講義名 複素解析第二(Complex Analysis II)
開講学期 6学期 単位数 2--0--0
担当 志賀 啓成 教授: 本館2階222号室(内線2219)
【講義の目的】
「複素解析第一」に引き続き,複素解析学に関するより進んだ内容を講義する.
【講義の計画】
取り扱う内容は以下の通り.
- Sequences and Series of Holomorphic Functions:we will see that under the
appropriate notion of convergence of a sequence of holomorphic functions,
the limit function inherits sev- eral properties that the approximating
functions have, such as being holomorphic, and in the second part, we show
that the space of holomorphic functions on a domain can be given the structure
of a complete metric space.we show that the space of holomorphic functions
on a domain can be given the structure of a complete metric space.
- Conformal Equivalence: we study conformal maps between domains in the extended
complex plane. These maps are one-to-one meromorphic functions. Our goal
is characterize all simply connected domains in the complex plane. We also
study the action of a quotient of the group of two-by-two nonsingular complex
matrices on the extended complex plane, namely the projective special linear
group.
- Harmonic Functions : this topic is devoted to the study of harmonic functions.
These functions are closely connected to holomorphic maps since the real
and imaginary parts of a holomorphic function are harmonic functions. One
of the most important aspects of harmonic functions is that they arise
as functions that solve a boundary value problem for holomorphic functions,
known as the Dirichlet problem. An example is the problem of finding a
function continuous in a closed disk that assumes certain known values
on the boundary of the disk and is harmonic in the in- terior of the disk.
An important tool in the solution is the Poisson formula.
【教科書・参考書等】
教科書:
J. P. Gilman, I. Kra, R. E. Rodrigues, Complex Analysis, Springer GTM 245,
ISBN 9780387747149
参考書:
吹田・新保 著「理工系の微分積分学」学術図書出版
J. Ahlfors 著「複素解析」現代数学者(邦訳)
【関連科目・履修の条件等】
「複素解析第一」を習得していること.
【成績評価】
レポート及び試験により総合的に評価する.
【担当教員から一言】
この講義には対応する演習科目がありません.しかし,それは演習が必要ない,ということではなく,
演習に相当するものは,各自で行うべき段階に皆さんは入っていることを意味しています.
どのように勉強を進めればよいか,分からないことがあればいつでも質問にくること.