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MASATOSHI SUZUKI

This is a note on the zeros of functions

H(y; s) = p(s)ζ∗(2s)ys + p(1− s)ζ∗(2− 2s)y1−s (0.1)

which was mentioned in (24) of Lagarias–Suzuki [4].

1. A basic fact

Let s = σ+it (i =
√
−1, σ, t ∈ R) be a complex variable. Let ζ∗(s) = π−s/2Γ(s/2)ζ(s)

and ξ(s) = 1
2s(s− 1)ζ∗(s) and let p(s) be a nonzero polynomial with real coefficients.

In order to study the zeros of (0.1), we introduce the entire function

H∗(y; s) : = (2s)(2s− 1)(2s− 2)H(y; s)

= 2(s− 1)p(s) ξ(2s)ys + 2s p(1− s) ξ(2− 2s)y1−s.

At first, we show the following matter.

Theorem 1. Let H∗(y; s) be as above. Suppose that y ≥ 1 and p(s) has N many zeros
counted with multiplicity in the right half-plane ℜ(s) > 1/2. Then H∗(y; s) has at most
N +1 many zeros in the right half-plane ℜ(s) > 1/2 counting with multiplicity, and the
same thing holds in the left half-plane ℜ(s) < 1/2.

The trivial functional equation H(y; s) = H(y; 1− s) implies

H∗(y; 1− s) = −H∗(y; s).

Therefore, it suffices to study the zeros of H∗(y; s) in the right half-plane ℜ(s) > 1/2.
In what follows, we suppose that σ = ℜ(s) > 1/2.

A key gradient of the proof of Theorem 1 is the following fact.

Proposition 1. Let W (z) be an entire function. Suppose that it has a product formula

W (z) = H(z)eαz
∞∏
n=1

(1− z/λn)(1 + z/λ̄n),

where H(z) is a nonzero polynomial having N many zeros in the lower half-plane count-
ing with multiplicity, ℑ(λn) ≥ 0 (n = 1, 2, 3, · · · ) and the product converges uniformly
in any compact subset of C. In addition, suppose that α is real or α = iα′ for some
positive real number α′. Then W (z) +W (z̄) and W (z)−W (z̄) have at most N pair of
conjugate complex zeros counting with multiplicity.

Proof. If α is real, the proposition is Proposition 3.1 of [2]. To prove the case α = iα′

for some positive real α′, we recall the result in [1, p. 215]: Let U(z) and V (z) be real
polynomials. Assume that U ̸≡ 0 and that W (z) = U(z) + iV (z) has exactly n zeros
counted with multiplicity in the lower half-plane. Then U(z) can have at most n pairs
of conjugate complex zeros counted with multiplicity.

We define the polynomials wn(z) (n = 1, 2, · · · ) by

wn(z) = H(z)

(
1 +

iα′z

n

)n n∏
k=1

(1− z/λk)(1 + z/λ̄k).

Then each wn(z) has at most N many zeros in the lower half-plane, since α′ > 0. By

the above fact in [1, p. 215], wn(z) + wn(z̄) has at most N pairs of conjugate complex
1
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zeros. Since wn(z) +wn(z̄) converges uniformly to W (z) +W (z̄) in any compact subset

of C, W (z)+W (z̄) has at most N pairs of conjugate complex zeros. Similarly, we prove

the proposition for W (z)−W (z̄). □

Proof of Theorem 1. In order to apply Proposition 1 to H∗(y, s), we define

Wp,y(z) = 2(s− 1)p(s) ξ(2s)ys with s =
1

2
+ iz.

Then, we have

Wp,y(z) = −2

(
1

2
− iz

)
p

(
1

2
+ iz

)
ξ(1 + 2iz)y

1
2
+iz

and

Wp,y(z̄) = −2

(
1

2
+ iz

)
p

(
1

2
− iz

)
ξ(1− 2iz)y

1
2
−iz = −2sp(1− s) ξ(2− 2s)y1−s,

since p(s) has real coefficients. Hence, we obtain

H∗(y, s) = Wp,y(z)−Wp,y(z̄) with s =
1

2
+ iz.

