectured
to be linked with Lp(T ) (resp. L(Mκ, 0)). In particular, if L(Mκ, 0) is non-zero, it is con-
jectured in [BK90] that DP (SelAκ) is torsion over κ(R). In analogy with the case of R = Zp

and taking into account property () above, the R-moduleDP (SelA) is conjectured to be tor-
sion over R. More precisely, the Tamagawa Number Conjecture states that when κ(Lp(T ))
is non-zero, its p-part should be related to the length of DP (SelAκ). When R is a nor-
mal ring, the Iwasawa Main Conjecture states that the characteristic ideal charRDP (SelA)
should be equal to the ideal generated by Lp(T ). (The Iwasawa Main Conjecture for such
general deformations was first proposed by Greenberg in [Gre94] and was made precise by
the second author through a detailed study in the case of Hida deformation [Och06]. See
also [Och10] for a precise formulation obtained through such study.)

Combining these two conjectures with the interpolation property defining Lp(T ) suggests
that both DP (SelAκ) and DP (SelA)⊗R κ(R) should be linked with κ(Lp(T )) and thus that
the natural map

DP (SelA)⊗R κ(R) −→ DP (SelAκ)

should be very close to an isomorphism when κ belongs to S. When such a property holds,
we say that Selmer groups satisfy a control theorem at κ. Apart from Iwasawa original work
on ideal class groups in Zp-extensions, the first historical setting in which such a theorem
was proved was in [Maz72] for the family of GF -representations TpA⊗ZpΛ, where TpA is the
Tate module of a good ordinary abelian variety defined over F and Λ = Zp[[Gal(F∞/F )]]
is the complete group algebra of the Galois group of the cyclotomic Zp-extension of F
with its natural Gal(F∞/F )-action. Subsequently, it was generalized to abelian varieties
and more general p-adic Lie extensions in [Gre03] among others, to Zr

p-extensions for some
abstract R[GF ]-modules in [Och00, Och01] and [Nek06, (8.10)]. It was also generalized to
families of GQ-representations including nearly ordinary Hida families of modular forms in
[Och01, Och06].

From now on, we assume that T arises from Hida theory of nearly ordinary automorphic
representations on GL2(AF ) of the ring of adeles AF of a totally real number field F in
the following sense. Let O be the ring of integers of a finite extension of Qp which contains

2



all conjugates of F . In [Hid88, Hid89b], nearly ordinary Hecke algebras HN ,O of tame
conductor N for GL2 over totally real number fields were constructed. The algebra HN ,O
is a noetherian ring which is finite torsion-free over an Iwasawa algebra Λ of 1+[F : Q]+δF,p
variables where δF,p is the defect of Leopoldt’s conjecture at p. In general, HN ,O is a semi-
local algebra which has finitely many primes of height zero. Let R = HN ,O/A be the
quotient of HN ,O by A, one of such primes of height zero. R is a local domain which is
also finite and torsion-free over the same Iwasawa algebra Λ. We call such a quotient R
of HN ,O a branch of HN ,O. Let us denote by FR the finite residual field of R. To R
is attached a residual GF -representation ρ̄ on a vector space of rank two over FR. For
simplicity of exposition, we assume in this introduction that ρ̄ is irreducible and that R is
a regular ring (much of our results in fact require neither assumptions, see Section 2.1.3
and Proposition 3.1). By the method of pseudo-representation developed in [Wil88], we
have GF -representations T satisfying the properties (1)-(5) listed above. In particular, to
each arithmetic specialization κ of T of appropriate weight is attached a nearly ordinary
eigen cuspform f = fκ which is an eigenform under the action of R and κ is the map which
sends a Hecke operator to the corresponding eigenvalue of f . On the other hand, for every
nearly ordinary eigen cuspform f of tame conductor N , the Galois representation of f is
obtained this way at some arithmetic specialization κ = κf of R. We remark that families
of GF -representation satisfying the properties (1)-(5) should in fact all arise in this way
according to [FM95].

In this article, we consider the Pontrjagin dual DP (SelA) of SelA as well as the second

cohomology group H̃2
f (F, T ) of the Selmer complex RΓf (F, T ), as defined and studied

in [Nek06], and prove control theorems for these objects. We remark that both styles of
control theorems have their own use: Selmer groups are easier to link to special values
of L-function whereas Selmer complexes satisfy convenient base change properties. The
following theorem summarizes our results but we refer to Section 2.2 for definitions and to
Propositions 3.5 and 3.6 for precise statements. We especially draw the attention of the
reader to the fact that control theorems for two different type of Selmer groups are proved
in the body of the text.

Main Theorem . Let R be a branch (cf. Definition 2.5) of the nearly ordinary Hecke
algebra and let T be the GF -representation with coefficients in R constructed by Hida
theory.

For each arithmetic specialization κ = κf of R associated with some eigen cuspform f
of arithmetic weight (cf. Definition 2.3 for the definition of arithmetic specializations), the

second cohomology group H̃2
f (F, TPκ) (resp. H̃2

f (F, TPκ ⊗R κ(R))) of RΓf (F, TPκ) (resp.

RΓf (F, TPκ)⊗R κ(R)) satisfies:

(1) H̃2
f (F, TPκ)⊗R κ(R)

∼→ H̃2
f (F, TPκ ⊗R κ(R)),

where TPκ is the base extension of T by ⊗RRPκ with Rκ the localization of R at Pκ. We
also have:

(2) (DP (SelA)⊗R RPκ)⊗R κ(R) � DP (SelAκ)⊗κ(R) Frac(κ(R)).

Assume further that, for all p|p, the automorphic representation πκ,p at p corresponding to
Vκ is not a Steinberg representation. Then the surjection (2) is an isomorphism.
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Under some conditions, we have also the strong control theorem for which we do not
take the localization (cf. Sections 3.1 and 3.2). Thus Iwasawa Main Conjecture relating
the Selmer group for T and the p-adic L-function mentioned earlier implies the Tamagawa
Number Conjecture relating for the order of the Selmer group of f and the special value of
the Hecke L-function for f at infinitely many arithmetic specializations κf of T by using
our control theorems.

The classical lower bound for the domain of convergence of the L-functions L(f, s) of
Hilbert modular forms f due to Hecke shows that there exists critical arithmetic special-
izations Vκ of T such that L(Vκ, 0) is non-zero, and that they form a Zariski-dense subset.
Consequently, the Selmer groups we consider are expected to be torsion, and this is indeed
known when F = Q by combining [Kat04, Theorem 14.2] and [Och01]. When F ̸= Q, to
the best of the knowledge of the authors, even examples of this were yet unknown except
the case with complex multiplication or the case obtained by base-change from Q. Our
control theorem shows that if there exists an arithmetic κ such that DP (SelAκ) is torsion
over κ(R), then the R-module DP (SelA) is torsion. Thanks to the Euler system of Heegner
points, DP (SelAκ) is known to be torsion over κ(R) under the hypotheses listed in Theorem
4.2. Thus we have:

Corollary . Assume that there exists an ordinary eigen cuspform of weight (2, 2, · · · , 2)
and an arithmetic specialization κf on R such that f satisfies all the following properties
(i)-(iv) :

(i) The Neben character of f is trivial.
(ii) The representation πf,p is principal series at every p|p.
(iii) The L-function L(f, s) does not vanish at s = 1.
(iv) One of the following condition holds:
(a) 2 - [F : Q].
(b) There exists a finite place λ of F such that πf,λ is not a principal series rep-

resentation.
(c) The form f has no complex multiplication and there exists an element σ ∈ GF

such that one of the eigenvalues of σ on Vf are ±1 and the other is not equal
to ±1.

Then, DP (SelA) is torsion over R.

Conjecturally, the hypotheses of Theorem 4.2 hold roughly for the half of the nearly
ordinary families coming from Hida theory. Thus, though our work is far from proving
that DP (SelA) is always torsion over R, it provides plenty of examples.

