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1 Introduction

Let F be an algebraic number field. Recently, L. Weng introduced zeta functions of
rank n associated to F as a generalization of the Iwasawa-Tate zeta integral from the
Arakelov geometric point of view. In the article, we call them the Weng zeta function
of rank n. In the case of rank one, the Weng zeta function coincide with the Dedekind
zeta function of F . The background and precise definition of Weng zeta functions were
published in [4, sec.B.4]. One remarkable fact for Weng zeta functions is that we can
prove the Riemann hypothesis in the case of rank 2. It had been done by the author
and J.C. Lagarias in [2] for the rational number field and was extended to the case of
general number field F by Weng in [4, sec.C.4]. The proof of the Riemann hypothesis
for a zeta function of rank 2 depends on the explicit expression for it.

In this spring, Weng obtained an explicit expression for the zeta function of rank 3
in the case of F = Q. It is given in [5] this volume. By using his explicit formula, the
author proved the Riemann hypothesis for the zeta function of rank 3 over the rational
number field. In the article we give the proof of the Riemann hypohesis for it and the
idea of the proof in self-contained fashion, as far as possible.

The zeta function ζ̂F,3(s) of rank 3 is obtained by an integral of the completed
Epstein zeta function of rank 3 over a moduli space of semi-stable lattices of rank 3
over F . In detail, see [5, sec.5.3, chap.9] (in [5] our ζ̂F,3(s) is denoted by ξF,3(s)). In

the case F = Q, Theorem 4 in [5] assert that the explicit expression for ζ̂Q,3(s) is given
by

ζ̂Q,3(s) =
( ζ̂(2)

3(s− 1)
− 1

2(3s− 2)

)
ζ̂(3s)− 1

9

( 1

s− 1
− 1

s

)
ζ̂(3s− 1)

−
( ζ̂(2)

3s
− 1

2(3s− 1)

)
ζ̂(3s− 2),

(1.1)

where ζ̂(s) = π−s/2Γ(s/2)ζ(s) and ζ(s) is the Riemann zeta-function. (Note that there
were sign mistakes in [5, Theorem 4]. See [6, §A.1.2] for corrected formula.) From the

general theory of zeta functions of rank n, the function ζ̂F,3(s) satisfies the functional
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equation ζ̂F,3(s) = ζ̂F,3(1 − s). Hence the Riemann hypothesis for ζ̂F,3(s) is that all

zeros of ζ̂F,3(s) lie on the line ℜ(s) = 1/2. Using (1.1) we can prove the Riemann

hypothesis for ζ̂Q,3(s).

Theorem 1 The function ζ̂Q,3(s) satisfies the Riemann hypothesis. That is, all zeros

of ζ̂Q,3(s) lie on the line ℜ(s) = 1/2 which is the central line of the functional equation

ζ̂Q,3(s) = ζ̂Q,3(1− s).

The article is organized as follows. In section 2, we explain the idea of the proof.
In section 3, we state and prove Theorem 2 which is a easily version of Theorem 1. We
describe the frame of the proof of Theorem 1 by proving Theorem 2 by using Lemma
1 and Lemma 2. In section 4, we give the proof of Theorem 1. It is proved by using
Lemma 3 and Lemma 4 whose are modifications of Lemma 1 and Lemma 2. In section
5 we give the proof of Lemma 1 which is also used in the proof of Lemma 3. In section
6, we give the proof of Lemma 5 which is used in the proof of Lemma 4. In section
7, we comment on a possibility of applications of Theorem 1 and Theorem 2 to the
original Riemann zeta function.

Acknowledgment. The author thanks professor Lin Weng for his helpful information
on zeta functions of rank 3 and encouragement for the proof of the Riemann hypothesis.

2 The idea of the proof

For simplicity, we denote by Z3(s) the function ζ̂Q,3(s):

Z3(s) = ζ̂(2) · 1

3s− 3
· ζ̂(3s)− ζ̂(2) · 1

3s
· ζ̂(3s− 2)

− 1

3
· 1

3s− 3
· ζ̂(3s− 1) +

1

3
· 1

3s
· ζ̂(3s− 1)

+
1

2
· 1

3s− 1
· ζ̂(3s− 2)− 1

2
· 1

3s− 2
· ζ̂(3s).

(2.1)

By using the well-known functional equation ζ̂(s) = ζ̂(1 − s), we can directly check

that Z3(s) has the functional equation Z3(s) = Z3(1 − s). Since ζ̂(s) is holomorphic
except for two simple poles at s = 0, 1 with residues −1 and 1 respectively, the possible
poles of Z3(s) are s = 0, 1/3, 2/3, 1. We see that genuine poles are s = 0, 1 only. To
investigate the zeros of Z3(s), we consider the entire function

ξ3(s) = 3s(3s− 1)(3s− 2)(3s− 3)Z3(s)

=
ξ(2)

2
· (3s− 2) · ξ(3s) + ξ(2)

2
· (1− 3s) · ξ(3s− 2)

− ξ(3s− 1) +
3

2
· s · ξ(3s− 2) +

3

2
· (1− s) · ξ(3s),

(2.2)
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where ξ(s) is Riemann’s xi-function ξ(s) = s(s− 1)ζ̂(s).
To describe the idea of the proof of Theorem 1, we recall the proof of the Riemann

hypothesis for the zeta function ζ̂Q,2(s) of rank 2. The key of the proof was in the
explicit expression

ξ2(s) = 2s(2s− 1)(2s− 2)ζ̂Q,2(s) = ξ(2s)− ξ(2s− 1).

The right-hand side has the properties

(A) ξ(2s) and ξ(2s−1) are related by the functional equation ξ(2(1−s)) = ξ(2s−1),

(B) all zeros of ξ(2s) lie in the strip 0 < ℜ(s) < 1/2.