Here (s−1)p(s) (s = 1/2+ iz) is a polynomial of z having N+1 many zeros in the lower
half-plane ℑ(z) < 0 counting with multiplicity. Therefore, by Proposition 1, Theorem 1
will be established if the following lemma is proved, since log y ≥ 0 if y ≥ 1. □
Lemma 1. We have

ξ(1 + 2iz) =
∏

ℜ(λ)>0

(1− z/λ)(1 + z/λ̄),

where

λ =
γ

2
+ i

1− β

2
for a zero ρ = β + iγ of ξ(s). In particular, any λ is in the upper-half plane ℑ(z) > 0.

Proof. Put F (z) = ξ(1 + 2iz). Then F (z) is an entire function of order one. A complex
number λ is a zeros of F (z) if and only if 1 + 2iλ = ρ for some zero ρ = β + iγ of ξ(s).
Therefore, if λ is a zero of F (z), −λ̄ is also a zero of F (z), since if

λ =
γ

2
+ i

1− β

2

for some zero ρ = β + iγ of ξ(s),

−λ̄ = −γ

2
+ i

1− β

2
.

Hence we have the factorization

F (z) = eB
′z

∏
ℜ(λ)>0

(1− z/λ)(1 + z/λ̄) exp
(
z(1/λ− 1/λ̄)

)
.

We find that ∑
ℜ(λ)>0

(1/λ− 1/λ̄)

converges absolutely by a standard way. Thus

F (z) = eBz
∏

ℜ(λ)>0

(1− z/λ)(1 + z/λ̄)

for

B = B′ +
∑

ℜ(λ)>0

(1/λ− 1/λ̄).
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Finally, we show B = 0. We have

F (z) = ξ(−2iz) = ξ(1 + 2i(−z + i/2)) = F (−z + i/2).

This implies
F ′

F
(0) = −F ′

F
(i/2).

On the left-hand side, we have

F ′

F
(0) = B +

∑
ℜ(λ)>0

(
− 1

λ
+

1

λ̄

)
.

On the right-hand side, we have

F ′

F
(i/2) = B −

∑
ℜ(λ)>0

(
− 1

λ
+

1

λ̄

)
by

i

2
− λ =

i

2
− γ

2
− i

1− β

2
= −γ

2
+ i

1− (1− β)

2
and the symmetry between β and 1−β for the zeros of ξ(s). Hence B = 0 by (F ′/F )(0) =
−(F ′/F )(i/2). □

2. Narrowing regions for off-line zeros

Theorem 1 does not mention where off-line zeros exist. In this part, we study a region
where off-line zeros of (0.1) exists by restricting the following three cases

(i) p(s) has no zeros in ℜ(s) > 1/2,
(ii) p(s) has one zero in ℜ(s) > 1/2,
(iii) p(s) has two zeros in ℜ(s) > 1/2.

We can deal with general cases in a similar way by generalizing Lemma 5 and 9 below.

2.1. Case (i). We have

H∗(y; s) = 2(s− 1)p(s)ξ(2s)ys
(
1 +

s · p(1− s)

(s− 1) · p(s)
· ξ(2− 2s)

ξ(2s)
· y1−2s

)
. (2.1)

Because the factor (s − 1)p(s)ζ∗(2s)ys has no zeros in the right-half plane ℜ(s) > 1/2
except for the simple zero s = 1, we study the zeros of

1 +
p(1− s)

p(s)
· s

s− 1
· ξ(2− 2s)

ξ(2s)
· y1−2s = 1 +Rp,y(s), (2.2)

say.

Lemma 2. There exists computable σ1 > 1/2 which does not depend on p(s) and y ≥ 1
such that 1 +Rp,y(s) has no zeros (and poles) in the right-half plane ℜ(s) ≥ σ1.

Proof. Put

R1(s) =
s

s− 1
· ξ(2− 2s)

ξ(2s)
=

s

s− 1
· ξ(2s− 1)

ξ(2s)
.

