2 6 大修

専門科目(午前)

数学 時間 9:00~11:30

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題5題すべてに解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で2ページからなる.
- 6. 口頭試問を代数系,幾何系,解析系のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと.

記号について: ℝ は実数全体を表す.

[1] $D = \{(x, y, z) \in \mathbb{R}^3 | x \ge 0, y \ge 0, z \ge 0\}$ とする. このとき広義積分

$$\iiint_D \frac{dxdydz}{(1+\sqrt{x^2+y^2}+z)^4}$$

の値を求めよ.

[2]p は実数とする. [0,1] 上定義された関数列

$$f_n(x) = \frac{n^p x}{1 + n^3 x^3}$$
 $(n = 1, 2, \dots)$

について次の問に答えよ.

- (1) $\{f_n(x)\}_{n=1}^\infty$ が全ての $x\in[0,1]$ に対して収束するための p の条件を求めよ. またこのとき, 極限関数 $f(x)=\lim_{n\to\infty}f_n(x)$ を求めよ.
- (2) $\{f_n(x)\}_{n=1}^{\infty}$ が [0,1] 上で一様収束するための p の条件を求めよ.
- (3) $\lim_{n\to\infty}\int_0^1 f_n(x)\,dx$ が存在するための p の条件を求めよ.
- [3] 2 次実正方行列全体の成す線形空間を $M_2(\mathbb{R})$ とする. $A=egin{pmatrix} a & b \ c & d \end{pmatrix} \in M_2(\mathbb{R})$ に対して、 $M_2(\mathbb{R})$ の線形変換 L_A を $L_A(X)=AXA$ で定めるとき、次の (1) (2) に答えよ.
- (1) $M_2(\mathbb{R})$ の基底を 1 組あげよ.
- (2) L_A のトレースを求めよ.
- (3) $A=egin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix}$ のとき L_A の行列式を求めよ.
- [4] 3 次の実対称行列 A が与えられたとき、 $\mathbb{R}^3\setminus\{0\}$ 上の関数 F を

$$F: \mathbb{R}^3 \setminus \{0\} \ni \boldsymbol{x} \mapsto F(\boldsymbol{x}) = \frac{\langle A\boldsymbol{x}, \boldsymbol{x} \rangle}{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} \in \mathbb{R}$$

で定める. ただし \langle , \rangle は \mathbb{R}^3 の標準的な内積で, \mathbb{R}^3 の要素は列ベクトルとみなしている.

- (1) $S^2=\{oldsymbol{x}\in\mathbb{R}^3\,|\,\langleoldsymbol{x},oldsymbol{x}\rangle=1\}$ とするとき, $F(\mathbb{R}^3\setminus\{0\})=F(S^2)$ となることを示せ.
- (2) F は最大値、最小値を持つことを示せ.
- (3) F の最大値 α と最小値 β が一致しないとき, $F(a)=\alpha$, $F(b)=\beta$ となる単位ベクトル a, b をとり, a と b のベクトル積 $a \times b$ を c とおく. このときこれらを並べてできる 3 次正方行列 $P=(a\ b\ c)$ は正則で, $P^{-1}AP$ は対角行列になることを示せ.
- [5] 実数全体の集合 \mathbb{R} において、右半開区間全体の集合を \mathcal{B} とする、すなわち、

$$\mathcal{B} = \{ [a, b) \mid a, b \in \mathbb{R}, a < b \}.$$

 $\mathcal B$ で生成される開集合系を $\mathcal O$ とする. このとき、位相空間 $(\mathbb R,\mathcal O)$ について次は正しいか. 理由をつけて答えよ.

- (1) 位相空間 $(\mathbb{R}, \mathcal{O})$ はハウスドルフ空間である.
- (2) 位相空間 $(\mathbb{R}, \mathcal{O})$ は連結である.
- (3) 閉区間 [0,1] は位相空間 (\mathbb{R},\mathcal{O}) のコンパクト集合である.

2 6 大修

専門科目(午後)

数学 時間 13:00~15:00

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題のうち2題を選択して解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で3ページからなる.
- 6. 口頭試問を代数系,幾何系,解析系のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと(午前と同じ系を書くこと)

記号について:

- ℝ は実数全体を表す.
- ℂ は複素数全体を表す.
- ℤ は整数全体を表す.
- № は正の整数全体を表す.

[1]

- (1) 位数 100 の有限アーベル群を分類したい. それぞれの群の invariant factors による直和分解 (位数が順次倍数となるような巡回群の列による直和分解) と, elementary divisors による直和分解 (素数べき位数の巡回群による直和分解)との双方を求めよ. そして, それらの群が互いに同型でないことを示せ.
- (2) 有限体 \mathbb{F}_q の元を成分とする 3 次正方行列で,行列式が 1 であるものの個数を求めよ.
- [2] $f_1(x), \dots, f_n(x) \in \mathbb{Z}[x]$ で生成される $\mathbb{Z}[x]$ のイデアルを $(f_1(x), \dots, f_n(x))$ で表すものとする.このとき次の問に答えよ.
 - (1) 剰余環 $\mathbb{Z}[x]/(x^2+1)$ の単元を全て求めよ.
 - (2) $I = (x+3, x^2+1)$ は素イデアルではないことを示せ.
 - (3) $J = (3, x^2 + 1)$ は $\mathbb{Z}[x]$ の極大イデアルであることを示し、 $\mathbb{Z}[x]/J$ の位数を求めよ.
- [3] \mathbb{R}^3 の部分集合 A, B, C を

$$A = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid -1 \le x_i \le 1 \, (i = 1, 2, 3) \right\},$$

$$B = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid -\frac{1}{2} < x_i < \frac{1}{2} \, (i = 1, 2) \right\},$$

$$C = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid -\frac{1}{2} < x_i < \frac{1}{2} \, (i = 2, 3) \right\}$$

によって定義する.

$$X = A - (B \cap C), \quad Y = A - (B \cup C)$$

に \mathbb{R}^3 の通常の位相に関する相対位相を与え、位相空間と考える.