By using these properties we derived |ξ(2s − 1)/ξ(2s)| < 1 for ℜ(s) > 1/2 and
|ξ(2s)/ξ(2s − 1)| < 1 for ℜ(s) < 1/2. These inequality and (B) gave the Riemann

hypothesis for ζ̂Q,2(s). Here we note one more important property,

(C) ξ(2s) has the functional equation ξ(2(1
2
− s)) = ξ(2s).

The role of (C) was hidden in the back of (B) in the proof of the Riemann hypothesis

for ζ̂Q,2(s). However the property (C) is the key of the generalization to the proof of
rank 3 case.

The idea of our proof of Theorem 1 is to recast the right-hand side of (2.2) into
the form ξ3(s) = Y (s) + Y (1 − s) so that all zeros of Y (s) are in some vertical strip
on the left of the line ℜ(s) = 1/2. To obtain such expression, we notice properties (A)
and (C) in rank 2 case. If we ignore polynomial factors, the right-hand side of (2.2)
consists of ξ(3s), ξ(3s− 1) and ξ(3s− 2). Using functional equations

ξ(3(1− s)) = ξ(3s− 2) (2.3)

and
ξ(3(1− s)− 1) = ξ(3s− 1), (2.4)

we can easily obtain an analogue of (A) for ξ3(s). However such expression has many
possibilities. Here we notice the functional equations

ξ(3
( 2
3
− s

)
) = ξ(3s− 1) (2.5)

and

ξ(3
( 4
3
− s

)
− 2) = ξ(3s− 1). (2.6)

These extra functional equations allow us to recast the right-hand side of (2.2) as
ξ3(s) = Y (s) + Y (1− s) so that Y (s) satisfies an analogue of (B). In this process, the
extra functional equations (2.5) and (2.6) play a role of (C). At the time, we obtain
Theorem 1 by a way similar to the proof of rank 2 case.
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Now we put

h(s) =
{ 3

2

(
ξ(2)− 1

)
s−

(
ξ(2)− 3

2

) }
ξ(3s). (2.7)

This h(s) consists of all terms in the right-hand side of (2.2) containing ξ(3s). We have

h(1− s) =
{ 3

2

(
ξ(2)− 1

)
(1− s)−

(
ξ(2)− 3

2

) }
ξ(3s− 2). (2.8)

This coincides to all terms in the right-hand side of (2.2) containing ξ(3s− 2). Further

h
( 2
3
− s

)
+ h

(
s− 1

3

)
=

(
1− 3

2
(ξ(2)− 1)

)
ξ(3s− 1). (2.9)

Hence if we take
X(s) = h(s) + h((2/3)− s), (2.10)

then we have

ξ3(s) = X(s) +X(1− s) +
π − 7

2
ξ(3s− 1). (2.11)

Here we used ξ(2) = π/3. Since ξ(3s − 1) = ξ(3(1 − s) − 1), this equality also shows
the functional equation ξ3(s) = ξ3(1− s). By taking

Y (s) = X(s) +
π − 7

4
ξ(3s− 1), (2.12)

we obtain
ξ3(s) = Y (s) + Y (1− s). (2.13)

As shown in below this expression satisfies properties analogous to (A) and (B).

3 The frame of the proof

To describe the frame of our proof of Theorem 1, we give the proof of the following
result which is similar to Theorem 1.

Theorem 2 Let X(s) be the function defined by (2.10) with (2.7). If we take ξ♮3(s) =
X(s) +X(1− s), then all zeros of ξ♮3(s) lie on the line ℜ(s) = 1/2.

To prove Theorem 2, we prepare following two lemmas.

Lemma 1 Let F (s) be an entire function of genus zero or one, that has the following
properties.

(i) F (s) is real on the real axis and satisfies a functional equation

F (s) = ±F (1− s), (3.1)

for some choice of sign.
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(ii) There exists a > 0 such that all zeros of F (s) lie in the vertical strip

|ℜ(s)− 1/2| < a. (3.2)

Then for any real c ≥ a, ∣∣∣∣F (s+ c)

F (s− c)

∣∣∣∣ > 1 for ℜ(s) > 1/2, (3.3)

and ∣∣∣∣F (s+ c)

F (s− c)

∣∣∣∣ < 1 for ℜ(s) < 1/2. (3.4)

In particular, all zeros of F (s+ c)± F (s− c) lie on the line ℜ(s) = 1/2.

Proof. We prove the lemma in section 5. □

Lemma 2 All zeros of X(s) lie on the line ℜ(s) = 1/3.

Remark. From definition (2.10), X(s) has the functional equation X(s) = X(2/3−s).
The line ℜ(s) = 1/3 is the center of the functional equation.

Proof. We put
X♮(s) = X(s− 1/6).

Then Lemma 2 is equivalent to the assertion that all zeros of X♮(s) lie on the line
ℜ(s) = 1/2. Since

X(s) =
{ (π − 3

2

)
s−

(π
3
− 3

2

) }
ξ(3s)

+
{ (π − 3

2

)( 2
3
− s

)
−

(π
3
− 3

2

) }
ξ(3s− 1),

(3.5)

we have

X♮(s) =
{ (π − 3

2

)(
s− 1

6

)
−
(π
3
− 3

2

) }
· ξ(3(s− 1/6))

×

{
1 +

(
π−3
2

)(
2
3
−

(
s− 1

6

))
−
(
π
3
− 3

2

)(
π−3
2

)(
s− 1

6

)
−
(
π
3
− 3

2

) ξ(3(s− 1/6)− 1)

ξ(3(s− 1/6))

}
.