For the organization of the article, we recall the properties of representations of GF with
coefficients in Hecke algebra coming from Hida theory and introduce Selmer groups and
Selmer complexes attached to them in the first half of the paper. The control theorems
proved in the latter half follow from two main ideas: the base-change properties of com-
plexes and the behavior of the monodromy of T at the places outside p. In order to deduce
the corollary which insists that DP (SelA) is often torsion, we make use of a recent result
[Nek10, Theorem B] by Nekovář. We remark that S. Zhang and Y. Tian have also a related
result (cf. [YZZ08, Theorem 1.4.1]).
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1.1. Notations. Let F be a totally real field of degree d and let p ≥ 3 be a rational prime.
We denote by rF the ring of integers of F . Let δF,p be the defect of Leopoldt’s conjecture
for F at p, hence the rank of the maximal Zp-extension of F minus 1. For q a finite place of
a finite extension of Q, Frq means the geometric Frobenius morphism. We denote the ring

of adeles (F ⊗QR)× (F ⊗Z Ẑ) by AF . Let IF be the set of infinite places of F . When L is a
field, we denote by GL the absolute Galois group of L. For a complete local noetherian ring
R, we denote by DM (·) the functor of Matlis duality (cf. 2.2) which is the functor from the
category of R-modules onto itself. We denote by DP (·) the functor of Pontrjagin duality
which is the functor from the category of locally compact topological abelian groups into
itself. Throughout the paper, we fix the embeddings of the algebraic closure Q̄ of the field
of rationals Q into Q̄p and C. We fix also a finite extension K of Qp which contains the
Galois closure of F and we denote by O the ring of integers of K.
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2. Selmer structures of nearly ordinary Hecke algebra

2.1. Generalities on nearly ordinary Hecke algebras.

2.1.1. Hilbert modular forms. To an idealM of rF , we attach the standard compact open

subgroups K0, K1 and K11 of GL2(rF ⊗Z Ẑ) as follows:

K0(M) =

{(
a b
c d

)
∈ GL2(rF ⊗Z Ẑ)

∣∣∣∣ c ≡ 0modM
}

K1(M) =

{(
a b
c d

)
∈ K0(M)

∣∣∣∣ d ≡ 1modM
}

K11(M) =

{(
a b
c d

)
∈ K0(M)

∣∣∣∣ a, d ≡ 1modM
}

Definition 2.1. A weight k =
∑
τ∈IF

kττ is an element of Z[IF ]; an arithmetic weight is

a weight such that kτ ≥ 2 for all τ ∈ IF and that the kτ have constant parity; a parallel

weight is an integral multiple of the weight t =
∑
τ∈IF

tττ where tτ = 1 for all τ ∈ IF . Two

weights are said to be equivalent if their difference is a parallel weight. With an arithmetic
5



weight k ∈ Z[IF ] is associated a weight v ∈ Z[IF ] called the parallel defect of k which is

defined to be a weight v =
∑
τ∈IF

vττ satisfying k + 2v ∈ Zt.

We refer to [Shi78, Section 1], [Hid88, Section 2], [SW99, Section 3.1] or [Nek06, Section
12.3] for definitions and basic properties of holomorphic Hilbert cuspforms. For k an arith-
metic weight and v its parallel defect, we denote by Sk,w(U ;O) the space of holomorphic
cuspforms of weight (k,w) and level U with coefficient in O, where U is a finite index

subgroup of GL2(rF ⊗Z Ẑ) containing K11(M) for some M ⊂ rF . Here, by the standard
normalization found in the references above, we put w = v + k − t,

Remark 2.2. In Definition 2.1, a parallel defect v ∈ Z[IF ] associated to k ∈ Z[IF ] is only
well-defined as an element in Z[IF ]/Zt. For a given form f of weight (k,w), replacing a
choice of v by v+ t is related to translating the Hecke L-function L(f, s) of f to L(f, s+1).

To f ∈ Sk,w(U ;O) is naturally attached an automorphic representation πf of GL2(AF )
(cf. [Ge]). For an automorphic representation π on GL2(AF ), the largest U such that
(Vπ)

U ̸= 0 is called the level of π, where Vπ is the representation space of π. We also
recall that for λ a finite place of F , the local automorphic representation πλ = π|GL2(Fλ)

of GL2(Fλ) is either an irreducible principal series, a twisted Steinberg or a supercuspidal
representation (see also [Ge] for such classification).

2.1.2. The nearly ordinary Hecke algebra. For any fixed integral ideal N of F which is
prime to p and for any s ∈ N, we have a natural action of

(3) G = lim←−
t

K0(p
t)/K11(p

t)r×F
∼=

(
(rF ⊗Z Zp)

× × (rF ⊗Z Zp)
×)/ r×F , (

a
d

)
7→ (a, d)

on Sk,w(K1(N ) ∩K11(p
s);O) through K0(p

s)/K11(p
s)r×F

∼= ((rF /prF )
× × (rF /prF )

×)/ r×F .

Here, (rF⊗ZZp)
×× (rF⊗ZZp)

× is naturally embedded in the diagonal torus ofGL2(rF⊗ZẐ)
and r×F is the closure of the diagonal embedding of r×F . We recall another presentation of
G as follows:

(4) G =
(
(rF ⊗Z Zp)

× × (rF ⊗Z Zp)
×)/ r×F = (rF ⊗Z Zp)

× ×
(
(rF ⊗Z Zp)

×/ r×F) ,
where the last isomorphism is induced by the map (a, d) 7→ (a−1d, a).

Note that the space Sk,w(K1(N ) ∩ K11(p
s);O) has an action of the p-Hecke operator

T0(p) which is normalized according to the parallel defect v. We denote by Sn.o
k,w(K1(N ) ∩

K11(p
s);O) ⊂ Sk,w(K1(N )∩K11(p

s);O) the largestO-submodule of Sk,w(K1(N )∩K11(p
s);O)

on which T0(p) acts invertibly. A form f ∈ Sk,w(K1(N ) ∩K11(p
s);O) is called nearly or-

dinary if it belongs to Sn.o
k,w(K1(N ) ∩K11(p

s);O).
Let us denote the complete group algebra O[[G/Gtors]] by ΛO. The algebra ΛO is non-

canonically isomorphic to the power-series algebra O[[X1, · · · , Xr]] with r = 1 + δF,p + d.
Recall that, for any n ∈ Z[IF ], we have a natural character

(5) (rF ⊗Z Zp)
× −→ Q̄×p , x 7→ xn.

We denote by χ, the character

(6) (rF ⊗Z Zp)
×/ r×F � Gal(F (µp∞)/F )

χcyc−→ Q̄×p ,
6



where the first equality is the canonical identification of Gal(F (µp∞)/F ) with a quotient

of (rF ⊗Z Zp)
×/ r×F obtained via the class field theory.

Definition 2.3. (1) For (k,w) ∈ Z[IF ] × Z, an algebraic character κ : G −→ Q̄×p of
weight (k,w) is a character of the following form:

κ : G = (rF ⊗ Zp)
× ×

(
(rF ⊗Z Zp)

×/ r×F

)
−→ Q̄p

(a, z) 7−→ ψ(a, z)χ[n+2v](z)an

where ψ is a character of finite order and [n + 2v] is the unique integer satisfying
n + 2v = [n + 2v]t. (We recall that we have the relation w = v + k − t and
k = n + 2t.) An algebraic character κ : G −→ Q̄×p of weight (k,w) is called an
arithmetic character of weight (k,w) if its restriction to the subgroup of global units
r×F ⊂ (rF ⊗ Zp)

× is trivial.
(2) An algebra homomorphism κ ∈ Homcont(ΛO, Q̄p) is called an algebraic specialization

(resp. arithmetic specialization) of weight (k,w) if κ|G is an algebraic character
(resp. arithmetic character) of weight (k,w).