We have

|R1(s)| =
√
π

∣∣∣∣Γ(s− 1/2)

Γ(s)

∣∣∣∣ ∣∣∣∣ζ(2s− 1)

ζ(2s)

∣∣∣∣ .
Using the Stirling formula

Γ(z) =

√
2π

z

( z

e

)z(
1 +Oε(|z|−1)

)
(|z| ≥ 1, |arg z| < π − ε),

we have ∣∣∣∣Γ(s− 1/2)

Γ(s)

∣∣∣∣ = O(|s|−1/2)
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as |s| → +∞ and ℜ(s) → +∞. On the other hand,

ζ(2s− 1)

ζ(2s)
=

∞∑
n=1

ϕ(n)

n2s
= 1 +O

(
1

4σ

)
for ℜ(s) > 1, where ϕ(n) is Euler’s totient function. Hence

|R1(s)| = O(|s|−1/2)

as |s| → +∞ and ℜ(s) → +∞.

On the other hand, by∣∣∣∣1− s− (µ+ iλ)

s− (µ+ iλ)

∣∣∣∣2 = (1− σ − µ)2 + (t− λ)2

(σ − µ)2 + (t− λ)2
= 1− (2σ − 1)(1− 2µ)

(σ − µ)2 + (t− λ)2
≤ 1, (2.3)

we have ∣∣∣∣p(1− s)

p(s)

∣∣∣∣ ≤ 1 (2.4)

for ℜ(s) > 1/2, and
0 < |y1−2s| = y1−2σ ≤ 1 (2.5)

for ℜ(s) > 1/2 and y ≥ 1.
Therefore, there exists computable σ1 > 1/2 such that |Rp,y(s)| < 1 for any s with

ℜ(s) ≥ σ1. □
Lemma 3. Let σ1 be the number of Lemma 2. There exists computable T1 > 0 which
does not depend on p(s) and y ≥ 1 such that 1+Rp,y(s) has no zeros (and poles) in the
region 1/2 < ℜ(s) < σ1 with |ℑ(s)| ≥ T1.

Proof. For a zero ρ = β + iγ of ξ(s), we have∣∣∣∣2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣2 = 1− 4(2σ − 1)(1− β)

(2σ − β)2 + (2t− γ)2
< 1,

since β < 1. Thus,∣∣∣∣ 2s− ρ

2s− 1− (1− ρ̄)

ξ(2s− 1)

ξ(2s)

∣∣∣∣ = ∣∣∣∣ξ(2s− 1)/(2s− 1− (1− ρ̄))

ξ(2s)/(2s− ρ)

∣∣∣∣ < 1

for any zero ρ of ξ(s) (Note that if ρ is a zero of ξ(s), 1 − ρ̄ is also a zeros of ξ(s) by

functional equations ξ(s) = ξ(1− s) and ξ(s) = ξ(s̄)). Therefore, by (2.5) and (2.4), the
proof of Lemma 3 is reduced to Lemma 4 below. □
Lemma 4. Let σ1 be the number of Lemma 2. There exists computable T1 > 0 which
does not depend on p(s) and y ≥ 1 such that there exists at least one zero ρ of ξ(s)
satisfying ∣∣∣∣ s

s− 1
· 2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣ < 1 (2.6)

if 1/2 < σ ≤ σ1 and t ≥ T1.

We prove Lemma 4 by using the following lemma:

Lemma 5 (Lemma 5 of [5], Lemma 3.5 of [3]). For any real |t| ≥ 14 there exists a zero
ρ = β + iγ of ξ(s) such that 0 < β ≤ 1/2 and |t− γ| ≤ 5.

Proof of Lemma 4. Inequality (2.6) is equivalent to

1− 4(2σ − 1)(1− β)

(2σ − β)2 + (2t− γ)2
=

∣∣∣∣2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣2 < ∣∣∣∣s− 1

s

∣∣∣∣2 = 1− 2σ − 1

σ2 + t2
,

where s = σ + it and ρ = β + iγ. This inequality is equivalent to

(σ − β/2)2 + (t− γ/2)2

σ2 + t2
< 1− β
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when σ > 1/2. On the right-hand side, we have

(σ − β/2)2 + (t− γ/2)2

σ2 + t2
≤ σ2 + (t− γ/2)2

σ2 + t2
,

since σ2 ≥ (σ − β/2)2 if σ ≥ β/4 (0 < β < 1). Moreover, if |t| ≥ 7, there exists a zero
ρ = β + iγ of ξ(s) such that 0 < β ≤ 1/2 and |t− γ/2| ≤ 5/2 by Lemma 5. Therefore,
for such a zero, we have

σ2 + (t− γ/2)2

σ2 + t2
<

σ2 + 9

σ2 + t2
and

1

2
≤ 1− β.