(3.6)

If we take F (s) = ξ(3s− 1), then F (s) = F (1− s) and all zeors of F (s) lie in the strip
|ℜ(s)− 1/2| < 1/6. Applying Lemma 1 to F (s) with c = 1/6, we obtain

1 >

∣∣∣∣F (s− 1/6)

F (s+ 1/6)

∣∣∣∣ = ∣∣∣∣ξ(3(s− 1/6)− 1)

ξ(3(s− 1/6))

∣∣∣∣ for ℜ(s) > 1/2. (3.7)
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On the other hand, we find that∣∣∣∣∣
(
π−3
2

)(
2
3
−
(
s− 1

6

))
−
(
π
3
− 3

2

)(
π−3
2

)(
s− 1

6

)
−

(
π
3
− 3

2

) ∣∣∣∣∣ < 1 for ℜ(s) > 1/2 (3.8)

by an elementary calculation. Since{ (π − 3

2

)(
s− 1

6

)
−

(π
3
− 3

2

) }
ξ(3(s− 1/6))

has no zeros in the right-half plane ℜ(s) > 1/2, equality (3.6) and (3.7), (3.8) implies
X♮(s) has no zeros in the right-half plane ℜ(s) > 1/2. The functional equation X♮(s) =
X♮(1− s) shows that X♮(s) also has no zeros in the left-half plane ℜℜ(s) < 1/2. Thus
we obtain the assertion of Lemma 2. □

3.1 Proof of Theorem 2

We have

ξ♮3(s) = X(s)

(
1 +

X(1− s)

X(s)

)
.

We show that ∣∣∣∣X(1− s)

X(s)

∣∣∣∣ < 1 for ℜ(s) > 1/2. (3.9)

This yields the non-existence of the zeros of ξ♮3(s) in the right-half plane ℜ(s) > 1/2,
since X(s) has no zeros in the right-half plane ℜ(s) > 1/3 by Lemma 2. We put

F (s) = X(s− 1/6).

The functional equation X(s) = X((2/3)−s) yields F (s) = F (1−s). By Lemma 2, all
zeros of F (s) lie on the line ℜ(s) = 1/2. These means that F (s) satisfies all conditions
of Lemma 1 for any a > 0. Applying Lemma 1 to F (s) with c = 1/6, we obtain∣∣∣F (s− 1/6)

F (s+ 1/6)

∣∣∣ < 1 for ℜ(s) > 1/2.

Using X(s) = X((2/3)− s) we have

F (s− 1/6)

F (s+ 1/6)
=

X(s− 1/3)

X(s)
=

X(1− s)

X(s)
.

Thus we obtain (3.9). Because of the functional equation ξ♮3(s) = ξ♮3(1 − s), we also
obtain the non-existence of the zeros of ξ♮3(s) in the left-half plane ℜ(s) < 1/2. Now
we complete the proof of Theorem 2. □
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As the above, the proof of Theorem 2 consists of two steps. These two steps
correspond to different two symmetries. Lemma 1 is used for each symmetry. In the
first step corresponding to X(s), we used Lemma 1 for h(s)+h((2/3)− s) which yields
the functional equation X(s) = X((2/3) − s). In the second step corresponding to
ξ♮3(s), we used Lemma 1 for X(s) + X(1 − s) which yields the functional equation
ξ♮3(s) = ξ♮3(1− s). This is the rough frame of the proof of Theorem 1.

4 Proof of Theorem 1

Let Y (s) be the function defined by (2.12). Recall equation (2.13);

ξ3(s) = Y (s) + Y (1− s).

Since Y (s) does not have a functional equation, to prove Theorem 1, we need the
following modification of Lemma 1.

Lemma 3 Let F (s) be an entire function of genus zero or one. Suppose that

(i) F (s) is real on the real axis,

(ii) there exists σ0 < 1/2 such that all zeros of F (s) lie in the vertical strip

σ0 < ℜ(s) < 1/2, (4.1)

(iii) there exists C > 0 such that

N(T ) ≤ CT log T as T → ∞, (4.2)

where N(T ) is the number of zeros ρ of F (s) satisfying σ0 < ℜ(ρ) < 1/2 and
0 ≤ ℑ(ρ) < T . Further F (1− σ)/F (σ) > 0 for large σ > 1/2 and

F (1− σ)

F (σ)
→ 0 as 1/2 < σ → ∞. (4.3)

Then we have ∣∣∣∣F (1− s)

F (s)

∣∣∣∣ < 1 for ℜ(s) > 1/2, (4.4)

and ∣∣∣∣F (1− s)

F (s)

∣∣∣∣ > 1 for ℜ(s) < 1/2. (4.5)

In particular, all zeros of F (s)± F (1− s) lie on the line ℜ(s) = 1/2.

To apply Lemma 3 to Y (s), we prepare the following Lemma 4 which is a modification
of Lemma 2.

Lemma 4 All zeros of Y (s) lie in the strip 1/3 ≤ ℜ(s) < 1/2.
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4.1 Proof of Theorem 1 under Lemma 3 and 4

Now we give the proof of Theorem 1 by using Lemma 3 and Lemma 4. We prove these
lemmas after the proof of the theorem. By definition of Y (s), it is an entire function
which is real on the real axis. By Lemma 4, Y (s) satisfies (ii) of Lemma 3. Hence if
(4.2) and (4.3) are shown for Y (s), then we obtain Theorem 1 by Lemma 3.

At first we prove (4.2). It is well known that |ξ(s)| < exp(M |s| log |s|) as |s| → ∞
for some constant M > 0. Since Y (s) is a linear combination of ξ(s) up to degree one
polynomials, we have |Y (s)| < exp(M ′|s| log |s|) as |s| → ∞ for some constant M ′ > 0.
Recall Jensen’s formula for entire function f(s) with f(0) ̸= 0:∫ R

0

r−1n(r)dr =
1

2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|,

where n(r) is the number of zeros in |s| < r. We apply Jensen’s formula to Y (s).
Then the right-hand side is estimated as ≪ R logR for sufficiently large R. Since∫ 2R

R
r−1n(r)dr ≥ n(R) log 2, it follows that

n(R) = O(R logR).