A prime ideal P = Pκ ⊂ ΛO which is defined to be the kernel of an algebraic
specialization (resp. arithmetic specialization) κ of ΛO is called an algebraic point
(resp. arithmetic point). We denote by Specalg(ΛO) (resp. Specarith(ΛO)) the
subset of Spec(ΛO) which consists of algebraic points (resp. arithmetic points).

(3) If R is a finite ΛO-algebra, an algebra homomorphism κ ∈ Homcont(R, Q̄p) is called
an algebraic specialization (resp. arithmetic specialization) of weight (k,w) if κ|ΛO
is an algebraic specialization (resp. arithmetic specialization) of weight (k,w).

A prime ideal P = Pκ ⊂ R which is defined to be the kernel of an algebraic
specialization (resp. arithmetic specialization) κ of R is called an algebraic point
(resp. arithmetic point). We denote by Specalg(R) (resp. Specarith(R)) the subset
of Spec(R) which consists of algebraic points (resp. arithmetic points).

Let k =
∑
τ∈IF

kττ ∈ Z[IF ] be an arithmetic weight and let v ∈ Z[IF ] a parity defect of

k (cf. Definition 2.1 and Remark 2.2). The nearly ordinary Hecke algebra Hk,w(K1(N ) ∩
K11(p

s);O) of weight (k,w) and level K1(N ) ∩ K11(p
s) is defined to be the sub-algebra

of EndO

(
Sn.o
k,w(K1(N ) ∩K11(p

s);O)
)
generated by Hecke operators where Sn.o

k,w(K1(N ) ∩
K11(p

s);O) is the space of nearly ordinary cuspforms.
The O-algebra Hk,w(K1(N ) ∩ K11(p

s);O) is finite and flat over O. Let the nearly
ordinary Hecke algebra HN ,O be the inverse limit with respect to s of the H2t,0(K1(N ) ∩
K11(p

s);O). We recall the following fundamental results of Hida.

Theorem 2.4. (1) For any arithmetic weight k ∈ Z[IF ] and any parallel defect v ∈
Z[IF ] of k, the nearly ordinary Hecke algebra HN ,O is isomorphic to lim

←−
s

Hk,w(K1(N )∩

K11(p
s);O).

(2) The nearly ordinary Hecke algebra HN ,O is a finite torsion-free ΛO-module, hence
a semi-local ring.
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The proof of the theorem is found in the paper [Hid89a] by Hida which extends his earlier
result [Hid88] on ordinary Hecke algebras to nearly ordinary Hecke algebras. Especially,
the statement (1) of the above theorem is [Hid89a, Theorem 2.3] and the statement (2) is
[Hid89a, Theorem 2.4].

Since HN ,O is a semi-local algebra, we introduce the following notation.

Definition 2.5. Let A be one of finitely many ideals of height zero in HN ,O. The algebra
R = HN ,O/A for each ideal of height zero in HN ,O is called a branch of HN ,O.

Let k be an arithmetic weight and v its parallel defect. Since giving an eigen cuspform
f ∈ Sn.o

k,w(K1(Nps);O) is equivalent to giving a homomorphism

(7) qf : Hk,w(K1(N ) ∩K11(p
s);O) � Hk,w(K1(Nps);O) −→ Q̄p

by sending a Hecke operator T ∈ Hk,w(K1(Nps);O) to a1(f |T ), we have the following
theorem.

Theorem 2.6. Let us fix an ideal N ⊂ rF prime to p.

(1) Let R = HN ,O/A be a branch of HN ,O in the sense of Definition 2.5. Then for
any arithmetic weight k and any parallel defect v of k, and for any arithmetic
specialization κ : R −→ Q̄p of weight (k,w) (cf. Definition 2.3 for the definition
of arithmetic specializations), there exists a unique nearly ordinary eigen cusp-
form fκ ∈ Sn.o

k,w(K1(Nps)) for some s such that κ(R) is canonically identified with

qfκ(Hk,w(K1(N ) ∩ K11(p
s);O)). Here, we recall that k = n + 2t, w = v + k − t.

By basics on the theory of newforms, it is not hard to see that the form fκ is a new
vector for every prime dividing N .

(2) For any arithmetic weight k and any parallel defect v of k, and for any nearly
ordinary eigen cuspform f ∈ Sn.o

k,w(K1(N ) ∩K11(p
s)) which is new at every prime

dividing N , there exists a unique ideal A ⊂ HN ,O of height zero and a unique
arithmetic specialization κf : R −→ Q̄p on R = HN ,O/A of weight (k,w) such that
κf (R) is canonically identified with qf (Hk,w(K1(N ) ∩K11(p

s);O)).

The statements of the above theorem are contained in [Hid89a, Theorem 2.4] if we count
the perfect duality between the nearly ordinary Hecke algebra Hk,w(K1(N ) ∩K11(p

s);O)
and the space of nearly ordinary forms Sn.o

k,w(K1(N ) ∩K11(p
s)).

As indicated by the following lemma, a branch R of the nearly ordinary Hecke algebra
HN ,O is often regular. Since we do not find a reference for this fact, we will also give the
proof below.

Lemma 2.7. Let f ∈ Sk,w(K1(N ); Q̄) be a normalized newform of weight (k,w) for some
N ⊂ rF . If f is nearly ordinary at a prime number p, let m be the maximal ideal of
Hk,w(K1(N );O) corresponding to the mod p Hecke eigen system for f . After a finite
extension of O if necessary, the rings Hk,w(K1(N );O)m are regular local rings for almost
all primes p such that f is nearly ordinary at p and the branch R of HN ,O introduced in
Theorem 2.6 (2) is a regular local ring.

Proof. By the fact that Sk,w(K1(N ); Q̄) is of finite dimension, there can be only finitely
many primes p such that a given newform f ∈ Sk,w(K1(N ); Q̄) is congruent to another
newform f ′ ∈ Sk,w(K1(N ); Q̄) under the p-adic ideal of Q̄ fixed at the beginning of the

8



article. Let p be a prime at which f is nearly ordinary and which is outside such finitely
many congruence primes. By the duality between Hecke operators and modular forms,
Hk,w(K1(N );O)m is isomorphic to a discrete valuation ring O if we make a finite flat
extension of O such that the eigenvalues of f belongs to O. Let P be the kernel of
κf . The prime ideal ΛO ∩ P being generated by a regular sequence contained in a sys-
tem of parameters (x1, · · · , xr) in ΛO with r = 1 + δF,p + d, Theorem 2.6 implies that
Hk,w(K1(N );O)m = R/(x1, · · · , xr)R for some branch R of HN ,O. Hence R has to be a
regular local ring. This completes the proof. �

2.1.3. Galois representations. In this section, we recall the results on the Galois represen-
tations of Hilbert modular forms and the Galois deformations associated to deformations
of Hilbert modular forms. More precisely, For a single (not necessarily nearly ordinary)
Hilbert modular cuspform f , we recall the Galois representation for f (Theorem 2.8) and
its local property (Theorem 2.9). When f is nearly ordinary at p, the form f (or its Hecke
algebra) fits into the Hida family as explained before. Hence,we recall the Galois defor-
mation associated to this Hida family (Theorem 2.10) and then describe its local property
(Theorem 2.11).

We recall the following theorems (Theorem 2.8, Theorem 2.9) for the Galois repre-
sentation associated to a Hilbert modular eigen cuspform constructed and studied by
Carayol[Car86], Ohta[Oht82], Wiles[Wil88] and Taylor[Tay89] etc. generalizing earlier
work by Deligne and Shimura for F = Q. Especially, if our Hilbert modular forms satisfy
the conditions (iv) (a) or (iv) (b) of Corollary in the introduction, we are reduced to study-
ing the etale cohomology of certain Shimura curves associated to quaternion algebras over
F by help of Jacquet-Langlands-Shimizu correspondence and the construction is similar to
that of Deligne (see [Car86] and [Oht82] for this case). In the remaining case, we construct
the Galois representation by the method of p-power congruences initiated by Shimura (see
[Wil88] and [Tay89] for this case).