Here, (σ2 + 9)/(σ2 + t2) is an increasing function of σ if |t| > 3. In particular,

σ2 + 9

σ2 + t2
≤ σ2

1 + 9

σ2
1 + t2

if 1/2 < σ ≤ σ1 and |t| ≥ 7. Hence, if we take T1 ≥ 7 so that (σ2
1 + 9)/(σ2

1 + t2) < 1/2
holds for any |t| ≥ T1, we obtain (2.6). □
Conclusion: By Lemma 2 and 3, we find that off-line zeros of H∗(y; s) must be in the
region

D1 = {s : ℜ(s) ̸= 1/2, 1− σ1 ≤ ℜ(s) ≤ σ1, |ℑ(s)| ≤ T1},
where σ1 and T1 are computable numbers independent of p(s) and y ≥ 1. The numbers
σ1 and T1 are determined by ξ(s).

2.2. Case (ii). Let s = µ be the zero of p(s) in the right-half planeℜ(s) > 1/2. The
zero s = µ should be real, since p(s) has real coefficients. In this case, the factor
(s − 1)p(s)ζ∗(2s)ys in (2.1) has no zeros in the right-half plane ℜ(s) > 1/2 except for
the double zero s = 1 (if µ = 1) or two simple zeros s = 1 and s = µ (if µ ̸= 1). As in
the case (i), we study the zeros of 1 +Rp,y(s) in (2.2).

Lemma 6. There exists computable σ2 > 1/2 which does not depend on y ≥ 1 such that
1 +Rp,y(s) has no zeros (and poles) in the right-half plane ℜ(s) ≥ σ2.

Proof. We have
p(1− s)

p(s)
· s

s− 1
· ξ(2− 2s)

ξ(2s)
· y1−2s = O(|s|−1/2)

as |s| → ∞ and ℜ(s) → ∞ in a way similar to the proof of Lemma 2, where the implied
constant does not depend on y ≥ 1 but may depend on p(s). The above estimate implies
Lemma 6. □
Lemma 7. Let σ2 be the number of Lemma 6. There exists computable T2 > 0 which
does not depend on y ≥ 1 such that 1 + Rp,y(s) has no zeros (and poles) in the region
1/2 < ℜ(s) < σ2 and |ℑ(s)| ≥ T2.

Proof. For a zero ρ = β + iγ of ξ(s), we have∣∣∣∣2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣2 = 1− 4(2σ − 1)(1− β)

(2σ − β)2 + (2t− γ)2
< 1,

since β < 1. Thus, ∣∣∣∣ 2s− ρ

2s− 1− (1− ρ̄)

2s− ρ′

2s− 1− (1− ρ̄′)

ξ(2s− 1)

ξ(2s)

∣∣∣∣ < 1

for any zeros ρ, ρ′ of ξ(s). On the other hand,∣∣∣∣ s− µ

1− s− µ
· p(1− s)

p(s)

∣∣∣∣2 ≤ 1

by (2.3). Therefore, the proof of Lemma 7 is reduced to Lemma 8 below. □
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Lemma 8. Let σ2 be the number of Lemma 6. There exists computable T2 > 0 which
does not depend on y ≥ 1 such that there exists at least two distinct zeros ρ and ρ′ of
ξ(s) satisfying∣∣∣∣ s

s− 1
· 2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣ < 1 and

∣∣∣∣1− s− µ

s− µ
· 2s− 1− (1− ρ̄′)

2s− ρ′

∣∣∣∣ < 1 (2.7)

if 1/2 < ℜ(s) ≤ σ2 and |ℑ(s)| ≥ T2.