Hence we obtain (4.2). From the definition of Y (s) we have

Y (1− σ)

Y (σ)
=

ξ(3σ − 1)

ξ(3σ)

(
π−3
2

− π−1
4
σ−1

)
−
(
π−3
2

− π
6
σ−1

) ξ(3σ−2)
ξ(3σ−1)(

π−3
2

−
(
π
3
− 3

2

)
σ−1

)
−
(
π−3
2

− π−5
4
σ−1

)
ξ(3σ−1)
ξ(3σ)

.

Since ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s), we have

ξ(3σ − 1)

ξ(3σ)
=

√
π
(
1− 2

3σ

)Γ((3σ − 1)/2)

Γ(3σ/2)

ζ(3σ − 1)

ζ(3σ)
.

Using the Stirling formula and the Dirichlet series expansion of ζ(s), we have

Γ((3σ − 1)/2)

Γ(3σ/2)
=

e−
1−log 2

2
+O(σ−1)

√
3σ

1 +O(σ−1)

1 +O(σ−1)
and

ζ(3σ − 1)

ζ(3σ)
= 1 +O(21−σ)

for large σ ≥ 1. Hence we obtain Y (1− σ)/Y (σ) > 0 for large σ ≥ 1 and

Y (1− σ)

Y (σ)
= O(σ−1/2) as σ → +∞.

Thus (4.3) holds for Y (s). Now we complete the proof of Theorem 1 under Lemma 3
and Lemma 4. □
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4.2 Proof of Lemma 3

We prove the lemma only if F (s) has genus one, since if F (s) has genus zero it is
easily proved by a way similar to the case of genus one. The genus one assumption is
equivalent to the assertion that the Hadamard product factorization

F (s) = eA+Bssm
∏
ρ

(
1− s

ρ

)
e

s
ρ (m ∈ Z≥0) (4.6)

converges absolutely and uniformly on any compact subsets of C. This assumption is
also equivalent to the bound

∑
ρ |ρ|−2 < ∞. Assumption (i) implies symmetriy of the

zeros under ρ 7→ ρ̄. It follows that the set of zeros ρ = β+iγ, counted with multiplicity,
can be partitioned into blocks B(ρ) comprising {ρ, ρ̄} if γ > 0 and {ρ} if β ̸= 0 and
γ = 0. Each block is labeled with the unique zero in it having β < 1/2 and γ ≥ 0.
Using assumption (ii), we show

F (s) = smeA+B′s
∏
B(ρ)

 ∏
ρ∈B(ρ)

(
1− s

ρ

) (4.7)

where the outer product on the right-hand side converges absolutely and uniformly
on any compact subsets of C. This assertion holds because the block convergence
factors exp(c(B(ρ))s) are given by c(B(ρ)) = 2β|ρ|−2 for γ > 0. Assumption (ii) gives
σ0 < β < 1/2. Hence∑

B(ρ)

|c(B(ρ))| ≤
∑

0̸=ρ∈(σ0,1/2)

|ρ|−1 +max{1, 2|σ0|}
(∑

ρ

|ρ|−2
)
< ∞.

Thus the convergence factors can be pulled out of the product. Hence we have (4.7)
with

B′ = B +
∑
B(ρ)

c(B(ρ)). (4.8)

To establish (4.4) we proceed block by block in (4.7), using the factorization∣∣∣∣F (1− s)

F (s)

∣∣∣∣ = eB
′(1−2ℜ(s))

∣∣∣1− s

s

∣∣∣m ∏
B(ρ)

 ∏
ρ∈B(ρ)

∣∣∣∣∣1−
1−s
ρ

1− s
ρ

∣∣∣∣∣
 . (4.9)

Using assumption (iii), we show
B′ ≥ 0. (4.10)

We will prove this later. If (4.10) is shown, we have

eB
′(1−2ℜ(s))

∣∣∣1− s

s

∣∣∣m ≤ 1 for ℜ(s) > 1

2
. (4.11)
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In a single block we can clear denominators to obtain∏
ρ∈B(ρ)

∣∣∣∣∣1−
1−s
ρ

1− s
ρ

∣∣∣∣∣ = ∏
ρ∈B(ρ)

∣∣∣∣s− 1 + ρ

s− ρ

∣∣∣∣ .
We compare the term in the numerator with ρ against the term in the denominator
with ρ′ := 1− ρ̄. We find that∣∣∣∣s− 1 + ρ̄

s− ρ

∣∣∣∣2 < 1 for ℜ(s) > 1

2
. (4.12)

In fact, writing s = σ + it, we have∣∣∣∣s− 1 + ρ̄

s− ρ

∣∣∣∣2 = (σ − 1 + β)2 + (t− γ)2

(σ − β)2 + (t− γ)2
= 1− (1− 2β)(2σ − 1)

(σ − β)2 + (t− γ)2
.

This implies (4.12) since β < 1/2 by assumption (ii). Thus we conclude for ℜ(s) > 1/2
that the absolute value of the product over terms in each block on the right in (4.9) is
less than 1. Hence (4.4) holds by (4.11) and (4.12).

Therefore it remains to show (4.10). By (4.3), we have

R ∋ log
(F (1− σ)

F (σ)

)
→ −∞ as 1/2 < σ → +∞. (4.13)

Using (4.3) and (4.7), we have

F (1− σ)

F (σ)
= eB

′(1−2σ)
(σ − 1

σ

)m ∏
ρ=β∈R

σ − 1 + β

σ − β

∏
ρ=β+iγ

γ>0

(σ − 1 + β)2 + γ2

(σ − β)2 + γ2
.