Theorem 2.8. Let f ∈ Sk,w(K1(M); Q̄p) be a normalized eigen cuspform of arithmetic
weight k and let K be a finite extension of Qp containing all Hecke eigen values for f . Then,
there exists a continuous, irreducible GF -representation Vf ∼= K⊕2 which is unramified
outsideMp and which verifies

(8) det(1− FrλX|Vf ) = 1− Tλ(f)X + Sλ(f)X
2

for every λ - Mp where Tλ (resp. Sλ) is the Hecke operator induced by the coset class

K1(M)

(
1 0
0 ϖλ

)
K1(M) (resp. K1(M)

(
ϖλ 0
0 ϖλ

)
K1(M)) with a uniformizer ϖλ at λ

and Frλ is (the conjugate class of) geometric frobenius element at λ.
The GF -representation Vf is known to be irreducible and thus, by using Chebotarev

density theorem, is characterized up to isomorphism by (8).

The following local property is known for the Galois representation of Hilbert modular
forms.

Theorem 2.9. Let f ∈ Sk,w(K1(M); Q̄p) be a normalized eigen cuspform. We denote by
wmax the maximum among the coefficients wτ . Let Vf (resp. πf ) be the Galois representa-
tion (resp. automorphic representation) associated with f .
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(1) Suppose that a prime λ of F are not over p. Then
(a) The inertia group Iλ at λ acts on Vf through an infinite quotient if and only

if πf,λ is a Steinberg representation. In this case, Vf has a unique filtration by
graded pieces of dimension one:

0 −→ (Vf )
+
λ −→ Vf −→ (Vf )

−
λ −→ 0

which is stable under the decomposition group Dλ at λ. The inertia group Iλ
acts on (Vf )

+
λ (resp. (Vf )

−
λ ) through a finite quotient of Iλ. An eigenvalue α

of the action of a lift of Frλ to GFλ
on ((Vf )

+
λ (resp. ((Vf )

−
λ ) is an algebraic

number satisfying |α|∞ = (NF/Qλ)
wmax+1

2 (resp. (NF/Qλ)
wmax−1

2 ).
(b) If Iλ acts on Vf through a finite quotient, the action of Iλ is reducible if and

only if πf,λ is a principal series. If Iλ acts on Vf through a finite quotient, an
eigenvalue α of the action of a lift of Frλ to GFλ

on Vf is an algebraic number

satisfying |α|∞ = (NF/Qλ)
wmax

2 .
(2) Suppose that a prime p of F is over p and that f is nearly ordinary at p. Then Vf

has a unique filtration by graded pieces of dimension one:

0 −→ (Vf )
+
p −→ Vf −→ (Vf )

−
p −→ 0

which is stable under the decomposition group Dp at p and in which the Hodge-Tate
weight of (Vf )

+
p is greater than that of (Vf )

−
p .

In the above two theorems, we presented results for the p-adic Galois representation
associated to a single Hilbert modular form f . In the two theorems below, we make
these p-adic Galois representations into a big p-adic family which corresponds to a p-adic
family of nearly ordinary modular forms for varying weights, so called the Hida family.
Recall that the Hida family was introduced at Theorem 2.4 and Theorem 2.6 above (Note
that we deformed nearly ordinary p-adic Hecke algebras for varying weights rather than
p-adic modular forms. However, since the space of modular forms are linear dual to Hecke
algebras, it is essentially the same thing as deforming modular forms.).

Though we might sometimes be able to construct such p-adic family of p-adic Ga-
lois representations by taking a limit of those for each finite level (as we did when we
constructed the family of p-adic Hecke algebras), there is a method called the theory of
pseudo-representations invented by Wiles[Wil88]. Roughly speaking, the theory of pseudo-
representations say that, if odd p-adic Galois representations are constructed at a set of
specializations qα : R −→ Q̄p when α varies with which {Ker(qα)}α is a Zarski dense
subset of Spec(R) a big family of Galois representation over R which are specialized to
given p-adic representations at each qα as long as only the traces of every elements of the
Galois group are interpolated over R. Though there are some new technical issues related
to the complicated nature of Hilbert modular forms, the ideas explained here provide the
following two theorems which is a family-version of the previous two theorems (cf. [Wil88]
and [Hid89b]):

Theorem 2.10. Let R be a branch of HN ,O. Then there exists a finitely generated torsion-
free R-module T with continuous GF -action which satisfies the following properties:

(i) The vector space V = T ⊗R K is of dimension two over K where K is the field
of fractions of R.

10



(ii) The representation of GF on V is irreducible and is unramified outside the primes
dividing Np∞.
(iii) For any arithmetic weight (k,w) and for any nearly ordinary eigen cuspform
f ∈ Sn.o

k,w(K1(Nps); Q̄) which appears on the branch R in the sense of Theorem 2.6,

Tf = T ⊗R κf (R) is a lattice of the Galois representation Vf associated with f
introduced in Theorem 2.8.

We recall the following property for the Hida deformation V which is known by con-
struction:

Theorem 2.11. Let R be a branch of HN ,O and V the Galois representation over the field
of fractions K of R introduced in Theorem 2.10. Then,

(1) For every prime λ - Np, we have:

det(1− FrλX|V) = 1− TλX + SλX
2,

where Tλ and Sλ are the Hecke operator on R at λ which is obtained as the limit
of the Hecke operators in Theorem 2.8 at finite levels.

(2) For every prime p of F over p, we have a canonical filtration obtained as the limit
of the filtration given at Theorem 2.9:

0 −→ V+p −→ V −→ V−p −→ 0

which is stable under the action of the decomposition group Dp at p.

For later use, we summarize the setting and the assumptions which we consider:

Setting 2.12. For an ideal N of rF which is prime to the prime number p fixed at the
beginning, we have a Hida’s nearly ordinary Hecke algebra HN ,O. We fix a branch R of
HN ,O and a representation T as in Theorem 2.10. We assume that we have a Dp-stable
filtration

0 −→ T +
p −→ T −→ T −p −→ 0

by finite type R-modules T +
p and T −p with continuous Dp-action which gives rise to the

exact sequence
0 −→ V+p −→ V −→ V−p −→ 0

in Theorem 2.11 by taking the base extension to K.

In addition to Setting 2.12 above, the following conditions are sometimes assumed in what
follows (we discuss some of the relation between these conditions in the remark below):
(Reg-b) The algebra R is a regular local ring (Regularity of Branch).
(Gor) The algebra R is Gorenstein ring (Gorenstein Property of Branch).
(DS) T +

p and T −p are direct summands of T as R-module.
(Fr-w) The representation T can be chosen to be free of rank two over R (Weak Freeness).
(Fr-s) The representation T can be chosen to be free of rank two over R and, for each p|p,
the graded pieces T +

p and T −p are both free of rank one over R (Strong Freeness).
(Reg-g) The residual representation at the maximal ideal MR of R restricted to the de-
composition group Dp is an extension of two different characters of Dp with values in
(R/MR)× for each p|p (Galois Theoretic Regularity). (see [MW86, §9] for the fact that the
residual representation independent of the choice of T exists.)
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(Ir) The residual representation of GF over R/MR is irreducible (Irreducibility of Residual
Representation).

Remark 2.13. (1) By a refinement and a generalization of the theory of pseudo-
representations due to Nyssen (cf. [Nys96, Théorème 1]), the condition (Ir) implies
the condition (Fr-w).

(2) Since R is a local ring, the conditions (Fr-w) and (DS) imply the condition (Fr-s).
(3) The conditions (Fr-w) and (Reg-g) imply the condition (Fr-s).
(4) In the doctoral thesis of the first author, it is shown that (Gor) implies (Fr-s)

when the condition (iv) (a) or (iv) (b) of Corollary in Introduction is satisfied. In
fact, under these conditions, our p-adic Galois representation is related to the etale
cohomology of Shimura curves via the Jacquet-Langlands-Shimizu correspondence
and this allows us to deduce deeper properties of our Galois representation. We also
prove (DS) by using the connected-etale decomposition of the p-divisible groups over
Shimura curves (The same implication and the same analysis are known for the case
F = Q using the geometry of modular curves (cf. [MW86])).

We explain the implication of the statement (3). Let us define T −p to be the image of

T ↪→ V � V−p and define T +
p to be the kernel of T � T −p . This fits into Setting 2.12.

Then, by taking the base extension ⊗RR/MR, we have:

0 −→ T +
p ⊗R R/MR −→ T ⊗R R/MR −→ T −p ⊗R R/MR −→ 0.

Note that the sequence is left-exact since T −p is a torsion-free R-module. By the condition

(Fr-w), T ⊗RR/MR is of dimension 2 over R/MR. Thus, T −p ⊗RR/MR is of dimension

1 or 2. On the other hand, since T −p ⊂ V−p by construction, the characters with values in

(R/MR)× which appear in the Jordan-Hlder-Schreier components of T −p are unique. By

the condition (Reg-g), T −p ⊗R R/MR is thus of dimension 1. Since T −p ⊗R R/MR is a

cyclic R-module, T −p is also a cyclic R-module by Nakayama’s lemma. This implies that

T −p is a free R-module of rank 1 because T −p is torsion-free over R. By the dimension

counting argument, T +
p ⊗R R/MR is of dimension 1 over R/MR. Since T +

p is a cyclic

R-module whose base extension T +
p ⊗R K is of dimension 1 over K, T +

p is also a free
R-module of rank 1.

We discuss the local property of V at primes λ dividing N in the next subsection.

2.1.4. Rigidity of automorphic types.

Lemma 2.14. Let us fix a branch R of HN ,O and a representation T as in Theorem 2.10.
Let κf and κf ′ be arithmetic specializations on R. At each prime λ dividing N , the auto-
morphic representations πf and πf ′ associated to κf and κf ′ have the same automorphic
type. Especially, if πf,λ is Steinberg, πf ′,λ is also Steinberg.

Proof. We discuss each of the following cases:

(a) The image of the inertia group Iλ in AutR(T ) is finite.
(b) The image of the inertia group Iλ in AutR(T ) is infinite.

We start from the case (a). For any arithmetic specialization κ on R, every element of
Ker[AutR(T ) −→ Autκ(R)(Tκ)] is of infinite order for Tκ = T ⊗R κ(R). Hence, for two
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arithmetic specializations κf and κf ′ of arithmetic weights (k,w) and (k′, w′) respectively,
the image of Iλ on Vf and Vf ′ are both isomorphic to the image of Iλ on AutR(T ). By
the local Langlands correspondence proved in [Car86], when the inertia group Iλ for λ|N
acts on Vf through a finite quotient, the action of Iλ is reducible (resp. irreducible) if and
only if the local automorphic representation πf,λ is principal series (resp. supercuspidal)
at λ. Hence, in the case (a), we conclude that the automorphic type does not change when
arithmetic specializations κf varies.

Next, we consider the case (b). The kernels of arithmetic specializations κf forms a
Zariski dense subset of Spec(R), Hence, there exists an arithmetic specialization κf such
that the image of Iλ is infinite in the Galois representation Vf of rank two, thus the local
automorphic representation πf,λ is Steinberg at λ. In order to show that πf ′,λ is Steinberg
at every arithmetic specialization κf ′ on R of any arithmetic weight (k,w), it suffices to
show:

(9) The image of Iλ is infinite in the Galois representation Vf ′ for every such κf ′ .

Since πf,λ is Steinberg, it is written as Stλ ⊗ ϕ where ϕ is a character of finite order. If
J ⊂ Iλ is the inertia subgroup of the Fϕ which a finite extension of Fλ corresponding to
the kernel of the local Galois character ϕ of FFλ

, the image of J on Vf is represented by

a non-trivial unipotent matrix

(
1 ∗
0 1

)
(∗ ̸= 0). Thus, (Vf )

J is of dimension one over the

field of fractions of κf (R). Take a totally real field F ′ which is a finite Galois extension
over F such that

(i) The composite field F ′Fλ contains Fϕ.
(ii) F ′/F is a solvable extension.

By the solvable base change theorem, the representation of GF ′ on T is also a branch of
the big nearly ordinary Hida deformation for Hilbert modular forms over F ′. To show the
property (9), we may replace F by F ′ and it suffices to show the same property as (9) for
every primes of F ′ over λ. Without loss of generality, we may reduce the proof to the case
where the open subgroup J above is equal to Iλ. Since λ does not divide (p), we have a
unique subgroup I ′λ ⊂ Iλ such that Iλ/I

′
λ
∼= Zp by a well-known structure of the absolute

Galois group of l-adic fields. We have the following claim:

Claim 2.15. In the above setting, the group I ′λ acts trivially on T .

Assuming this Claim, we show that the action of Iλ/I
′
λ
∼= Zp on Vf ′ is non-trivial for

every arithmetic specialization κf ′ . In fact, if the action of Iλ/I
′
λ
∼= Zp on Vf ′ is trivial for

some arithmetic specialization κf ′ , the conductor of f ′ is not divisible by λ. By the fact
that any eigen cuspform f ′ of any arithmetic weight (k,w) extends uniquely to a branch
of Hida deformation, the conductor of every eigen cuspform f which appears in T has
to be prime to λ. This is a contradiction to the fact that T has at least one arithmetic
specialization κf for which πf is Steinberg at λ. This shows that the automorphic type
is constant for T at λ when it has a specialization which is Steinberg. Finally we finish
the proof by completing the proof of the above claim. Recall that I ′λ has an extension as
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follows:
0 −→ P −→ I ′λ −→

∏
l-p

Zl −→ 0,

where P is the wild inertia subgroup which is a pro-p group. We show that every element
of the image of P on Aut(T ) is of finite order. If there is g ∈ P such that the image of g on
Aut(T ) is of infinite order, there exists an arithmetic specialization κf such that the image
of g in Aut(Vf ). This is a contradiction to the fact that P acts through a finite quotient on
Vf for any eigen cuspform f . Since the prime-to-p part of the part of AutR(T ) is a finite
group and

∏
l-p Zl has no non-trivial pro-p quotient, I ′λ acts on T through a finite quotient.

Then, by the same argument with that of the case (a), the fact that I ′λ acts trivially on
the specialization of T at κf implies the fact that I ′λ acts trivially on T . Thus we complete
the proof of the claim. �
Corollary 2.16. For any arithmetic specialization κf on R associated with an eigen cusp-
form f of arithmetic weight (k,w), the natural map H0(Iλ, T )⊗R κ(R) −→ H0(Iλ, T ⊗R
κ(R)) is an isomorphism after taking the base extension ⊗κ(R)Frac(κ(R)). Further, the
above map is an isomorphism without taking the base extension ⊗κ(R)Frac(κ(R)) if πf,λ is
not Steinberg at λ.

Remark 2.17. The map H0(Iλ, T )⊗R κ(R) −→ H0(Iλ, T ⊗R κ(R)) might not be an iso-
morphism if πf,λ is Steinberg at λ. We remark that the unipotent matrix is not necessarily
triangulated for some choice of basis over an algebra R which is not a DVR nor a field.

We have a unipotent matrix

(
1− pX −p2
X2 1 + pX

)
over R = Zp[[X]] for such a example.