We prove Lemma 8 by using the following lemma:

Lemma 9 (Lemma 9 of [6]). For any real value of t there exist at least three distinct
zeros ρ = β + iγ of ξ(s) such that 0 < β ≤ 1/2 and |t− γ| ≤ 22.

Proof of Lemma 8. The first inequality of (2.7) is equivalent to

1− 4(2σ − 1)(1− β)

(2σ − β)2 + (2t− γ)2
=

∣∣∣∣2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣2 < ∣∣∣∣s− 1

s

∣∣∣∣2 = 1− 2σ − 1

σ2 + t2
,

where s = σ + it and ρ = β + iγ. This inequality is equivalent to

(σ − β/2)2 + (t− γ/2)2

σ2 + t2
< 1− β

when σ > 1/2. On the right-hand side, we have

(σ − β/2)2 + (t− γ/2)2

σ2 + t2
≤ σ2 + (t− γ/2)2

σ2 + t2
,

since σ2 ≥ (σ − β/2)2 if σ ≥ β/4 (0 < β < 1). Moreover, there exists a zero ρ = β + iγ
of ξ(s) such that 0 < β ≤ 1/2 and |t − γ/2| ≤ 11 by Lemma 9. Therefore, for such a
zero, we have

σ2 + (t− γ/2)2

σ2 + t2
<

σ2 + 121

σ2 + t2
and

1

2
≤ 1− β.

Here, (σ2 + 121)/(σ2 + t2) is an increasing function of σ if |t| > 11. In particular,

σ2 + 121

σ2 + t2
≤ σ2

1 + 121

σ2
1 + t2

if 1/2 < σ ≤ σ1 and |t| ≥ 11.
The second inequality of (2.7) is equivalent to

1− 4(2σ − 1)(1− β′)

(2σ − β′)2 + (2t− γ′)2
=

∣∣∣∣2s− 1− (1− ρ̄′)

2s− ρ′

∣∣∣∣2 < ∣∣∣∣ s− µ

1− s− µ

∣∣∣∣2 = 1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + t2
,

where s = σ + it and ρ′ = β′ + iγ′. This inequality is equivalent to

(2µ− 1)
(σ − β′/2)2 + (t− γ′/2)2

(σ − 1 + µ)2 + t2
< 1− β′

when σ > 1/2. On the right-hand side, we have

(σ − β′/2)2 + (t− γ′/2)2

(σ − 1 + µ)2 + t2
≤ (σ − κ)2 + (t− γ′/2)2

(σ − κ)2 + t2
,

for σ > 1/2, where κ = 1−µ if β′− 2(1−µ) ≥ 0 and κ = β′/2 if β′− 2(1−µ) < 0, since
(σ − 1 + µ)2 ≥ (σ − β′/2)2 if σ ≥ (β′ + 2− 2µ)/4 and β′ − 2(1− µ) ≥ 0, (σ − 1 + µ)2 <
(σ − β′/2)2 if σ ≥ (β′ + 2− 2µ)/4 and β′ − 2(1− µ) < 0, and (β′ + 2− 2µ)/4 < 1/2 by
β′ < 1 and µ > 1/2. Moreover, a zero ρ′ = β′ + iγ′ of ξ(s) can be taken as 0 < β′ ≤ 1/2
and |t− γ′/2| ≤ 11 by Lemma 9. Therefore, for such a zero, we have

(σ − κ)2 + (t− γ′/2)2

(σ − κ)2 + t2
<

(σ − κ)2 + 121

(σ − κ)2 + t2
and

1

2
≤ 1− β.
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Here, ((σ−κ)2+121)/((σ−κ)2+ t2) is an increasing function of σ if σ > κ and |t| > 11.
Note that κ < 1/2 by β′ < 1 and ν > 1/2. In particular,

(σ − κ)2 + 121

(σ − κ)2 + t2
≤ (σ2 − κ)2 + 121

(σ2 − κ)2 + t2

if 1/2 < σ ≤ σ2 and |t| ≥ 11.
Hence, if we take T2 ≥ 11 so that (2µ − 1)((σ2 − κ)2 + 121)/((σ2 − κ)2 + t2) < 1/2

holds for any |t| ≥ T2, we obtain (2.7). □

Conclusion: By Lemma 6 and 7, we find that off-line zeros of H∗(y; s) must be in the
region

D2 = {s : ℜ(s) ̸= 1/2, 1− σ2 ≤ ℜ(s) ≤ σ2, |ℑ(s)| ≤ T2},

where σ2 and T2 are computable numbers independent of y ≥ 1. The numbers σ2 and
T2 are determined by ξ(s) and µ.