Thus

log
(F (1− σ)

F (σ)

)
= B′(1− 2σ) +m log

(
1− 1

σ

)
+

∑
ρ=β∈R

log
(
1− 1− 2β

σ − β

)
+

∑
ρ=β+iγ

γ>0

log
(
1− (1− 2β)(2σ − 1)

(σ − β)2 + γ2

)
.

(4.14)

Here we note that

log
(
1− (1− 2β)(2σ − 1)

(σ − β)2 + γ2

)
< 0 for σ > 1/2

by assumption (ii). Suppose that B′ < 0. Then (4.13) and (4.14) claim that∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(
1− (1− 2β)(2σ − 1)

(σ − β)2 + γ2

)∣∣∣∣∣∣∣ ≥ 2|B′|σ (4.15)
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for sufficiently large σ > 1/2, because the number of real zeros of F (s) is finite by
assumption (ii). On the other hand, for large σ > 1/2, we have∣∣∣∣∣∣∣

∑
ρ=β+iγ

γ>0

log
(
1− (1− 2β)(2σ − 1)

(σ − β)2 + γ2

)∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(
1− (1− 2σ0)(2σ − 1)

(σ − 1/2)2 + γ2

)∣∣∣∣∣∣∣
≪ (2σ − 1)

∑
ρ=β+iγ

γ>0

1

(σ − 1/2)2 + γ2
.

The sum in the right-hand side can be written as the Stieltjes integral∫ ∞

γ0

dN(t)

(σ − 1/2)2 + t2
.

Using (4.2) we have∫ ∞

γ0

dN(t)

(σ − 1/2)2 + t2
≪

∫ ∞

γ0

(log t) dt

(σ − 1/2)2 + t2
≪ log(σ + γ0)

σ − 1/2
.

Hence we obtain ∣∣∣∣∣∣∣
∑

ρ=β+iγ
γ>0

log
(
1− (1− 2β)(2σ − 1)

(σ − β)2 + γ2

)∣∣∣∣∣∣∣ ≪ log(σ + γ0) (4.16)

for sufficiently large σ > 1/2. This contradict (4.15). Thus (4.10) holds.
Inequality (4.5) is proved by a way similar to the proof of (4.4). We complete the

proof of Lemma 3. □

4.3 Proof of Lemma 4

Now we complete the proof of Theorem 1 by proving Lemma 4. We put

p(s) =
(π − 3

2

)
s−

(π
3
− 3

2

)
. (4.17)

Then X(s) and Y (s) are written as

X(s) = p(s) ξ(3s) + p((2/3)− s) ξ(3s− 1) (4.18)

and

Y (s) = p(s) ξ(3s) +
{
p
( 2
3
− s

)
+

π − 7

4

}
ξ(3s− 1). (4.19)

We find that
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(i) the only one zero of p(s) is
2π − 9

3π − 9
≃ −6.40,

(ii) the only one zero of p
( 2
3
− s

)
is

1

π − 3
≃ 7.06,

(iii) the only one zero of p
( 2
3
− s

)
+

π − 7

4
is

π − 5

2π − 6
≃ −6.56.

At the first, we show that Y (s) has no zeros in the left-half plane ℜ(s) < 1/3. To prove
the assertion, we divide Y (s) as

Y (s) =
{
p
( 2
3
− s

)
+

π − 7

4

}
ξ(3s− 1) ·

(
1 +

p(s)

p((2/3)− s) + (π − 7)/4
· ξ(3s)

ξ(3s− 1)

)
.

Here we note that {
p
( 2
3
− s

)
+

π − 7

4

}
ξ(3s− 1)

has no zeros in the left-half plane ℜ(s) < 1/3. Therefore if we show that∣∣∣∣ p(s)

p((2/3)− s) + (π − 7)/4
· ξ(3s)

ξ(3s− 1)

∣∣∣∣ < 1 for ℜ(s) < 1

3
, (4.20)

then Y (s) has no zeros in ℜ(s) < 1/3. By a way similar to the proof of Lemma 2,∣∣∣∣ ξ(3s)

ξ(3s− 1)

∣∣∣∣ < 1 for ℜ(s) < 1

3
.

On the other hand, from (i) and (iii), we have

p(s)

p((2/3)− s) + (π − 7)/4
= −2

3
· s− (2π − 9)/(3π − 9)

s− (π − 5)/(2π − 6)
.

Thus ∣∣∣∣ p(s)

p((2/3)− s) + (π − 7)/4

∣∣∣∣ < 1 for ℜ(s) > 7π − 33

12(π − 3)
≃ −6.48.

Hence we obtain (4.20).
Next, we prove that Y (s) has no zeros in the right-half plane ℜ(s) ≥ 1/2. To prove

the assertion, we divide Y (s) as

Y (s) = p(s) ξ(3s) ·
(
1 +

p((2/3)− s) + (π − 7)/4

p(s)
· ξ(3s− 1)

ξ(3s)

)
.

Here we note that p(s)ξ(3s) has no zeros in the right-half plane ℜ(s) > 1/3. Therefore
we show that

V (s) = 1 +
p((2/3)− s) + (π − 7)/4

p(s)
· ξ(3s− 1)

ξ(3s)
(4.21)

12



has no zeros in the right-half plane ℜ(s) ≥ 1/2. By a way similar to the proof of
Lemma 2, we obtain ∣∣∣∣ξ(3s− 1)

ξ(3s)

∣∣∣∣ < 1 for ℜ(s) > 1

3
.

