講義名 幾何学特論E1(Advanced topics in Geometry E1) 科目コード:MTH.B505
開講学期 1Q 単位数 1--0--0
担当 遠藤 久顕 教授:本館2階204号室(内線2208)
【講義の概要とねらい】
本講義の主題は、4次元多様体の交叉形式に関する基本的な諸概念である。まず、対称双線型形式、階数、符号数、パリティー、直和、特性元、ユニモジュラー性などの交叉形式に関連する基本的な概念を解説する。次に、複素射影平面、2次元球面の直積、K3曲面を含む、単連結な4次元多様体の具体例を提示する。最後に、単連結な4次元多様体のホモトピー型が交叉形式で決まるというWhiteheadの定理を証明する。本講義は第2クォーターに開講される「幾何学特論F1」に接続する。
【到達目標】
・対称双線型形式の様々な性質を正確に理解すること
・基本的な4次元多様体の交叉形式が決定できるようになること
・Whiteheadの定理の証明の流れを理解すること
【キーワード】
4次元多様体、交叉形式、Whiteheadの定理
【学生が身につける力】
専門力
【授業の進め方】
通常の講義形式による講義
【授業計画・課題】
第1回 | 4次元多様体の交叉形式 |
第2回 | 対称双線型形式とその分類(1) |
第3回 | 対称双線型形式とその分類(2) |
第4回 | 4次元多様体の基本定理と具体例 |
第5回 | K3曲面の不変量 |
第6回 | Whiteheadの定理(1) |
第7回 | Whiteheadの定理(2) |
課題は講義中に指示する
【授業時間外学修(予習・復習等)】
学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。
【教科書】
特になし
【参考書、講義資料等】
R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus, American Mathematical Society, 1999.
A. Scorpan, The Wild World of 4-Manifolds, American Mathematical Society, 2005.
R. C. Kirby, The Topology of 4-Manifolds, Lecture Notes in Mathematics, Vol. 1374, Springer, 1989.
松本幸夫, 4次元のトポロジー(新版), 日本評論社, 2016.
【成績評価の基準及び方法】
レポート課題(100%).
【関連する科目】
MTH.B506 : 幾何学特論F1
【履修の条件(知識・技能・履修科目等)】
多様体やホモロジー群などの位相幾何学の基本的な知識を仮定する。