2.2. Selmer structures. Our main result is concerned with the control theorem for (R, T )
where R and T is the algebra R and the representation T summarized in Setting 2.12.
However, most of the statements which appear in this subsection hold for more general
couples (R, T ). So we summarize the situation we consider in this subsection as follows:

Setting 2.18. Let R be a complete local domain whose residue field FR is finite and let
T be a finitely generated torsion-free R-module with continuous action of GF . We assume
that the action of GF is unramified outside a finite set Σ of places of F containing the set
Σp of places of F above p. For each prime p of F over p, we fix an R-direct summand T+

p

of T which is stable under the action of the decomposition group Dp at p.

2.2.1. Generalities. Under Setting 2.18, we denote by FΣ the maximal Galois extension
of F unramified outside Σ. Let G be Gal(FΣ/F ) or GFλ

for λ a place of F . Then the
continuous cohomology groups H i(G,T ) are finitely generated R-modules (cf. [Nek06,
Proposition 4.2.3]). Let C•cont(G,T ) denote the complex of continuous cochains with values
in T and RΓ(G,T ) the corresponding object in the derived category. We writeH i(FΣ/F, T )
and H i(Fλ, T ) respectively for H i(Gal(FΣ/F ), T ) and H i(GFλ

, T ) and we use a similar
notation for complexes.

Lemma 2.19. Let us keep the situation of Setting 2.18. Let x = (x1, · · · , xr) be an R-
regular sequence. For i ≥ 1, let xi be (x1, · · · , xi) for 1 ≤ i < r. Then we have the following
isomorphism if T is flat over R.

RΓ(G,T )
L
⊗R/xi

∼−→ RΓ(G,T/xiT )
14



Proof. By the assumption that T is flat over R, the exact sequence

0 −→ R/xi
xi+1−→ R/xi −→ R/xi+1 −→ 0

induces an exact sequence

0 −→ T/xi
xi+1−→ T/xi −→ T/xi+1 −→ 0

hence an exact sequences of complexes:

0 −→ C•cont(G,T/xi) −→ C•cont(G,T/xi) −→ C•cont(G,T/xi+1) −→ 0.

�

We sum up the previous property by saying that RΓ(G, ·) descends perfectly. Let I
be an injective hull of the residue field FR and let DM be the Matlis duality functor
DM (·) = HomR(·, I). Since FR is finite, we have the following lemma (see [Nek06, §2.9] for
the proof):

Lemma 2.20. The Pontrjagin duality functor DP (·) = Homcont(·,Qp/Zp) and the Matlis
duality functor DM coincide on the category of R-modules.

Though the functor DM and the functor DP coincide to each other in the case where FR

is finite, we will sometimes distinguish two functors in what follows in order not to cause
confusion for the use of the arguments of this article on forthcoming projects where we will
consider the case with infinite residue field FR.

2.2.2. Greenberg’s Selmer groups. Under the situation of Setting 2.18, we denote by A the
discrete representation T ⊗R DP (R). For p|p, let A+

p be T+
p ⊗R DP (R) and A

−
p be A/A+

p .

Let SelstrA and SelA be a strict Selmer group (resp. Selmer group) due to Greenberg which
are defined by the following exact sequences:

(10) 0 −→ SelstrA −→ H1(FΣ/F,A) −→
⊕
p|p

H1(GFp , A
−
p )⊕

⊕
λ∈Σ\Σp

H1(Iλ, A).

(11) 0 −→ SelA −→ H1(FΣ/F,A) −→
⊕
p|p

H1(Ip, A
−
p )⊕

⊕
λ∈Σ\Σp

H1(Iλ, A).

By [Gre94, §4, Proposition], their Pontrjagin duals are finite type R-modules.
As suggested by the notation, these modules do not depend on Σ. They fit in the

following commutative diagram:

0 // SelstrA
//

��

H1(FΣ/F,A) //

��

⊕
p|p
H1(GFp , A

−
p )⊕

⊕
λ∈Σ\Σp

H1(Iλ, A)

��

0 // SelA // H1(FΣ/F,A) //
⊕
p|p
H1(Ip, A

−
p )⊕

⊕
λ∈Σ\Σp

H1(Iλ, A).
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By inflation-restriction and the snake lemma, there is thus an exact sequence:

(12) 0 −→ SelstrA −→ SelA −→
⊕
p|p

H1(GFp/Ip, (A
−
p )

Ip)

Thus, we obtain:

Lemma 2.21. If
⊕
p|p
H1(GFp/Ip, (A

−
p )

Ip) is finite, SelstrA coincides with SelA modulo finite

group.

Especially, if Tf is a nearly ordinary representation obtained by specializing Hida family
T at an arithmetic specialization κf of R corresponding to a certain cuspform f , Af =

Tf ⊗Zp Qp/Zp has a standard choice of (Af )
+
p . By the local Langlands correspondence ob-

tained in [Car86], if πf,p is not Steinberg,H
1(GFp/Ip, ((Af )

−
p )

Ip) = ((Af )
−
p )

Ip/(Frp−1)((Af )
−
p )

Ip

is finite.

Corollary 2.22. If κf is an arithmetic specialization on R for which the corresponding
automorphic πf,p is non-Steinberg at every p|p, the kernel and the cokernel of the natural

map DP (SelAf
) −→ DP (Sel

str
Af

) are finite.

2.2.3. Selmer complexes. In this subsection, let X be T or T⊗RDM (R) under the situation
of Setting 2.18. For p|p, let X+

p be respectively T+
p or T+

p ⊗R DM (R). We consider the
local condition as follows for every finite prime q of F :

C•f (Fq, X) =

{
C•cont(Fq, X

+
q ) for q|p,

C•cont(Frq, X
Iq) for q - p.

Let C•f (F,X) be the complex of (co-)finite type R-modules:

(13) C•f (F,X) = Cone

C•cont(FΣ/F,X)⊕
⊕
q∈Σ

C•f (Fq, X) −→
⊕
q∈Σ

C•cont(Fq, X)

 [−1].

Let RΓf (F,X) be the corresponding object in the derived category and let H̃ i
f (F,X) be

the i-th cohomology group of RΓf (F,X). According to [Nek06, (8.9.6.1)], Matlis duality
induces an isomorphism of complexes

RΓf (F, T )
∼−→ DM (RΓf (F,DM (T )(1))) [−3].

inducing isomorphisms in cohomology:

(14) H̃ i
f (F, T )

∼−→ DM

(
H̃3−i

f (F,DM (T )(1))
)
.

Since FR is finite, A := T ⊗R DP (R) = DP (HomR(T,R)) is equal to DM (HomR(T,R)) by
Lemma 2.20. Hence, we have the following lemma:

Lemma 2.23. Under the situation of Setting 2.18, we have:

H̃2
f (F, T

∗(1)) ∼= DP (H̃
1
f (F,A)),

where T ∗ = HomR(T,R) and A = T ⊗R DP (R).

By definition, we also have the following lemma:
16



Lemma 2.24. The following sequence is exact:

(15) 0→ H̃0
f (F,A)→ H0(F,A)→

⊕
p|p

H0(Fλ, A
−
p )→ H̃1

f (F,A)→ SelstrA → 0.

Assume in addition that H0(Fp, A
−
p ) = 0 for all p|p. Then the above two lemmas imply

that H̃2
f (F, T

∗(1)) is isomorphic to DP (Sel
str
A ). The following proposition also plays an

important role in the proof of control theorem.

Proposition 2.25. Let us assume that R is regular in addition to Setting 2.18. Suppose
also the following conditions:

(i) The representation T ⊗R Frac(R) is irreducible as a representation of GF .
(ii) The residual representation T ⊗R R/MR is irreducible as a representation of GF where
M is the maximal ideal of R.

Then, the complex RΓf (F, T ) is a complex of R-modules concentrated in degrees 1 and 2.

