CURVATURE ESTIMATES FOR SUBMANIFOLDS WITH PRESCRIBED GAUSS IMAGE AND MEAN CURVATURE

Y. L. XIN

ABSTRACT

We study that the n-graph defined by a smooth map $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, m \geq 2$, in \mathbb{R}^{m+n} of the prescribed mean curvature and the Gauss image. Under the condition

$$\Delta_f = \left[\det \left(\delta_{ij} + \sum_{\alpha} \frac{\partial f^{\alpha}}{\partial x^i} \frac{\partial f^{\alpha}}{\partial x^j} \right) \right]^{\frac{1}{2}} < 2,$$

we derive the interior curvature estimates

$$\sup_{D_R(x)}|B|^2 \le \frac{C}{R^2}$$

when $2 \le n \le 5$ with constant C depending on the given geometric data. If there is no dimension limitation we obtain

$$\sup_{D_R(x)} |B|^2 \le CR^{-a} \sup_{D_{2R}(x)} (2 - \Delta_f)^{-\left(\frac{3}{2} + \frac{1}{s}\right)}, \qquad s = \min(m, n)$$

with a < 1. If the image under the Gauss map is contained in a geodesic ball of the radius $\frac{\sqrt{2}}{4}\pi$ in $\mathbf{G}_{n,m}$ we also derive corresponding estimates.

INSTITUTE OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI