講義名 代数学特論D(Advanced topics in Algebra D) (Presented in English)
開講学期 4Q 単位数 1--0--0
担当 KELLY SHANE ANDREW 准教授:本館3階334C号室(内線3392)
【講義の概要とねらい】
Motivated by Weil's beautiful conjectures on zeta functions counting points
on varieties over finite fields, étale cohomology is a theory generalising
singular cohomology of complex algebraic varieties. In the first half we
give an introduction to the classical theory of étale cohomology. In the
second half, we will discuss Bhatt-Scholze's pro-étale topology. For more
information see: http://www.math.titech.ac.jp/~shanekelly/EtaleCohomology2018-19WS.html
【到達目標】
(1) Obtain overall knowledge on basics in étale cohomology
(2) Understand the relationship between étale topology and Galois theory
(3) Attain understanding of possible applications of étale topology
【キーワード】
Étale cohomology, homological algebra, Galois theory
【学生が身につける力】
専門力
【授業の進め方】
Standard lecture course
【授業計画・課題】
第1回 | The pro-étale topology |
第2回 | Commutative algebra II |
第3回 | Homological algebra II |
第4回 | Topology II |
第5回 | Functoriality II |
第6回 | Functoriality III |
第7回 | Functoriality IV |
第8回 | Fundamental group II |