講義名 幾何学特論E(Advanced topics in Geometry E) 科目コード:MTH.B501
開講学期 1Q 単位数 1--0--0
担当 山田 光太郎 教授:本館2階231号室(内線3389)
【講義の概要とねらい】
曲面論の復習の後,曲面論の基本定理に証明を与える.その応用として,負定曲率曲面とサイン・ゴルドン方程式の関係,ヒルベルトの定理,ベックルント変換を紹介する.
曲面の一般的な性質ではなく,特定の性質をもつ曲面のクラスの理論を通して,基本方程式と適切な座標系との関係を学び,微分幾何学の問題にアプローチする手法の具体例を与える.
【到達目標】
微分幾何学入門コース(例えば MTH.B211 幾何学概論第一/ MTH.B212 幾何学概論I第二)の続編として, 曲面論の基本定理とその応用として,負定曲率曲面の理論を紹介する.本講義は直後に開講される MTH.B502 幾何学特論Fに続くものである.
とくに次の体験をすることが目標である:
(1) 微分幾何学のある種の問題を偏微分方程式の問題に書き換える方法の具体例を知る.
(2) いわゆる可積分系とよばれる偏微分方程式と微分幾何学との関係の具体例を知る.
【キーワード】
曲面論の基本定理,ガウス・コダッチ方程式,負定曲率曲面,サイン・ゴルドン方程式,ベックルンド変換.
【学生が身につける力】
専門力
【授業の進め方】
標準的な講義.各回宿題を課す.
【授業計画・課題】
第1回 | 曲面論の復習 |
第2回 | ガウス・ワインガルテンの公式 |
第3回 | ガウス方程式とコダッチ方程式 |
第4回 | 曲面論の基本定理 |
第5回 | 負定曲率曲面 (1) 漸近チェビシェフ網 |
第6回 | 負定曲率曲面 (2) サイン・ゴルドン方程式 |
第7回 | 負定曲率曲面 (3) ヒルベルトの定理 |
第8回 | 負定曲率曲面 (4) ベックルント変換 |
課題は講義中に指示する
【教科書】
指定しない
【参考書、講義資料等】
梅原雅顕・山田光太郎「曲線と曲面(改訂版)」裳華房
C. Rogers and W. K. Schief, Bäcklund and Darboux transformations, Cambridge Texts in Applied Mathematics, 2002
講義資料は講義中に配布し,OCW/OCW-i に公開する.
【成績評価の基準及び方法】
各回の宿題により評価を行う
【関連する科目】
MTH.B211 : 幾何学概論第一
MTH.B212 : 幾何学概論第二
MTH.B502 : 幾何学特論F
【履修の条件(知識・技能・履修科目等)】
MTH.B211 幾何学概論第一, MTH.B212 幾何学概論第二に相当する知識 (梅原・山田著「曲線と曲面」(改訂版) の§1から§10 程度の内容)を前提とする.
【連絡先(メール、電話番号)】
kotaro@math.titech.ac.jp
【オフィスアワー】
設定しない.
必要に応じて教室か電子メイルでコンタクトをとること.
【その他】
2016年度に大学院に入学した学生は、この科目を教職科目として使うことはできません。
本年度の履修登録に当たっては十分に注意をして下さい。