講義名 位相幾何学(Topology)
開講学期 5学期 単位数 2--0--0
担当 遠藤 久顕 教授:本館2階204号室(内線2208)
【講義の目的】
位相幾何学(トポロジー)における基礎的な概念であるホモロジー群と基本群の修得を目的とします。
位相幾何学において用いられる基本的な道具や方法を学ぶと同時に、現代数学において最も重要な
概念の一つである「不変量」という概念に触れる良い機会になると思います。
【講義計画】
講義は15回の予定で、第1回〜第12回の講義で単体複体のホモロジー群、
第13回〜第15回の講義で基本群を扱います。講義が終了した後、期末試験を行います。
【教科書・参考書等】
教科書:田村一郎
『トポロジー』(岩波書店・岩波全書)
参考書:田中利史・村上 斉
『トポロジー入門』(サイエンス社)
【関連科目・履修の条件等】
集合と位相、初歩的な群論の知識を仮定します。講義中に適宜復習をする予定です。
【成績評価】
期末試験の成績をもとに評価します。
【担当教員から一言】
位相幾何学は「柔らかい幾何学」とか「ゴム膜の幾何学」などと呼ばれることもある、一風変わった幾何学の一分野です。
図形(位相空間)の性質のうち、アメーバの動きのような連続的な変形によって変わらない性質を研究します。
そのようなつかみどころのない性質が、群などの代数的な概念によって見事に捕捉されるさまは、とても面白く魅力的です。
ホモロジー群の定義は少し骨が折れますが、長いストーリーを追いながら、位相的な概念が代数的な概念へと翻訳されて
いく様子を肌で感じていただければと思っています。