2.3. Case (iii). Let µ+ iλ and ν− iλ be two zeros of p(s) in the right-half planeℜ(s) >
1/2. They should satisfy (µ − ν)λ = 0, since p(s) has real coefficients. In this case,
the factor (s − 1)p(s)ζ∗(2s)ys in (2.1) has no zeros in the right-half plane ℜ(s) > 1/2
except for the triple zeros s = 1 (µ = ν = 1, λ = 0); or the simple zero s = 1 and the
double zero s = µ (1/2 < µ = ν ∈ R, µ ̸= 1); or three simple zeros s = 1, s = µ + iλ
and s = µ − iλ (1/2 < µ = ν ∈ R, λ ̸= 0). As in the case (i), we study the zeros of
1 +Rp,y(s) in (2.2).

Lemma 10. There exists computable σ3 > 1/2 which does not depend on y ≥ 1 such
that 1 +Rp,y(s) has no zeros (and poles) in the right-half plane ℜ(s) ≥ σ3.

Proof. We have

p(1− s)

p(s)
· s

s− 1
· ξ(2− 2s)

ξ(2s)
· y1−2s = O(|s|−1/2)

as |s| → ∞ and ℜ(s) → ∞ in a way similar to the proof of Lemma 2, where the implied
constant does not depend on y ≥ 1 but may depend on p(s). The above estimate implies
Lemma 10. □

Lemma 11. Let σ3 be the number of Lemma 10. There exists computable T3 > 0 which
does not depend on y ≥ 1 such that 1 + Rp,y(s) has no zeros (and poles) in the region
1/2 < ℜ(s) < σ3 and |ℑ(s)| ≥ T3.

Proof. For a zero ρ = β + iγ of ξ(s), we have∣∣∣∣2s− 1− (1− ρ̄)

2s− ρ

∣∣∣∣2 = 1− 4(2σ − 1)(1− β)

(2σ − β)2 + (2t− γ)2
< 1,

since β < 1. Thus,∣∣∣∣ 2s− ρ1
2s− 1− (1− ρ̄1)

2s− ρ2
2s− 1− (1− ρ̄2)

2s− ρ3
2s− 1− (1− ρ̄3)

ξ(2s− 1)

ξ(2s)

∣∣∣∣ < 1

for any zeros ρ1, ρ2, ρ3 of ξ(s). On the other hand,∣∣∣∣ s− (µ+ iλ)

1− s− (µ+ iλ)
· s− (ν − iλ)

1− s− (ν − iλ)
· p(1− s)

p(s)

∣∣∣∣2 ≤ 1

by (2.3). Therefore, the proof of Lemma 11 is reduced to Lemma 12 below. □
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Lemma 12. Let σ3 be the number of Lemma 10. There exists computable T3 > 0 which
does not depend on y ≥ 1 such that there exists at least three distinct zeros ρ1, ρ2, ρ3 of
ξ(s) satisfying∣∣∣∣ s

s− 1
· 2s− 1− (1− ρ̄1)

2s− ρ1

∣∣∣∣ < 1,∣∣∣∣1− s− µ− iλ

s− µ− iλ
· 1− s− ν + iλ

s− ν + iλ
· 2s− 1− (1− ρ̄2)

2s− ρ2
· 2s− 1− (1− ρ̄3)

2s− ρ3

∣∣∣∣ < 1,

(2.8)

if 1/2 < ℜ(s) ≤ σ3 and |ℑ(s)| ≥ T3.

We prove Lemma 12 by using Lemma 9 as in case (ii).