On the other hand, we obtain∣∣∣∣p((2/3)− s) + (π − 7)/4

p(s)

∣∣∣∣ ≤ 1 for ℜ(s) ≤ 7π − 33

12(π − 3)
≃ −6.48

by an elementary calculation. Thus V (s) ̸= 0 for ℜ(s) ≥ 7π − 33

12(π − 3)
≃ −6.48. Hence to

complete the proof of Lemma 4 we should prove that V (s) has no zeros in the strip

1

2
≤ ℜ(s) < 7π − 21

12(π − 3)
. (4.22)

Let R be the rectangle [1/2, (7π−21)/(12(π−3))]× [−15, 15]. Clearly V (s) is holomor-
phic in R. From a numerical computation (for example by using MATHEMATICA),
we obtain

1

2πi

∫
∂R

V ′

V
(s)ds = 0

where ∂R is the boundary of R. This means V (s) ̸= 0 in R by the argument principle.
Now we prove V (σ + it) ̸= 0 for σ in (4.22) and |t| ≥ 15 by showing that∣∣∣ξ(3s− 1)

ξ(3s)

∣∣∣ ∣∣∣p((2/3)− s) + (π − 3)/4

p(s)

∣∣∣ < 1 (4.23)

holds in this region. In the proof of Lemma 2, we obtained∣∣∣ξ(3s− 1)

ξ(3s)

∣∣∣ < 1 for ℜ(s) > 1

3
(4.24)

by using the method established in [2], which is also explained in section 5. In detail,
(4.24) is obtained by showing that this inequality holds term-by-term in the (modified)
Hadamard product on a zero-by-zero basis, where the zero ρ = β + iγ of ξ(s) in the
numerator is paired against the zero ρ′ = 1 − β + iγ in the denominator. That is, we
established (4.24) using the fact that∣∣∣3s− 1− ρ′

3s− ρ

∣∣∣ < 1 for ℜ(s) > 1

3
. (4.25)

Hence, to establish (4.23), it suffices to show that for each s in (4.22) with |t| ≥ 15
there exists a zero ρ of ξ(s) such that∣∣∣3s− 1− ρ′

3s− ρ

∣∣∣∣∣∣p((2/3)− s) + (π − 3)/4

p(s)

∣∣∣ < 1. (4.26)
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Then (4.25) and (4.26) give (4.23). To prove the existence of a zero ρ of ζ(s) satisfying
(4.26), we need the following lemma which will be proved in section 6.

Lemma 5 (Lagarias) For any real |t| ≥ 14 there exists a zero ρ = β+ iγ of ξ(s) such
that 0 < β ≤ 1/2 and |t− γ| ≤ 5.

For each s = σ+it satisfying |t| ≥ 15, Lemma 5 gives a zero ρ = β+iγ with 0 < β ≤ 1/2
and |3t− γ| ≤ 5. Therefore, to prove (4.26), it is sufficient that∣∣∣∣3σ − 2 + β + it0

3σ − β + it0

∣∣∣∣ < ∣∣∣ p(s)

p((2/3)− s) + (π − 3)/4

∣∣∣ (4.27)

for any 1/2 ≤ σ ≤ (7π − 21)/(12π − 36), |t| ≥ 15, 0 < β ≤ 1/2 and |t0| ≤ 5. Denote
by µ and ν the zeros of p(s) and p((2/3) − s) + (π − 3)/4, respectively. By squaring
the inequality, (4.27) is equivalent to

(3σ − 2 + β)2 + t20
(3σ − β)2 + t20

<
(σ − µ)2 + t2

(σ − ν)2 + t2
. (4.28)

For fixed s and β it suffices to prove (4.27) with t0 = 5, for it would then hold for
|t0| ≤ 5, using the fact that (3σ − β)2 ≥ (3σ − 2 + β)2 for ℜ(s) > 1/3. Next, when
t0 = 5, it suffices to verify the inequality for β = 1/2 since if it holds there then the
left-hand side of (4.28) with t0 = 5 increases as β > 0 increases, while the right side is
fixed. To establish (4.27) it thus suffices to verify the inequality

(3σ − 3
2
)2 + 25

(3σ − 1
2
)2 + 25

<
(σ − µ)2 + t2

(σ − ν)2 + t2
. (4.29)

The left-hand side of (4.29) decreases as σ increases in 1/2 ≤ σ ≤ (7π−21)/(12π−36).
On the other hand, for fixed |t| ≥ 15, the right-hand side of (4.29) increases as σ
increases in 1/2 ≤ σ ≤ (7π − 21)/(12π − 36). Hence to establish (4.29) it suffices to
verify the inequality

25

26
<

((1/2)− µ)2 + t2

((1/2)− ν)2 + t2
. (4.30)

By an elementary calculation, inequality (4.30) is valid for |t| ≥ 3. Now we obtain
(4.26) and complete the proof of Lemma 3. □

5 Proof of Lemma 1

In this section, we give a proof of Lemma 1 according to Lagarias-Suzuki [2].
The genus one assumption is equivalent to the assertion that the Hadamard product

factorization
F (s) = eA+Bssm

∏
ρ

(
1− s

ρ

)
e

s
ρ (5.1)
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converges absolutely and uniformly on any compact subsets of C. This assumption is
also equivalent to the bound

∑
ρ |ρ|−2 < ∞. Assumption (i) implies symmetries of the

zeros under ρ 7→ ρ̄ and ρ 7→ 1− ρ. It follows that the set of zeros ρ = β + iγ, counted
with multiplicity, can be partitioned into blocks B(ρ) comprising {ρ, 1− ρ, ρ̄, 1− ρ̄} if
β ̸= 1/2, {ρ, 1 − ρ} if β = 1/2 and γ ̸= 0, and {ρ} if ρ = 1/2. Each block is labeled
with the unique zero in it having β ≤ 1/2 and γ ≥ 0. Using assumption (ii), we show

F (s) = eA+B′s
∏
B(ρ)

 ∏
ρ∈B(ρ)

(
1− s

ρ

) , (5.2)

where the outer product on the right-hand side converges absolutely and uniformly on
any compact subsets of C. This assertion holds because the block convergence factors
exp(c(B(ρ))s) are given by

c(B(ρ)) =


β|ρ|−2 + (1− β)|1− ρ|−2 if β ̸= 1/2,

|ρ|−2 if β = 1/2 and γ ̸= 0,

2 if ρ = 1/2.