- (1) X の整係数ホモロジー群を求めよ.
- (2) Y の整係数ホモロジー群を求めよ.
- [4] \mathbb{R}^3 上の C^∞ 級関数 F(x,y,z), $\Phi(x,y,z)$ を次のように定める.

$$F(x,y,z) = z^{2} + f(x,y)g(x,y)h(x,y), \qquad \Phi(x,y,z) = x + y,$$

$$f(x,y) = x^{2} + y^{2} - 16, \qquad g(x,y) = (x-2)^{2} + y^{2} - 1,$$

$$h(x,y) = (x+2)^{2} + y^{2} - 1.$$

 $M=F^{-1}(0)$ とし, Φ を M に制限して得られる M 上の関数を φ とする .

- (1) M は 2 次元 C^{∞} 級多様体であることを示せ.
- (2) 点 $p \in M$ における M の接空間 T_pM は

$$(\operatorname{grad} F)_p = \left(\frac{\partial F}{\partial x}(p), \ \frac{\partial F}{\partial y}(p), \ \frac{\partial F}{\partial z}(p)\right)$$

の直交補空間であることを示せ.ただし, $T_p\mathbb{R}^3$ は \mathbb{R}^3 と同一視し,標準的な内積が与えられているものとする.

(3) C^{∞} 級関数 φ の臨界点をすべて求めよ.

[5] (1) r>0, $\theta\in(0,2\pi)$ に対して, $C_{\theta}(r)=\{re^{i\phi}\mid 0\leq\phi\leq\theta\}$ とおく.このとき, $n\geq-1$ なる整数 n に対して

$$\lim_{r \to 0} \int_{C_{\theta}(r)} z^n dz$$

を求めよ.ただし,積分路は偏角の増加方向にとる.

(2) $\Delta=\{z\in\mathbb{C}\mid |z|\leq 1\}$ とおく.f(z) を Δ を含む領域で有理型で,その極 p_1,\cdots,p_n はすべて Δ の境界 $\partial\Delta$ 上にあり,その位数はすべて 1 で, p_i での留数は α_i であるとする.このとき,

$$\lim_{\varepsilon \to 0} \int_{(\partial \Delta)_{\varepsilon}} f(z) dz$$

を求めよ.ただし, $(\partial\Delta)_{\varepsilon}=\partial\Delta-\bigcup_{j=1}^n\{z\in\partial\Delta\mid|z-p_j|<\varepsilon\}$ で,積分路は $\partial\Delta$ の正の向きに沿ってとるものとする.

[6] f(x) を区間 $[0,\infty)$ 上の可積分な実数値関数とする.以下の $(1) \sim (3)$ を示せ.

(1)

$$\int_{1}^{\infty} f(x)dx = \lim_{n \to \infty} \int_{1}^{\infty} f(x) \left(1 - e^{-x^{n}}\right) dx.$$

(2) 任意の正の整数 n,N に対し,

$$\int_0^N f(x) \left(1 - e^{-x^n} \right) dx = -\sum_{k=1}^\infty \frac{(-1)^k}{k!} \int_0^N f(x) x^{kn} dx.$$

(3) t > 0 に対して

$$\varphi(t) = \int_0^\infty \frac{f(x)}{x+t} dx$$

とおくとき, $\varphi(t)$ は $(0,\infty)$ 上で C^1 -級である.

[7] 区間 $[0,\pi]$ 上の境界値問題

$$\begin{cases}
-x''(t) = \lambda x(t) + f(t) & (0 \le t \le \pi), \\
x(0) = x(\pi) = 0
\end{cases}$$
(B)

に対し , C^2 級の解について考える . ただし , λ および f はそれぞれ与えられた実定数および $[0,\pi]$ 上の実数値連続関数である .

(1) λ は $\lambda \notin \{k^2 \mid k \in \mathbb{N}\}$ を満たす実定数とする.このとき、(B) の解が高々1つであることを示せ.

$$(2)$$
 $\lambda=n^2$ $(n\in\mathbb{N})$ かつ $\int_0^\pi f(t)\sin nt dt \neq 0$ ならば , (B) の解は存在しないことを示せ .

以下, $\{c_k\}_{k=1}^{\infty}$ を有界数列とする.

- (3) $\lambda
 ot\in\{k^2\,|\,k\in\mathbb{N}\}$ かつ $f(t)=\sum_{k=1}^nc_k\sin kt\;(n\in\mathbb{N})$ であるとき , (B) の解を求めよ .
- (4) (3) で得られた解を $x_n(t)$ とおく $\{x_n(t)\}_{n=1}^\infty$ は $[0,\pi]$ 上で一様収束することを示せ .