講義名 複素解析第一Complex Analysis I
開講学期 5学期 単位数 2--0--0
担当 山ノ井 克俊 准教授:本館3階318号室(内線3386)


【講義の目的】 
指数関数、対数関数、三角関数やその逆関数、ベキ級数で表される関数など、
微積分で登場したこれら基本的な関数は変数を複素数にしても自然に定義される。
更にこれらの関数は複素平面上で考えることではじめて実軸上の関数としてだけでは
見えてこないより深い構造を示す。
複素解析第一ではこれらのことについて基本的な事柄を解説する。

解析学演習B第一ではこの授業に対応した演習を行う。
下記、「関連科目・履修の条件等」の項目を参照すること。


【講義計画】
以下の事柄を講義する予定である。

1. 複素数と複素平面
2. 正則関数とベキ級数で表される関数
3. 初等関数(指数関数,三角関数など)
4.複素積分
5. コーシーの積分定理と積分公式
6.正則関数のべき級数展開
7. 特異点
8.留数解析
9.最大値原理、偏角原理、一致の定理など

【教科書・参考書等】
占部 博信 著:基礎課程複素関数論,サイエンス社
岸正倫・藤本坦孝 共著:複素関数論, (株)学術図書出版社

その他の参考書として,
アールフォルス:複素解析,現代数学社
ラミ・シャカルチ、エリアス・M・スタイン:複素解析, 日本評論社
神保道夫:複素関数入門,岩波書店
函数論, 吉田洋一, 岩波全書
複素解析I, 志賀啓成, 培風館, 2000 
解析概論, 高木貞治, 岩波書店

【関連科目・履修の条件等】
解析学演習B第一を併せて学習申告すること.
併せて申告しない場合は申告不許可とする.
ただし,再履修生および数学科以外の学生はこの限りではない.

また,微分積分学第一、第二、線形代数学第一、第二、解析概論第一、第二は
履修済みであることを前提とする。


【成績評価】
成績は中間試験,期末試験,レポート,「解析学演習B第一」の状況等により総合的
に評価する.

【担当教員から一言】
数学は、自分の頭で考え、自分の手で計算する経験をたくさん積むことでしか
身につけることはできません。このことを自覚してしっかり勉強してください。