Proof. The complexes RΓ(FΣ/F, T ), RΓ(Fλ, T ) for λ|N and RΓf (Fp, T ) for p|p are con-

centrated in degrees [0, 2] because T and T+
p are free R-modules and as the p-cohomological

dimension of GF,Σ and GFp for all p are bounded by 2. For λ - p, RΓ(Frλ, T
Iλ) is a complex

concentrated in degrees [0, 1] since the pro-cyclic group generated by Frλ is of cohomolog-
ical dimension one. This implies that the complex of R-modules RΓf (F, T ) is concen-

trated in degrees [0, 3]. By the assumption (i), H̃0
f (F, T ) vanishes. By the assumption (ii),

H̃3
f (F, T )

∼= DM (H̃0
f (F,DM (T )(1)) (cf. the equality (14)) vanishes. �

3. Control theorems

In this section, we prove control theorems for Selmer complexes and Selmer groups.
We discuss the control theorem for Selmer complexes in 3.1. Then, we prove the control
theorem for Selmer groups in 3.2 by comparing Selmer complexes and Selmer groups.

3.1. Control for Selmer complexes.

Proposition 3.1. Let R be a branch of a Hida’s nearly ordinary Hecke algebra HN ,O
and let T be a GF -representation over R as in Setting 2.12. Assume the conditions (Ir),
(Reg-b) and (Fr-s). Then, for any arithmetic specialization κf on R associated with an
eigen cuspform f of some arithmetic weight (k,w), the natural map:

(16) RΓf (F, T )
L
⊗R κf (R) −→ RΓf (F, Tf )

is an isomorphism after the base extension ⊗ZpQp. Further, the map:

(17) H̃2
f (F, T )⊗R κf (R) −→ H̃2

f (F, Tf )

is a surjection with finite kernel. If we assume that πf is not Steinberg at every λ|N , this
map is an isomorphism.

Proof. As R is a regular ring, there exists an R-regular sequence x = (x1, x2, · · · , xr)
generating Pκf

. By Lemma 2.19, the complexes RΓ(FΣ/F, T ), RΓ(Fλ, T ) for λ|N and
RΓf (Fp, T ) for p|p descend x-perfectly. Hence, in order to prove the control theorem for
the Selmer complex, we need to study the behavior of RΓf (Fλ, T ) under the specialization
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at x for all λ dividing N . By Lemma 2.14, for each λ|N , the natural map T Iλ ⊗R/x −→
(T /xT )Iλ is a map between free-module over κf (R) ∼= R/x which becomes an isomorphism
after the base extension ⊗ZpQp. Hence, the natural map from the complex

RΓf (Fλ, T )
L
⊗R κf (R)

∼−→ [T Iλ Frλ−1−→ T Iλ ]⊗R κf (R)

to the complex:

[T Iλ
κ

Frλ−1−→ T Iλ
κ ]

∼−→ RΓf (Fλ, Tκ)

is an isomorphism after the base extension ⊗ZpQp. This completes the proof of the control
theorem of the Selmer complex. Since RΓf (F, T ) is not supported at the degree greater

than 2, the map H̃2
f (F, T ) ⊗R κf (R) −→ H̃2

f (F, Tf ) is a surjection whose kernel comes

from the error at degree 1 of the specializations RΓf (Fλ, T )
L
⊗R κf (R) −→ RΓf (Fλ, Tf )

for every λ|N . Thus, the statement (16) follows. �

3.2. Control for Selmer groups.

Proposition 3.2. Let R be a branch of a Hida’s nearly ordinary Hecke algebra HN ,O
and let T be a GF -representation over R as in Setting 2.12. Assume the conditions (Ir),
(Reg-b) and (Fr-s). Then, for any arithmetic specialization κf on R associated with an
eigen cuspform f of some arithmetic weight (k,w) whose local automorphic representation
is principal series at every p|p, the natural map

(18) DP (Sel
str
A )⊗ κf (R) −→ DP (Sel

str
Af

)

is a surjection and has a finite kernel.

Proof. By definition, we have the following exact sequence:

0 −→
⊕
p|p

H0(GFp ,A−p ) −→ H̃1
f (F,A) −→ SelstrA −→ 0.

Similarly, for Af = A[Pκf
], we have:

0 −→
⊕
p|p

H0(GFp , A
−
p )[Pκf

] −→ H̃1
f (F,Af ) −→ SelstrAf

−→ 0.

Taking Pontrjagin duals yields:

0 −→ DP (Sel
str
A ) −→ H̃2

f (F, T ∗(1)) −→
⊕
p|p

DP (H
0(GFp ,A−p )) −→ 0,

0 −→ DP (Sel
str
Af

) −→ H̃2
f (F, T ∗(1)⊗R κ(R)) −→

⊕
p|p

DP (H
0(GFp , (Af )

−
p )) −→ 0.
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Put M = TorR(κf (R),
⊕
p|p
DP (H

0(GFp ,A−p ))). Then the following sequence is exact:

M −→ DP (Sel
str
A )⊗R κf (R) −→ H̃2

f (F, T ∗(1))⊗R κf (R)

−→

⊕
p|p

DP (H
0(GFp ,A−p ))

⊗R κf (R) −→ 0.

By definition, the last term of the above equation is equal to
⊕
p|p
DP (H

0(GFp , (Af )
−
p )), which

is a finite group since the local automorphic representation πf,p is principal series at every
p|p. We complete the proof if we show that M is finite.

Let ηp be the character with values in R× through which GFp acts on A−p and let Ip
be the ideal of R generated by ηp(σ)− 1 for all σ in GFp . Then we have the isomorphism

DP (H
0(GFp ,A−p )) ∼= R/Ip. Because πf,p is not Steinberg, (R/Ip)⊗R κf (R) is finite. We

choose elements (y1, · · · , yb) of R generating Ip and such that yb is not zero modulo (x).

Let a be

(
b
2

)
. The complex equal to the the tensor product of the free resolution of R/Ip

coming from the Koszul complex of (y1, · · · , yb) with κf (R) ends with:

· · · −→ κf (R)⊕a
r2−→ κf (R)⊕b

r1−→ κf (R)
r0−→ 0.

Since the above sequence is obtained by taking the base extension ⊗Rκf (R) of the following
free resolution and by replacing the last map by a zero map:

· · · −→ R⊕a r̃2−→ R⊕b r̃1−→ R −→ R/Ip,

the module Ker(r0)/Im(r1) is isomorphic to (R/Ip) ⊗R κf (R) and Ker(r1)/Im(r2) is iso-
morphic to TorR(κf (R),R/Ip). Since (R/Ip) ⊗R κf (R) is finite, the image of r2 is at
least of rank b, which implies that TorR(κf (R),R/Ip) is finite. Hence M is finite and this
completes the proof. �

Remark 3.3. We remark that even when the residual representation on FR is reducible,
the previous control property makes sense after a choice of lattice T . The only difference
in that case will be that the map (18) has a cokernel isomorphic to H̃3

f (F, T ∗(1))[Pκf
].

Corollary 3.4. Under the same hypotheses as Proposition 3.2 and using the same notation,
the arithmetic specialization map:

(19) DP (SelA)⊗R κf (R) −→ DP (SelAf
)

is a surjection with finite kernel.

