講義名 確率論(Probability Theory 科目コード:MTH.C361
開講学期 4Q  単位数 2--0--0
担当 桒田 和正 准教授: 本館3階334B号室(内線2204)



【講義の概要とねらい】

本講義では,測度論的確率論の諸概念を導入し,その枠組みで基本的な極限定理を取り扱う.まず,確率論全般の基礎となる諸概念の定義と基本的な性質を論じ る.具体的には,確率空間,確率測度,確率変数とその分布,期待値,独立性等を扱う.これらを礎として,最も基本的な極限定理である大数の法則および中心 極限定理を定式化し,証明する.
Kolmogorovによる測度論を用いた確率論の公理化により,それまでにも実社会および諸科学で広く利用され てきた確率の概念が,数学的に厳密な基礎を持つことになった.特に無限に関する議論を正確に展開することが可能になり,各種極限定理の意味するところを正 確に述べられるようになった.本講義を通じて,従来直感的に扱ってきた確率論の諸概念・諸定理および種々の確率計算がどのように定式化され,いかなる性質 を持つのか明らかにする.

【到達目標】
・測度論に基づく確率論の議論を追えるようになること.
・与えられた分布に対して,対応する確率変数の期待値や分散,特性関数等の特性量が計算できるようになること.
・確率変数列および確率分布列の収束について,その定義と性質を把握し,基本的な例を説明できるようになること.
・大数の法則や中心極限定理をどう定式化するのか,厳密に説明できるようになること.
・上記の極限定理の証明のあらすじを説明できるようになること.

【キーワード】
確率空間,確率測度,確率変数,確率分布,期待値,独立性,概収束,確率収束,Borel-Cantelliの補題,大数の法則,分布収束,特性関数,中心極限定理

【学生が身につける力】
専門力

【授業の進め方】
通常の講義形式.

【授業計画・課題】

第1回 確率空間,確率測度
第2回 確率変数とその分布,期待値
第3回 期待値の変数変換公式, 基本的な分布の例
第4回 独立性とその基本的な性質,結合分布と周辺分布
第5回 独立性と分布,独立性と期待値,独立同分布確率変数列の構成
第6回 確率変数列の種々の収束概念
第7回 確率変数列の収束の例,大数の弱法則
第8回 Borel-Cantelliの補題,大数の強法則
第9回 大数の強法則の証明
第10回 大数の強法則の応用, 確率測度の収束
第11回 確率変数列の分布収束
第12回 特性関数の基本的な性質,特性関数の例
第13回 特性関数と分布
第14回 中心極限定理
第15回 確率過程の基礎


課題は講義中に指示する

【教科書】
特になし

【参考書、講義資料等】
「測度と確率」 小谷眞一著  (岩波書店)
「確率論」 舟木直久著 (朝倉書店)
「確率論」 西尾真喜子著  (実教出版)

【成績評価の基準及び方法】
期末試験(およそ60%)およびレポート(およそ40%).

【関連する科目】
MTH.C211 : 応用解析序論第一
MTH.C212 : 応用解析序論第二
MTH.C305 : 実解析第一
MTH.C306 : 実解析第二

【履修の条件(知識・技能・履修科目等)】
「応用解析序論第一」,「応用解析序論第二」,「実解析第一」,「実解析第二」を履修済みであることが望ましい.