AN ADDITIONAL WRITING ON LAGARIAS-SUZUKI (2006)

MASATOSHI SUZUKI

This is a note on the zeros of functions

H(y;s) = p(s)¢"(25)y° +p(L — )" (2 — 2s)y' (0.1)
which was mentioned in (24) of Lagarias—Suzuki [4].

1. A BASIC FACT

Let s = o+it (i = v/—1, 0,t € R) be a complex variable. Let ¢*(s) = 7~%/2T'(s/2)((s)
and &(s) = 3s(s — 1)¢*(s) and let p(s) be a nonzero polynomial with real coefficients.

In order to study the zeros of (0.1), we introduce the entire function
H(y;s) : = (25)(25 — 1)(2s — 2)H(y; s)

= 2(s — 1)p(s) £(25)y° + 25 p(1 — 5) £(2 — 28)y"~*.
At first, we show the following matter.

Theorem 1. Let H*(y; s) be as above. Suppose that y > 1 and p(s) has N many zeros
counted with multiplicity in the right half-plane R(s) > 1/2. Then H*(y; s) has at most
N + 1 many zeros in the right half-plane R(s) > 1/2 counting with multiplicity, and the
same thing holds in the left half-plane R(s) < 1/2.

The trivial functional equation H(y;s) = H(y;1 — s) implies
H(y; 1 —s) = —H"(y; ).

Therefore, it suffices to study the zeros of H*(y;s) in the right half-plane R(s) > 1/2.
In what follows, we suppose that o = R(s) > 1/2.

A key gradient of the proof of Theorem 1 is the following fact.

Proposition 1. Let W(z) be an entire function. Suppose that it has a product formula
o0
W(z) = H(z)e® [T(1 = 2/A)(1 + 2/X),
n=1
where H(z) is a nonzero polynomial having N many zeros in the lower half-plane count-
ing with multiplicity, I(\,) > 0 (n = 1,2,3,--- ) and the product converges uniformly
in any compact subset of C. In addition, suppose that « is real or a = i’ for some

positive real number . Then W (z) + W (z) and W(z) — W(2) have at most N pair of
conjugate complex zeros counting with multiplicity.

Proof. If « is real, the proposition is Proposition 3.1 of [2]. To prove the case a = ia/
for some positive real o/, we recall the result in [1, p. 215]: Let U(z) and V(z) be real
polynomials. Assume that U # 0 and that W(z) = U(z) + iV (z) has exactly n zeros
counted with multiplicity in the lower half-plane. Then U(z) can have at most n pairs
of conjugate complex zeros counted with multiplicity.

We define the polynomials wy,(z) (n=1,2,---) by

wn(z) = H(z) <1 + wf) [T =2/ +2/3).

k=1

Then each wy,(z) has at most N many zeros in the lower half-plane, since o’ > 0. By
the above fact in [1, p. 215], wy,(2) + wy,(2) has at most N pairs of conjugate complex
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zeros. Since wy,(2z) + wy(Z) converges uniformly to W (z) + W (Zz) in any compact subset
of C, W(z)+ W (Zz) has at most N pairs of conjugate complex zeros. Similarly, we prove
the proposition for W(z) — W (z). O

Proof of Theorem 1. In order to apply Proposition 1 to H*(y, s), we define

Wpy(2) =2(s — 1)p(s) £(2s)y® with s = % +iz.

Then, we have

Wyy(2) = —2 (; - ) » (; n ) £+ 2iz)yd
and
Wou(2) = =2 <; * iz) P <; B iz) E(1— 2iz)y3 7 = —2sp(1 — 5) £(2 — 28)y' >,

since p(s) has real coefficients. Hence, we obtain
—_— 1
H*(y,s) = Wyy(2) = Wyy(2) with s= 3 +iz.

Here (s—1)p(s) (s = 1/2+1z) is a polynomial of z having N + 1 many zeros in the lower
half-plane 3(z) < 0 counting with multiplicity. Therefore, by Proposition 1, Theorem 1
will be established if the following lemma is proved, since logy > 0 if y > 1. g

Lemma 1. We have

E+2iz)= ] @ -2/0)0+2/N),
R(A)>0
where

v 1-5
A= 2y F
5 T

for a zero p = B+ iy of £(s). In particular, any A is in the upper-half plane I(z) > 0.