Proof. The map (22) is a surjection by absolute irreducibility of the residual representation.
Recall that we have the following exact sequence by definition:

DP

⊕
p|p

H1(GFp/Ip, (A−p )Ip)

 −→ DP (SelA) −→ DP (Sel
str
A ) −→ 0.
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We will show that H1(GFp/Ip, (A−p )Ip) is trivial for every p|p. Let us recall the following
group introduced at 2.1:

G = (rF ⊗Z Zp)
× ×

(
(rF ⊗Z Zp)

×/ r×F) =
∏
q|p

(rF )
×
q ×

(
(rF ⊗Z Zp)

×/ r×F) ,
where (rF )

×
q the completion of rF at q. We define a quotient G′ of G to be:

G′ =
∏

q|p, q ̸=p

(rF )
×
p ×

(
(rF ⊗Z Zp)

×/ r×F) .
and the algebra R′ to be R ⊗Zp[[G]] Zp[[G

′]]. We denote by α̃p the unique unramified

character of Dp with values in R′ whose value α̃p(Frp) interpolates the eigenvalues of the
action of Frp on (Af )

−
p for every arithmetic specialization κf with Pκf

⊂ Ker[R � R′].
Among such specializations, there are a lot of arithmetic specializations κf such that the

eigenvalues of the action of Frp on (Af )
−
p is not trivial by the Ramanujan conjecture for

Hilbert modular forms (which is already proved). Hence, the character α̃p in non-trivial.
By the local property of Hida’s Galois representation T , we have:

(A−p )Ip ∼=

{
0 if ηp ≡ 1 mod MR

DP (R′(α̃p)) otherwise.

Hence we have shown that H1(GFp/Ip, (A−p )Ip) is trivial for every p|p, which implies that

SelstrA = SelA. On the other hand, by Corollary 2.22, the kernel and the cokernel of the
natural map DP (SelAf

) −→ DP (Sel
str
Af

) are finite for κf whose automorphic representation

πf,p is non-Steinberg at every p|p. This completes the proof. �

3.3. Weak Control for Selmer complexes and Selmer groups. In Sections 3.1 and
3.2, we established the control theorem for Selmer complexes and Selmer groups assuming
(Ir), (Reg-b) and (Fr-s). In this subsection, we prove weaker control theorems which
controls the kernels and the cokernels of arithmetic specializations κ = κf of arithmetic
weight (k,w) only after localizing at ker(κf ). The residual representation Vf of localized
Galois representation is always irreducible as GF -module and is regular as Dp-module.
Hence, the results in this section and the next requires much less assumptions thanks to
an ideal free lattice obtained by the same argument as Remark 2.13.

For a branchR ofHN ,O and for an arithmetic specialization κ = κf onR associated with
an eigen cuspform f of some arithmetic weight (k,w), we denote by RPκ the localization
of R at Pκ = Ker(κ). For a GF -representation T presented in Setting 2.12, we denote by
TPκ the base extension T ⊗R RPκ . We recall the following facts:

(1) The algebra RPκ is a regular local ring whose residue field is isomorphic to the field
of fractions of κ(R).

(2) The resudual representation at the maximal ideal Pκ satisfies Galois theoretic reg-
ularity property as GF -representation over a p-adic field Frac(κ(R)) which is the
analogue of the Galois theoretic regularity property as GF -representation over a
finite field FR which was presented after Setting 2.12. Thus, the representation
TPκ is free of rank two over RPκ and T +

p and T −p become free of rank one over RPκ

after taking the base extension ⊗RRPκ for every p|p.
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Since Pκ is generated by a regular sequence in RPκ , we prove the following proposition by
the same proof as that of Proposition 3.1:

Proposition 3.5. Let R be a branch of a Hida’s nearly ordinary Hecke algebra HN ,O
and let T be a GF -representation over R as in Setting 2.12. Then, for any arithmetic
specialization κ = κf on R associated with an eigen cuspform f of some arithmetic weight
(k,w), the natural map:

(20) RΓf (F, TPκ)
L
⊗R κ(R) −→ RΓf (F, Vf )

is an isomorphism. Further, the map:

(21) H̃2
f (F, TPκ)⊗R κf (R) −→ H̃2

f (F, Vf )

is an isomorphism.

The comparison obtained at Lemma 2.22 and Lemma 2.24 implies the following corollary:

Corollary 3.6. Let us consider the same situation as Proposition 3.5. If the eigen cusp-
form f corresponding to κ = κf on R is principal series at every p|p, the arithmetic
specialization map:

(22) (DP (SelA)⊗R RPκ)⊗R κ(R) −→ DP (SelAf
)⊗κ(R) Frac(κ(R))

is an isomorphism.

4. Applications

4.1. Examples of torsion Selmer groups. Let R be a branch of HN ,O and assume
the situation as in Setting 2.12 (but we do not assume stronger conditions listed just after
Setting 2.12 which were used in Sections 3.1 and 3.2). Under Setting 2.12, we propose the
following conjecture.

Conjecture 4.1. DP (SelA) (resp. H̃
2
f (F, T ∗(1))) is a torsion R-module.

In some special cases, we will prove this below.

Theorem 4.2. Assume also that there exists an arithmetic specialization κ = κf such that
Vf satisfies all the following properties (i)-(iv):

(i) The cuspform f is of critical weight (k,w) with k = 2t and w = t and the Neben character
of f is trivial.
(ii) The representation πf,p is principal series at every p|p.
(iii) The L-function L(Vf , s) does not vanish at s = 0.
(iv) One of the following condition holds:

(a) 2 - [F : Q].
(b) There exists a finite place λ of F such that πf,λ is not a principal series repre-
sentation.
(c) The form f has no complex multiplication and there exists an element σ ∈ GF

such that one of the eigenvalues of σ on Vf are ±1 and the other is not equal to
±1.

Then DP (SelA) (resp. H̃
2
f (F, T ∗(1))) is R-torsion.
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Proof. Let K be a finite extension of Qp containing all Hecke eigenvalues of f . Under
(iv) (a) or (iv) (b), there exists a compact quaternionic Shimura curve X defined over F
such that the representation Vf is a direct summand of H1

et(X×F F̄ ,K). Hence, by [FH95,
Theorem B], there exists a totally imaginary quadratic extension K/F such that f does not
have complex multiplication by K and such that the order of zero at s = 1 of L(Vf |GK

, s)
is of exact order 1 where Vf |GK

is the restriction of Vf to GK . By [YZZ08, Theorem 1.3.1],

then there exists a non torsion CM points on X(Kab) and this implies that H1
f (F, Vf ) is

trivial thanks to [Nek07, Theorem 3.2]. If we assume (iv) (c), then the form f satisfies the
hypotheses of [Nek10, Theorem B]. Thus, H1

f (F, Vf ) is also trivial.

Hence H̃2
f (F, T

∗
f (1)) is finite. By Proposition 3.5, the group:

H̃2
f (F, T ∗Pκ

(1))⊗R κ(R) ∼= H̃2
f (F, V

∗
f (1))

is trivial. Since H̃2
f (F, T ∗Pκ

(1)) ∼= H̃2
f (F, T ∗(1)) ⊗R RPκ , H̃

2
f (F, T ∗(1)) ⊗R RPκ is trivial

by Nakayama’s lemma. This implies that H̃2
f (F, T ∗(1)) is torsion over R. By comparing

the Selmer complex and the Selmer group, we also deduce that DP (SelA) is torsion over
R. �

Remark 4.3. In [YZZ08], a proof of the vanishing of H1
f (F, Vf ) by Y.Tian and S.Zhang

is announced under (iii) (a) or (b) but without the hypothesis that the Neben character is
trivial. Our result would then generalize likewise.

Finally, we would emphasize that our work opens several possibilities for future research
on the generalization of Iwasawa theory. Since the construction of d+ 1-variable analytic
p-adic L-function is constructed in the article [DO] with which the second author is con-
cerned, it makes sense to consider the Iwasawa main conjecture for a big Galois deformation
obtained by nearly ordinary Hida deformation for Hilbert modular forms, in which we com-
pare the characteristic ideal of the Selmer group or Selmer complex and the principal ideal
generated by the analytic p-adic L-function (cf. [Och10] for precise statements). It will
also be interesting to discuss the compatibility between the Iwasawa main conjecture and
the Tamagawa number conjecture for each modular form especially under the formalism
of Selmer complexes as discussed in [Nek06] and the doctoral thesis of the first author.
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