Eigenvalues of elliptic operators and geometric applications

Alexander Grigor'yan

Abstract

The purpose of this talk is to present a certain method of obtaining upper estimates of eigenvalues of Schrödinger type operators on Riemannian manifolds, which was introduced in the paper

Grigor'yan A., Netrusov Yu., Yau S.-T. *Eigenvalues of elliptic operators and geometric applications*, Surveys in Differential Geometry **IX** (2004), pp.147-218.

The core of the method is the construction that allows to choose a given number of disjoint sets on a manifold such that one can control simultaneously their volumes from below and their capacities from above. The main technical tool for that is the following theorem.

Theorem 1 Let (X, d) be a metric space satisfying the following covering property: there exists a constant N such that any metric ball of radius r in X can be covered by at most N balls of radii r/2. Let all metric balls in X be precompact sets, and let ν be a non-atomic Radon measure on X. Then, for any positive integer k, there exists a sequence $\{A_i\}_{i=1}^k$ of k annuli in X such that the annuli $\{2A_i\}_{i=1}^k$ are disjoint and, for any i = 1, 2, ..., k,

$$\nu\left(A_{i}\right) \geq c\frac{\nu\left(X\right)}{k},$$

where c = c(N) > 0.

The following results are obtained using this theorem.

Theorem 2 Let X be a complete Riemannian manifold and μ be its Riemannian measure. Assume that, for some constants N and M, the following is true:

- (i) any geodesic ball B(x,r) in X can be covered by at most N balls of radii r/2;
- (ii) for all $x \in X$ and r > 0, we have $\mu(B(x, r)) \leq Mr^2$.

Then, for any $q \in C(X)$, the number of negative eigenvalues of the operator $-\Delta - q$ admits the estimate

$$Neg\left(-\Delta - q\right) \ge c \int_X \left(\delta q_+ - q_-\right) d\mu,\tag{1}$$

where $\delta = \delta(N) \in (0,1)$, and c = c(N,M) > 0.

For example, this result applies for Schrödinger operators in \mathbb{R}^2 . However, in \mathbb{R}^n , n > 2, the estimate (1) fails. It is conjectured that (1) holds with $\delta = 1$ so that $(\delta q_+ - q_-)$ can be replaced by q.

Theorem 3 Let X be a compact oriented Riemann surface of genus g, equipped with some Riemannian metric. Then, for any $q \in C(X)$, and, for any k = 1, 2, ...,

$$\lambda_k(-\Delta - q) \le \frac{C(g+1)(k-1) - \int_X (\delta q_+ - q_-) d\mu}{\sqrt{\delta}\mu(X)}.$$

where C > 0 and $0 < \delta < 1$ are absolute constants.

Theorem 4 For any connected complete oriented minimal surface X embedded in \mathbb{R}^3 , we have

$$\operatorname{ind}(X) \ge c\sqrt{K_{total}(X)},$$

where ind (X) is the stability index of X, $K_{total}(X)$ is the absolute value of the total curvature of X, and c > 0 is an absolute constant.