講義名 位相幾何学(Topology
開講学期 5学期 単位数 2--0--0
担当 村上 斉 准教授:本館3階319号室(内線3387)

【講義の目的】

位相幾何学, 特にホモロジー論の基礎およびその応用について講義する.

ホモロジー論は図形や位相空間の大局的性質を代数的量(より具体的には可換群)

により記述するもので, 古典的によく知られたオイラー数などの不変量を

ずっと精密に体系化したものと言える.

 

【講義計画】

単体的複体を中心に講義を進める.

可換群の復習のあとで,単体的ホモロジー群を定義する.

そのあと,具体的な計算を行う際に有力な方法となるMayer-Vietoris完全系列を説明する.

最後に,単体的ホモロジー群の位相不変性を示す.

また,時間があれば基本群についても述べる.

 

【教科書・参考書等】

教科書は特に指定しない.参考書としては

田中利史・村上斉著「トポロジー入門」(サイエンス社)を挙げておく.

 

【関連科目・履修の条件等】

線型代数,集合と位相, 及び代数学概論の初歩の知識を仮定する.

 

【成績評価】

授業中に行う小テストと期末試験だけによる.

 

【担当教官から一言】

ホモロジー論は位相幾何学や微分幾何学といった現代の幾何学のなかで中心的役割を果たしているが, 幾何学に限らず現代数学全般にとってもなくてはならない概念である.

幾何的性質がどの様に代数化されるか, といった幾何学と代数学の相互作用の面白みを味わってほしい.