Proof. Put F(z) = £(1+ 2iz). Then F(z) is an entire function of order one. A complex
number A is a zeros of F'(z) if and only if 1 + 2i\ = p for some zero p = 8 + iy of £(s).
Therefore, if A is a zero of F'(z), —\ is also a zero of F(z), since if

v 1-5
A= 2y F
5 T

for some zero p = 4 iy of £(s),

- _

v 1-5
5 T

Hence we have the factorization
F(z)=eP* [ (1 =2/M)0+2/N)exp (2(1/A—1/X)).
R(A)>0

We find that
> A/A=1/%
R(AN)>0
converges absolutely by a standard way. Thus
F(z)=eP* T (1—2/01+2/X)
R(N)>0

for

B=B'+ Y (1/A-1/x).

R(A)>0



Finally, we show B = 0. We have
F(z) =¢(-2iz) =1+ 2i(—2+1/2)) = F(—z +i/2).
This implies

F’ .
f(O) = —f(2/2)~
On the left-hand side, we have
F’ 1 1
—(0)=18B ——+=.
7(0) + > < T+ A)
R(N)>0

On the right-hand side, we have

F' 1 1
S (i/2) =B - > (—A + X)
R(N)>0
by

i i v 1-p vy, . 1-(1-5)
SN2 1 S AT S S
2 2 2 '3 5 T

and the symmetry between 3 and 1—/ for the zeros of £(s). Hence B = 0 by (F'/F)(0)
—(F'/F)(i/2).

o

2. NARROWING REGIONS FOR OFF-LINE ZEROS
Theorem 1 does not mention where off-line zeros exist. In this part, we study a region
where off-line zeros of (0.1) exists by restricting the following three cases
(i) p(s) has no zeros in R(s) > 1/2,
(ii) p(s) has one zero in R(s) > 1/2,
(iii) p(s) has two zeros in R(s) > 1/2.
We can deal with general cases in a similar way by generalizing Lemma 5 and 9 below.

2.1. Case (i). We have

* s-p(l—s) €2—-2s) .,
H*(y; s :2s—lps§25y5(1—|— . . 5. 2.1
Because the factor (s — 1)p(s)(*(2s)y® has no zeros in the right-half plane R(s) > 1/2
except for the simple zero s = 1, we study the zeros of
pi=s) s £&2-29)

. . 28 s .
t p(S) s—1 6(23) Y 1+ Rp,y( )’ (2 2)

say.

Lemma 2. There exists computable o1 > 1/2 which does not depend on p(s) andy > 1
such that 1 + Ry, ,(s) has no zeros (and poles) in the right-half plane R(s) > oy.

Proof. Put
s &(2-2s) s &(2s—-1)
fi(s) = =9 £(2s)  s—1 £(2s)

We have

[Ri(s)] = ﬁ‘F(SF_(Sl)/2)‘ ‘c(i

Using the Stirling formula

r(z) = \/?(2)71 +0(47) (2] 2 1, Jarg 2| < 7o),

‘F(s —1/2)
I'(s)

s—1)
(2s) ‘

we have
= os7)
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as |s| = 400 and R(s) — +oo. On the other hand,
¢(2s—1) 1 gi) 1
-1 il
-y io(g)
for R(s) > 1, where ¢(n) is Euler’s totient function. Hence
|[Ri(s)| = O(|s|7'/?)

as |s| — +oo0 and R(s) — +o0.
On the other hand, by

1—8—(M+i)\>2_<1_U_u)2+(t_/\)2_ - (20_1)(1_2M)
S—(,U-i-i)\) B (U_M)2+(t—/\)2 =1 (U—M)2+(t—)\)2§1’ (2.3)
we have
p(l )
‘p@> =1 (2.4
for R(s) > 1/2, and
0< |y ™=y <1 (2.5)

for ¥(s) > 1/2 and y > 1.
Therefore, there exists computable o1 > 1/2 such that |R,,(s)| < 1 for any s with
R(s) > o1. O

Lemma 3. Let o1 be the number of Lemma 2. There exists computable T7 > 0 which
does not depend on p(s) and y > 1 such that 1 + Ry, ,(s) has no zeros (and poles) in the
region 1/2 < R(s) < o1 with |3(s)| > 1.