Proof of Lemma 12. The first inequality of (2.8) is proved as in the proof of Lemma 8.
First, we deal with the case µ = ν. In this case, we have∣∣∣∣ s− µ− iλ

1− s− µ− iλ

s− ν + iλ

1− s− ν + iλ

∣∣∣∣2
=

(
1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + (t+ λ)2

)(
1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + (t− λ)2

)
.

On the other hand, we have∣∣∣∣2s− 1− (1− ρ̄2)

2s− ρ2

2s− 1− (1− ρ̄3)

2s− ρ3

∣∣∣∣2
=

(
1− 4(2σ − 1)(1− β2)

(2σ − β2)2 + (2t− γ2)2

)(
1− 4(2σ − 1)(1− β3)

(2σ − β3)2 + (2t− γ3)2

)
.

Therefore, to prove the second inequality (2.8), it is sufficient to show

1− 4(2σ − 1)(1− β2)

(2σ − β2)2 + (2t− γ2)2
< 1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + (t+ λ)2

and

1− 4(2σ − 1)(1− β3)

(2σ − β3)2 + (2t− γ3)2
< 1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + (t− λ)2
,

where s = σ + it, ρ2 = β2 + iγ2 and ρ3 = β3 + iγ3. These inequalities are equivalent to

(2µ− 1)
(σ − β2/2)

2 + (t− γ2/2)
2

(σ − 1 + µ)2 + (t+ λ)2
< 1− β2

and

(2µ− 1)
(σ − β3/2)

2 + (t− γ3/2)
2

(σ − 1 + µ)2 + (t− λ)2
< 1− β3

when σ > 1/2. On the right-hand side, we have

(σ − β2/2)
2 + (t− γ2/2)

2

(σ − 1 + µ)2 + (t+ λ)2
≤ (σ − κ2)

2 + (t− γ2/2)
2

(σ − κ2)2 + (t+ λ)2
,

and
(σ − β3/2)

2 + (t− γ3/2)
2

(σ − 1 + µ)2 + (t− λ)2
≤ (σ − κ3)

2 + (t− γ3/2)
2

(σ − κ3)2 + (t− λ)2
,

for σ > 1/2, where κj = 1−µ if βj−2(1−µ) ≥ 0 and κj = βj/2 if βj−2(1−µ) < 0, since
(σ− 1 + µ)2 ≥ (σ− βj/2)

2 if σ ≥ (βj + 2− 2µ)/4 and βj − 2(1− µ) ≥ 0, (σ− 1 + µ)2 <
(σ − βj/2)

2 if σ ≥ (βj + 2− 2µ)/4 and βj − 2(1− µ) < 0, and (βj + 2− 2µ)/4 < 1/2 by
βj < 1 and µ > 1/2. Moreover, two zeros ρj = βj + iγj (j = 2, 3) of ξ(s) can be taken
as 0 < βj ≤ 1/2 and |t − γj/2| ≤ 11 by Lemma 9. Therefore, for such choice of zeros,
we have

(σ − κj)
2 + (t− γj/2)

2

(σ − κj)2 + (t± λ)2
<

(σ − κj)
2 + 121

(σ − κj)2 + (t± λ)2
and

1

2
≤ 1− βj ,
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Here, ((σ− κj)
2 + 121)/((σ− κj)

2 + (t± λ)2) are increasing functions of σ if σ > κ and
|t± λ| > 11. Note that κj < 1/2 by βj < 1 and µ > 1/2. In particular,

(σ − κj)
2 + 121

(σ − κj)2 + (t± λ)2
≤ (σ3 − κj)

2 + 121

(σ3 − κj)2 + (t± λ)2

if 1/2 < σ ≤ σ3 and |t± λ| ≥ 11.
Hence, if we take T3 ≥ 11 so that (2µ−1)((σ3−κj)

2+121)/((σ3−κj)
2+(t±λ)2) < 1/2

holds for any |t| ≥ T3, we obtain (2.8) for the case µ = ν.
Next, we deal with the case µ ̸= ν. In this case, it must be λ = 0. We have∣∣∣∣ s− µ− iλ

1− s− µ− iλ

s− ν + iλ

1− s− ν + iλ

∣∣∣∣2
=

(
1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + t2

)(
1− (2σ − 1)(2ν − 1)

(σ − 1 + ν)2 + t2

)
.