Assumption (ii) gives −a < β − 1/2 < a. Hence∑
B(ρ)

|c(B(ρ))| ≤ (1 + 2a)
(∑

ρ

|ρ|−2
)
< ∞.

Thus the convergence factors can be pulled out of the product. Hence we have (5.2)
with B′ = B +

∑
B(ρ) c(B(ρ)).

Using the functional equation (3.1) we infer that B′ = 0 in (5.2), so that

F (s) = eA
∏
B(ρ)

 ∏
ρ∈B(ρ)

(
1− s

ρ

) . (5.3)

Indeed the change of variable s 7→ 1− s permutes the factors in each block B(ρ), with
a possible sign change for ρ = 1/2, so it must be that eA+B′s = ±eA+B′(1−s), which
forces B′ = 0.

To establish (3.3) and (3.4) we proceed block by block in (5.3), using the factoriza-
tion ∣∣∣∣F (s+ c)

F (s− c)

∣∣∣∣ = ∏
B(ρ)

 ∏
ρ∈B(ρ)

∣∣∣∣∣1−
s+c
ρ

1− s−c
ρ

∣∣∣∣∣
 . (5.4)

In a single block we can clear denominators to obtain∏
ρ∈B(ρ)

∣∣∣∣∣1−
s+c
ρ

1− s−c
ρ

∣∣∣∣∣ = ∏
ρ∈B(ρ)

∣∣∣∣s+ c− ρ

s− c− ρ

∣∣∣∣ .
15



The main point is to compare the term in the numerator with ρ against the term in
the denominator with ρ′ := 1− ρ = 1− ρ̄. We show that∣∣∣∣ s+ c− ρ

s− c− (1− ρ̄)

∣∣∣∣2 > 1 for ℜ(s) > 1

2
, (5.5)

and ∣∣∣∣ s+ c− ρ

s− c− (1− ρ̄)

∣∣∣∣2 < 1 for ℜ(s) < 1

2
. (5.6)

If (5.5) is shown, then we may conclude for ℜ(s) > 1/2 that the absolute value of the
product over terms in each block on the right in (5.4) exceeds 1, and (3.3) follows.
Similarly (5.6) implies that for ℜ(s) < 1/2 the product of terms over each block is
smaller than 1, and (3.4) follows.

Therefore it remains to show (5.5) and (5.6). Writing s = σ + it, we have∣∣∣∣ s+ c− ρ

s− c− (1− ρ̄)

∣∣∣∣2 = (σ + c− β)2 + (t− γ)2

(σ − c− 1 + β)2 + (t− γ)2

Now (5.5) reduces to the assertion that

(σ + c− β)2 > (σ − c− 1 + β)2 for ℜ(s) > 1

2
. (5.7)

To show this we note that ℜ(s) > 1/2 gives

σ + c− β >
1

2
+ a− β > 0,

whence (5.7) makes the two assertions

σ + c− β > σ − c− 1 + β,

σ + c− β > −(σ − c− 1 + β).

The second of these asserts that σ > 1/2. While the first asserts that 2c > 2(β − 1/2).
This holds since c ≥ a > β − 1/2. Thus (5.7) holds, whence (5.5) holds.

A similar argument is used to establish (5.6). It reduces to the assertion that

(σ + c− β)2 < (σ − c− 1 + β)2 for ℜ(s) < 1

2
. (5.8)

We have

−(σ − c− 1 + β) ≥ 1

2
+ a− β > 0,

so that (5.8) is equivalent to the two assertions

−σ + c+ 1− β > −(σ + c− β),
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−σ + c+ 1− β > σ + c− β.

The second of these is equivalent to σ < 1/2. While the first of these is equivalent to
c+ 1/2− β > 0. This holds by our choice of c.

The conclusion that all zeros of F (s + c) ± F (s − c) lie on the line ℜ(s) = 1/2
follows, because two terms F (s+ c) and F (s− c) have different absolute values off the
line ℜ(s) = 1/2. □

6 Proof of Lemma 5

In this section, we give a proof of Lemma 5 according to Lagarias [1]. Throughout
the section, we denote by γ the imaginary part of the non-trivial zeros of ζ(s). The
spacing between consecutive ordinate γ goes to zero as γ → ∞. Therefore the result
of Lemma 5 holds for |t| exceeding some bound and gives an explicit bound.

First, we prove that the result of the lemma holds for |t| ≥ 14. Since the zeros are
symmetric around the real axis, it suffices to consider the case t ≥ 14. We verify the
lemma directly for 14 ≤ t ≤ 168π + 5 < 525 by inspection of a table of zeros of ζ(s).
In fact there is no gap of size 5 between any consecutive zeros of ζ(s) starting with
γ2 ≃ 21.02, and the smallest zeros have ordinates γ1 ≃ 14.13.

For the remaining range we use numerical estimates of Turing [3]. Let N(T ) be the
number of zeros ρ with 0 < ℑ(ρ) < T and let πS(T ) be the argument of ζ(1/2 + iT )
obtained by analytic continuation along a horizontal line from ∞+ iT . We have

N(T ) = 2κ
( T

2π

)
+ 1 + S(T ), (6.1)

where κ(τ) = (4πi)−1 log
(
Γ(1/4 + πiτ)/Γ(1/4 − πiτ)

)
− (1/4)τ log π. Theorem 1 of

Turing [3] gives

κ(τ) =
1

2

(
τ log τ − τ − 1

2

)
+ ε(τ) with |ε(τ)| ≤ 0.006

τ
for τ ≥ 64. (6.2)

For S1(t) =
∫ t

0
S(u)du, Theorem 4 of Turing [3] assert that if t2 > t1 > 168π then

|S1(t2)− S1(t1)| ≤ 2.30 + 0.128 log
( t2
2π

)
. (6.3)

Now we prove Lemma 5 under the following Lemma 6 which is shown in the end of
the section.

