DIRICHLET SERIES CONSTRUCTED FROM PERIODS OF AUTOMORPHIC FORMS

権 寧魯 九州大学大学院数理学研究院 (YASURO GON KYUSHU UNIV.)

We consider certain Dirichlet series constructed from periods of automorphic forms. Let k be a fixed natural number, Γ be a co-finite torsion-free discrete subgroup of $PSL(2,\mathbb{R})$. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2,\mathbb{R})$, put $Q_{\gamma}(z) = cz^2 + (d-a)z - b$.

Definition 1 (Periods of automorphic forms). Let g be a weight 4k holomorphic cusp form for Γ and γ be a hyperbolic element in Γ . The period integral of g over the closed geodesic associated to γ is defined by

$$\alpha_{2k}(\gamma, g) = \int_{z_0}^{\gamma z_0} Q_{\gamma}(z)^{2k-1} g(z) \, dz.$$
(1)

This integral does not depend on the choice on the point $z_0 \in H$ and the path from z_0 and γz_0 .

It is known that these periods are important to arithmetic theory of automorphic forms. Let $Prim(\Gamma)$ be the set of primitive hyperbolic conjugacy classes of Γ . For a hyperbolic element $\gamma \in \Gamma$, put $\ell(\gamma)$ be the length of the geodesic associated to γ and $N(\gamma) = \exp(\ell(\gamma))$.

Definition 2 (Dirichlet series $\Xi_{\Gamma}(s;g)$). For $g \in S_{4k}(\Gamma)$ and $s \in \mathbb{C}$ with $\operatorname{Re} s > 1$, define

$$\Xi_{\Gamma}(s;g) = \sum_{\gamma \in \operatorname{Prim}(\Gamma)} \sum_{m=1}^{\infty} \beta_{2k}(\gamma,g) N(\gamma)^{-ms}$$
$$= \sum_{\gamma \in \operatorname{Prim}(\Gamma)} \beta_{2k}(\gamma,g) \frac{N(\gamma)^{-s}}{1 - N(\gamma)^{-s}}$$
(2)

with

$$\beta_{2k}(\gamma, g) = \frac{\alpha_{2k}(\gamma, g)}{2^{6k-3} \sinh^{2k-1}(\ell(\gamma)/2)}.$$
(3)

This series is absolutely convergent for $\operatorname{Re} s > 1$.

Our concern is to investigate analytic properties of $\Xi_{\Gamma}(s;g)$.

Theorem 3. Let Γ be a co-compact torsion-free discrete subgroup of $PSL(2, \mathbb{R})$ and $g \in S_{4k}(\Gamma)$. The function $\Xi_{\Gamma}(s; g)$, defined for $\operatorname{Re} s > 1$, has the analytic continuation as a meromorphic function on the whole complex plane. $\Xi_{\Gamma}(s; g)$ has simple poles located at $s = \frac{1}{2} - l \pm ir_n$, $(l \ge 0, n \ge 1)$. There are no poles other than described as above. Here $\{1/4 + r_n^2\}$ are eigenvalues of the Laplacian acting on $L^2(\Gamma \setminus H)$. $\Xi_{\Gamma}(s; g)$ satisfy the functional equation

$$\Xi_{\Gamma}(-s;g) = \Xi_{\Gamma}(s;g). \tag{4}$$

Date: May 30, 2005 at 東工大談話会.