Proof. For a zero p = 8 + iy of £(s), we have
2

2s—1—(1-p)
25 —p

_4Re-1)(1-5)
(20 — B2+ (2t — )2

<1,

since 5 < 1. Thus,
2-p  €@s—1)| |&@s—1)/(2s—1-(1—p)
2s—1—(1=p) &(2s) “ £(2s)/(2s = p)
for any zero p of £(s) (Note that if p is a zero of £(s), 1 — p is also a zeros of £(s) by
)-

functional equations &£(s) = £(1 —s) and &(s) = £(5)). Therefore, by (2.5) and (2.4), the
proof of Lemma 3 is reduced to Lemma 4 below. O

<1

»

Lemma 4. Let o1 be the number of Lemma 2. There exists computable T7 > 0 which
does not depend on p(s) and y > 1 such that there exists at least one zero p of £(s)
satisfying
s 2s—1—(1-p)
s—1 25 —p

<1 (2.6)
if1/2 <o<oy andt>"1T;.
We prove Lemma 4 by using the following lemma:

Lemma 5 (Lemma 5 of [5], Lemma 3.5 of [3]). For any real |t| > 14 there exists a zero
= B+ iy of £(s) such that 0 < < 1/2 and |t — | < 5.

Proof of Lemma 4. Inequality (2.6) is equivalent to

420 -1)(1-8)  |2s—1—-(1—p)
(20— B2+ (2t —7)% 2s—p

where s = o + it and p = 8 + iy. This inequality is equivalent to

. 2 . 2
(BRI TP

20 —1

2< s 12
o2 42’

S




when o > 1/2. On the right-hand side, we have
(0 =B/2° +(t=7/2)* _o®+(t—/2)
<
o? + 12 - o4t
since 02 > (0 — B/2)% if 0 > B/4 (0 < B < 1). Moreover, if |t| > 7, there exists a zero
p =B +ivyof {(s) such that 0 < 8 < 1/2 and |t — v/2| < 5/2 by Lemma 5. Therefore,
for such a zero, we have

2 2 2
o+ (t—7/2) o +9 1
< d =<1-5.
o2+ 1 e md gsi=s
Here, (02 +9)/(0? + t?) is an increasing function of o if |t| > 3. In particular,
o?+9 - o?+9
o2 +12 " of + 12
if 1/2 < 0 <oy and |t| > 7. Hence, if we take T} > 7 so that (o7 +9)/(03 +12) < 1/2
holds for any |t| > T}, we obtain (2.6). O

I

Conclusion: By Lemma 2 and 3, we find that off-line zeros of H*(y;s) must be in the
region

Dy ={s: R(s)#1/2, 1 —o1 < R(s) <01, |S(s)| <T1},
where o1 and T} are computable numbers independent of p(s) and y > 1. The numbers
o1 and T; are determined by &(s).

2.2. Case (ii). Let s = p be the zero of p(s) in the right-half planeR(s) > 1/2. The
zero s = p should be real, since p(s) has real coefficients. In this case, the factor
(s — 1)p(s)C*(2s)y® in (2.1) has no zeros in the right-half plane R(s) > 1/2 except for
the double zero s = 1 (if © = 1) or two simple zeros s =1 and s = p (if p # 1). As in
the case (i), we study the zeros of 1 + R, ,(s) in (2.2).

Lemma 6. There exists computable oo > 1/2 which does not depend ony > 1 such that
14 Ry, (s) has no zeros (and poles) in the right-half plane R(s) > os.

Proof. We have
p(l—s) s &§(2-2s) .o -
. . 12 :O(\s‘ 1/2)
p(s) s—1  §(2s)
as |s| — oo and R(s) — oo in a way similar to the proof of Lemma 2, where the implied

constant does not depend on y > 1 but may depend on p(s). The above estimate implies
Lemma 6. Il

Lemma 7. Let oo be the number of Lemma 6. There exists computable To > 0 which
does not depend on y > 1 such that 1 + R, ,(s) has no zeros (and poles) in the region
1/2 < R(s) < o2 and |3(s)| > T».

Proof. For a zero p = 8 + iy of £(s), we have

2s—1—(1—p)|* 4(20 — 1)(1 - B)
=1— <1,
25 —p (20 — B)? + (2t — 7)?
since 5 < 1. Thus,
25 —p 2s —p/ £(2s—1)

1
T P e b
for any zeros p, p’ of £(s). On the other hand,

2
<1

s—p  p(l—s)
l—s—p  p(s)
by (2.3). Therefore, the proof of Lemma 7 is reduced to Lemma 8 below. O
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Lemma 8. Let oo be the number of Lemma 6. There exists computable To > 0 which
does not depend on y > 1 such that there exists at least two distinct zeros p and p' of

&(s) satisfying
s 2s—1—(1-p)
s—1 2s —p
if 1/2 < R(s) < o2 and [S(s)| > Ts.

l—s—pu 2s—1—(1-7p)
sS— U 2s — pf

‘ <1 and ‘ <1 (2.7)

We prove Lemma 8 by using the following lemma:

Lemma 9 (Lemma 9 of [6]). For any real value of t there exist at least three distinct
zeros p = 8+ iy of £(s) such that 0 < 5 < 1/2 and |t — | < 22.

Proof of Lemma 8. The first inequality of (2.7) is equivalent to
420 -1)(1-p)  [2s—1—(1—p)|?
(20 - B)2+ (2t —7)* 25— p
where s = o + it and p = § + i7y. This inequality is equivalent to
(0 —B/2)° + (t —~/2)
o2 + $+2

when o > 1/2. On the right-hand side, we have

(0= B/2° +(t—=7/2)* _o®+(t—~/2)
<

g2 + $+2 - o2 + $2

since 02 > (0 — 3/2)% if ¢ > B/4 (0 < B < 1). Moreover, there exists a zero p = (3 + iy

of £(s) such that 0 < 8 < 1/2 and |t — /2| < 11 by Lemma 9. Therefore, for such a
zero, we have

s—1

2
20— 1
12—
s

<1l-p

)

o2+ (t—v/2)? o?+121 d Lo 8
1 - — O.
o2 + 12 o2 + 12 2~

Here, (02 4 121) /(02 + t2) is an increasing function of o if [t| > 11. In particular,
o? +121 _ of +121
o24+12 T ol4t2

if 1/2 <o <oy and [t| > 11.
The second inequality of (2.7) is equivalent to
120 -1)1-F)  |2s—1—(1—7)
(20 — B2+ (2t —9)2 25 — p/
where s = o + it and p’ = 3’ + i7/. This inequality is equivalent to
(0 —p'/2)* + (t —+'/2)?
(0 =14 p)?>+1?
when o > 1/2. On the right-hand side, we have
(0= B/2°+(t—-~/2? _(0-r)+(—7/2)?
(0 =1+ p)2+12 - (0 — k)2 + 12 ’
foro >1/2, where k =1 —pif f/—=2(1—p) > 0and k = /2 if ' —2(1 — p) < 0, since
(c—14+p)?>(—-p/2)2ifc> B +2—2u)/dand B/ —2(1 —pu) >0, (6 —1+p)? <
(c—pB/2)%if o> (B +2—2u)/4and ' —2(1 —p) <0, and (B +2 —2u)/4 < 1/2 by
B <1 and u > 1/2. Moreover, a zero p' = ' +iv' of £(s) can be taken as 0 < ' < 1/2
and |t — /2| < 11 by Lemma 9. Therefore, for such a zero, we have

(c—r)?2+({t—9/2)? (0—r)2+121 and 1
(0 —K)2+t2 (0 — k)2 +t2 2

L (o-1Ep-1)
(0 =1+ p)?+1t2

S—H
l—-s—pu

2 ‘

(2p—1) <1-p

<1-§.
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Here, ((0 —k)?+121)/((0 — k)? +12) is an increasing function of o if ¢ > & and [¢| > 11.
Note that k < 1/2 by 8/ < 1 and v > 1/2. In particular,

(0 — k)2 +121 - (02 — k)% + 121
(c—rK)Z24+t2 = (02— kK)2+1t2

if1/2 <o <oy and |t| > 11.
Hence, if we take Tb > 11 so that (2u — 1)((o2 — )% + 121)/((02 — k)% + %) < 1/2
holds for any [t| > T», we obtain (2.7). O

Conclusion: By Lemma 6 and 7, we find that off-line zeros of H*(y; s) must be in the
region

D2 = {S . §R(S) 75 1/2, 1-— (%] S §R(S) S g2, |%(S)‘ S TQ},

where oo and T are computable numbers independent of y > 1. The numbers o and
T are determined by &(s) and p.

2.3. Case (iii). Let p+iX and v — i\ be two zeros of p(s) in the right-half planeR(s) >
1/2. They should satisfy (@ — v)A = 0, since p(s) has real coefficients. In this case,
the factor (s — 1)p(s)(*(2s)y® in (2.1) has no zeros in the right-half plane R(s) > 1/2
except for the triple zeros s =1 (u = v =1, A = 0); or the simple zero s = 1 and the
double zero s = p (1/2 < p =v € R, p # 1); or three simple zeros s = 1, s = pu + i\
and s = p—iX (1/2 < p=v € R, XA # 0). As in the case (i), we study the zeros of
1+ R, y(s) in (2.2).

