講義名 実解析第二(Real Analysis II)
開講学期 6学期 単位数 2--0--0
担当 村田 實 教授:本館2階215号室(内線2210)
【講義の目的】
実解析第一に続いて、積分論の応用を学ぶ。
【講義計画】
0.フビニの定理(続論)
1.p-次可積分空間の基礎
・積分不等式
・完備性
・双対性
2. ユークリッド空間上の関数空間
・合成積と軟化子
・p-次可積分空間における稠密な関数族
3.Fourier 積分
・Fourier 変換と逆変換
・微分および合成積との関係
・Riemann-Lebesgue の定理
・二乗可積分空間上のFourier 変換
・熱方程式への応用
【教科書】
吉田伸生著「ルベーグ積分入門―使うための理論と演習」遊星社
【関連科目・履修の条件等】
解析概論(第一、第二)、集合・位相(第一、第二)、応用解析序論、
実解析第一等を履修していることが望ましい。
内容的にはこの科目は関数解析との関連が深い。
【成績評価】
中間試験と期末試験の結果を総合的に評価する。
【担当教員から一言】
将来解析系の分野を志す者は、実解析第一、関数解析とともに
この講義をぜひ履修することを勧める。