Lemma 6 Suppose that there is no zero ρ of ζ(s) with 168π ≤ t1 < ℑ(ρ) < t2 and
that S(T ) has one sign over the interval [t1, t2]. Then

t2 − t1 < 10/3. (6.4)

17



Suppose that t ≥ 168π + 5 and there is no zero on [t − 2, t + 2], that is, N(T ) is
constant on [t − 2, t + 2]. Because of Lemma 6, inside this interval S(T ) must have
a zero-crossing in each subinterval of length 10/3. Hence it must have a zero-crossing
at some point t1 = t + x with |x| ≤ 4/3. Since N(T ) is constant, S(T ) varies like
−2κ(T/2π)−N(t1)− 1. Therefore (6.2) implies that all other zero-crossing of S(T ) in
[t−2, t+2] are localized within a distance ε = 0.006/(t1 log(t1/2π)) of this one. If there
were no zero on [t−5, t], then N(T ) is constant there. Hence S(T ) varies approximately
linearly on the interval. If t + x falls in [t − 5, t], zero-crossings of S(T ) are located
within 0.001 of t+x, and otherwise it has no zero-crossings. Since |x| ≤ 4/3, S(T ) has
single sign on [t−5, t−5+10/3]. This contradicts Lemma 6. Thus there is a zero with
the ordinate γ in [t− 5, t− 2]. By a similar argument there is a zero with the ordinate
γ in [t+ 2, t+ 5].

If t ≥ 168π+5 and there is a zero with the ordinate γ in [t− 2, t+2], this of course
implies our assertion. We complete the proof of Lemma 5. □

Proof of Lemma 6. We take t2 = t1 + c with c ≥ 10/3. From the assumption S(T )
has single sign on [t1, t2]. Hence we have

|S1(t2)− S1(t1)| =
∣∣∣∫ c

0

S(t1 + u)du
∣∣∣ = ∫ c

0

|S(t1 + u)|du ≥
∫ 10/3

0

|S(t1 + u)|du.

Suppose that S(T ) is positive. Since N(t) is constant on [t1, t2], we obtain

S(t1 + u) = N(t1)− 2κ
(t1 + u

2π

)
− 1 = 2κ

( t1
2π

)
− 2κ

(t1 + u

2π

)
+ S(t1) > 0 (6.5)

for any 0 ≤ u ≤ 10/3. Thus

S(t1) > 2κ
( t2
2π

)
− 2κ

( t1
2π

)
. (6.6)

Combining (6.5) and (6.6) we obtain

S(t1 + u) > 2κ
( t2
2π

)
− 2κ

(t1 + u

2π

)
for any 0 ≤ u ≤ 10/3. Hence we have

|S1(t2)− S1(t1)| >
∫ 10/3

0

∣∣∣2κ( t2
2π

)
− 2κ

(t1 + u

2π

)∣∣∣du. (6.7)

Thus (6.2) yields

|S1(t2)− S1(t1)| ≥
∫ 10/3

0

( t2
2π

− t1 + u

2π

)(
log

t2
2π

− 1
)
du− 3.5

(0.006
t1

)
≥ 0.884 log

( t2
2π

)
− 0.886.

(6.8)
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Suppose that S(T ) is negative. By (6.1) we have N(t1) < 2κ(t1/(2π))+ 1. Since N(T )
is constant on [t1, t2], we obtain

−S(t1 + u) = 2κ
(t1 + u

2π

)
−N(t1) + 1 > 2κ

(t1 + u

2π

)
− 2κ

( t1
2π

)
for 0 ≤ u ≤ 10/3. Hence we have

|S1(t2)− S1(t1)| >
∫ 10/3

0

∣∣∣2κ(t1 + u

2π

)
− 2κ

( t1
2π

)∣∣∣du. (6.9)

Thus (6.2) yields

|S1(t2)− S1(t1)| ≥
∫ 10/3

0

u

2π

(
log

t1
2π

− 1
)
du− 3.5

(0.006
t1

)
≥ 0.884 log

( t1
2π

)
− 0.886.

(6.10)

Now t1 ≥ 168π gives log(t1/(2π)) ≥ 4.4 and log(t1/(2π)) ≥ log(t2/(2π))− 0.01. Hence
(6.8) and (6.10) gives

|S1(t2)− S1(t1)| ≥ 0.884 log
( t2
2π

)
− 0.886 (6.11)

under the assumptions of Lemma 6. This contradicts (6.3). We complete the proof. □

7 A question

Equality (2.11) can be written as

ξ3(s) = ξ♮3(s) +
π − 3

2
ξ(3s− 1), (7.1)

where ξ♮3(s) = X(s) +X(1− s). This yields

π − 3

2
ξ(3s− 1) = ξ3(s)− ξ♮3(s). (7.2)

As this, the Riemann xi function ξ(s) can be written as the sum of ξ3(s) and ξ♮3(s).
Equality (7.2) was first pointed out by Weng. We have already known that all zeros
of ξ3(s) and ξ♮3(s) lie on the line ℜ(s) = 1/2. Therefore, equality (7.2) may be a
remarkable relation. We conclude the article by the following natural question:

Can one say some nice things for the zeros of ξ(s) by using the properties of ξ3(s)
and ξ♮3(s) via relation (7.2) ?
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