Lemma 10. There exists computable o3 > 1/2 which does not depend on y > 1 such
that 1 4+ Ry, ,(s) has no zeros (and poles) in the right-half plane R(s) > o3.

Proof. We have

p(l—s)‘ s .5(2—23)' 1-2s _ (||~ 1/2
o) s—1 @s v oK)

as |s| = oo and R(s) — oo in a way similar to the proof of Lemma 2, where the implied
constant does not depend on y > 1 but may depend on p(s). The above estimate implies
Lemma 10. (|

Lemma 11. Let o3 be the number of Lemma 10. There exists computable T3 > 0 which
does not depend on y > 1 such that 1 + Ry, ,(s) has no zeros (and poles) in the region
1/2 < R(s) < 03 and |(s)| > T5.

Proof. For a zero p = 8 + iy of £(s), we have

25—1—(1-p)° 4(20 —1)(1 = B)

25— p I e PR i

since # < 1. Thus,

25 — p1 25 — p2 25 — p3 £(2s—1)
2s—1—-(1—-p1)2s—1—(1—p2)2s—1—(1—p3) &(29)

for any zeros p1, p2, ps of £(s). On the other hand,

<

2

‘ s—(p+id)  s—(w—i\) p(l-s)
l—s—(u+iN) 1—s—(v—1i\) p(s)

by (2.3). Therefore, the proof of Lemma 11 is reduced to Lemma 12 below. O
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Lemma 12. Let o3 be the number of Lemma 10. There exists computable T5 > 0 which
does not depend on y > 1 such that there exists at least three distinct zeros p1, pa, ps of

&(s) satisfying

2s—1—(1—p
s 2s (1—p1) -1,
s—1 25 — p1 (2.8)
l—s—p—iXN 1—s—v+i\ 2s—1—(1—p2) 2s—1—(1—p3) <1 ’
S — p— 1A s— v+ 25 — po 25 — p3 ’

if 1/2 < R(s) < o3 and |3(s)| > T5.
We prove Lemma 12 by using Lemma 9 as in case (ii).

Proof of Lemma 12. The first inequality of (2.8) is proved as in the proof of Lemma 8.
First, we deal with the case u = v. In this case, we have

S— ph—1IA s—v+ix |?

l—s—p—iAl—s—v+il
:<1_ (20 = 1)(2u—1) )(1_ (20 = 1)(2u—1) )
(c—14+p)?+(t+A)? (c—14+p)?2+t—N2)
On the other hand, we have
2s—1—(1—=p2)2s—1—(1—p3)
25 — p2 25 — p3
:<1_ 420 —1)(1 - ) )(1_ 420 —1)(1 - By) )
(20 — B2)2 + (2t — 72)? (20 — B3)2 + (2t —3)2 )
Therefore, to prove the second inequality (2.8), it is sufficient to show

2

L A20-D(-8) _ o-1Eu-1)
(20 — B2)% + (2t — 72)? (c—=14+p?+(t+A)?
and
A D8y, Co-DEu-1)
(20 — f33)2 + (2t — 3)2 (0 —1+p)2+(t—N)?
where s = o + it, po = P2 + iy2 and p3 = B3 + iy3. These inequalities are equivalent to
(0 = B2/2)* + (t — 72/2)?
(2p—1) (G L1tp2t(Erae ° 1=5
and ) )
(2M_1)(U_63/2) +(t_73/2) <1-—§s

(c—=14+p)2+(t—N)>2
when o > 1/2. On the right-hand side, we have

(0= B2/2)% + (t =72/2)* _ (0= K2)* + (t = 72/2)?

(c—1+p2+t+N2 — (0—r2)2+(t+N)2

and

(0= B3/2)* + (t—73/2) _ (0 —K3)* + (t —73/2)°

(0 =1+ p)2+(t—N)? (0 —kK3g)2+(t—A)?2

for o > 1/2, where kj = 1—pif fj—2(1—p) > 0 and k; = (/2 if Bj —2(1—p) < 0, since
(c—1+p)?>(c—pBj/2)%ifoc>(Bj+2—2u)/4and Bj —2(1 —p) >0, (6 — 1+ p)? <
(07— 8;/2) it & > (; +2— 2p1)/4 and §; — 2(1— ) < 0, and (8 +2 — 2u)/4 < 1/2 by
Bj < 1 and p > 1/2. Moreover, two zeros p; = (; +i7v; (j = 2,3) of £(s) can be taken
as 0 < Bj < 1/2 and |t — v;/2| < 11 by Lemma 9. Therefore, for such choice of zeros,
we have