On the other hand, we have∣∣∣∣2s− 1− (1− ρ̄2)

2s− ρ2

2s− 1− (1− ρ̄3)

2s− ρ3

∣∣∣∣2
=

(
1− 4(2σ − 1)(1− β2)

(2σ − β2)2 + (2t− γ2)2

)(
1− 4(2σ − 1)(1− β3)

(2σ − β3)2 + (2t− γ3)2

)
.

Therefore, to prove the second inequality (2.8), it is sufficient to show

1− 4(2σ − 1)(1− β2)

(2σ − β2)2 + (2t− γ2)2
< 1− (2σ − 1)(2µ− 1)

(σ − 1 + µ)2 + t2

and

1− 4(2σ − 1)(1− β3)

(2σ − β3)2 + (2t− γ3)2
< 1− (2σ − 1)(2ν − 1)

(σ − 1 + ν)2 + t2
,

where s = σ + it, ρ2 = β2 + iγ2 and ρ3 = β3 + iγ3. These inequalities are equivalent to

(2µ− 1)
(σ − β2/2)

2 + (t− γ2/2)
2

(σ − 1 + µ)2 + t2
< 1− β2

and

(2ν − 1)
(σ − β3/2)

2 + (t− γ3/2)
2

(σ − 1 + ν)2 + t2
< 1− β3

when σ > 1/2. On the right-hand side, we have

(σ − β2/2)
2 + (t− γ2/2)

2

(σ − 1 + µ)2 + t2
≤ (σ − κ2)

2 + (t− γ2/2)
2

(σ − κ2)2 + t2
,

and
(σ − β3/2)

2 + (t− γ3/2)
2

(σ − 1 + ν)2 + t2
≤ (σ − κ3)

2 + (t− γ3/2)
2

(σ − κ3)2 + t2
,

for σ > 1/2, where κ2 = 1− µ if β2 − 2(1− µ) ≥ 0 and κ2 = β2/2 if β2 − 2(1− µ) < 0;
κ3 = 1− ν if β3 − 2(1− ν) ≥ 0 and κ3 = β3/2 if β3 − 2(1− ν) < 0 by a reason similar
to the case µ = ν. Moreover, two zeros ρj = βj + iγj (j = 2, 3) of ξ(s) can be taken as
0 < βj ≤ 1/2 and |t − γj/2| ≤ 11 by Lemma 9. Therefore, for such choice of zeros, we
have

(σ − κj)
2 + (t− γj/2)

2

(σ − κj)2 + t2
<

(σ − κj)
2 + 121

(σ − κj)2 + t2
and

1

2
≤ 1− βj (j = 2, 3).

Here, ((σ−κj)
2+121)/((σ−κj)

2+t2) are increasing functions of σ if σ > κ and |t| > 11.
Note that κj < 1/2 by βj < 1 and µ, ν > 1/2. In particular,

(σ − κj)
2 + 121

(σ − κj)2 + t2
≤ (σ3 − κj)

2 + 121

(σ3 − κj)2 + t2
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if 1/2 < σ ≤ σ3 and |t| ≥ 11.
Hence, if we take T3 ≥ 11 so that (2µ− 1)((σ3 − κ2)

2 + 121)/((σ3 − κ2)
2 + t2) < 1/2

and (2ν − 1)((σ3 − κ3)
2 + 121)/((σ3 − κ3)

2 + t2) < 1/2 hold for any |t| ≥ T3, we obtain
(2.8) for the case µ ̸= ν. Now we complete the proof. □
Conclusion: By Lemma 10 and 11, we find that off-line zeros of H∗(y; s) must be in
the region

D3 = {s : ℜ(s) ̸= 1/2, 1− σ3 ≤ ℜ(s) ≤ σ3, |ℑ(s)| ≤ T3},
where σ3 and T3 are computable numbers independent of y ≥ 1. The numbers σ3 and
T3 are determined by ξ(s), µ+ iλ and ν − iλ.
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