<

(0 = )" + (E=23/2)° (0= k)" +121 1 |
(J—JIij)2+(tiJ)\)2 < (a—nj)2]+(ti)\)2 and 551—@,
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Here, ((0 — k;)? +121)/((0 — k;)? + (t = A\)?) are increasing functions of o if 0 > k and
|t = A > 11. Note that k; < 1/2 by §; <1 and p > 1/2. In particular,

(0 —k;)? +121 o (03— k)% + 121
(0 —k;)2+(EE£N)? 7 (03— Kj)2+ (t£N)?
if 1/2 < 0 < o3 and [t £ A| > 11.
Hence, if we take T3 > 11 so that (2u—1)((03—r;)?+121)/((05—r;)*+(t£N)?) < 1/2
holds for any [t| > T3, we obtain (2.8) for the case u = v.

Next, we deal with the case p # v. In this case, it must be A = 0. We have
2

§— p—iA §s— V41X
‘1sui)\15V+i)\
_<1_(20—1)(2u—1)>(1_(20—1)(21/—1))
B (0 =14 p)?+12 (c—1+4v)?24+¢2)"

On the other hand, we have
2s—1—(1—=p2)2s—1—(1—p3)

25 — p2 25 — p3

:<1_ 420 —1)(1 = By) ><1_ 420 —1)(1 — Bs) >
(20 — B2)? + (2t — 72)? (20 — B3)2 + (2t —y3)% )

Therefore, to prove the second inequality (2.8), it is sufficient to show

2

L A2 -1)(1-p) [ 2o-1)2u-1)
(20 — B2)? + (2t — 12)? (0 —1+p)?+t
and
420 - 1)(1 - pBa) - (20 —1)(2v — 1)
(20 — 83)% + (2t — 73)? (0 —14v)2 4+’

where s = o + it, po = B2 + iy2 and p3 = B3 + i7y3. These inequalities are equivalent to

(0 — B2/2)% + (t — 72/2)?

= ) Ty 2

<1l-—p5

and
(0 = Bs/2)* + (t — 73/2)?
(c—1+4v)2+1¢2
when o > 1/2. On the right-hand side, we have
(0= B2/2)* + (t = 2/2)° _ (0= k)’ + (t = 12/2)°
(0 =1+ p)?+1t2 - (0 — K2)2 +t2

(2v —1) <1-p3

)

and

(0 = B3/2)* + (t —73/2)* _ (0 — K3)* + (t —73/2)?

(c—1+v)2+1¢2 (0 — Kk3)? + 2

for o > 1/2, where kg =1 — pif Bo —2(1 — ) > 0 and Ko = B2/2 if B2 — 2(1 — u) < 0;
kg3 =1—vif B3 —2(1 —v) >0 and k3 = B3/2 if 3 —2(1 — v) < 0 by a reason similar
to the case p = v. Moreover, two zeros p; = f5; +iv; (j = 2,3) of £(s) can be taken as
0 < B; <1/2and |t —~;/2| <11 by Lemma 9. Therefore, for such choice of zeros, we
have

<

)

(0 — k)2 +(t—7/2)?  (0—ky)?+121 1 .
d —<1-8; (j=2,3).
(0' - I{j)2 + ¢2 (0‘ — ’{j)2 + ¢2 an 9 = BJ (] 33)

Here, ((o—x;)2+121)/((0 —k;j)?+t?) are increasing functions of o if ¢ >  and [¢| > 11.
Note that x; < 1/2 by 8; <1 and p,v > 1/2. In particular,

(0 —rj)2+121 _ (03— Kj)% 4 121

(o0 — Kj)z +t2 — (o3 — Kj)2 + 2
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if 1/2 <o < o3 and [t| > 11.

Hence, if we take T3 > 11 so that (2u — 1)((03 — k2)? +121)/((03 — K2)? +t?) < 1/2
and (2v — 1)((o3 — k3)? +121)/((03 — K3)? +12) < 1/2 hold for any |t| > T3, we obtain
(2.8) for the case  # v. Now we complete the proof. O

Conclusion: By Lemma 10 and 11, we find that off-line zeros of H*(y;s) must be in
the region

Ds={s: R(s) #1/2, 1 —o3 < R(s) < 03, |S(s)| < T3},
where o3 and T3 are computable numbers independent of y > 1. The numbers o3 and
T3 are determined by &(s), u+ @A and v — i\
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