Algebraic Geometry of Twistor Spaces
N. Honda (Tokyo Tech)

Conference on Differential Geometry (LeBrun Fest.)

$$
\text { July 5, } 2016
$$

§ Anti-Self-Dual (ASD) metrics and Twistor Spaces - $\left(M^{4}, g\right)$ oriented Riem. 4-mfd

$$
\xrightarrow[m a n]{\Lambda_{S D}^{2}} \Lambda_{\text {S SD }} \oplus \Lambda_{-}
$$

$$
1+\otimes E n d E
$$

- A connection ∇ on $E \xrightarrow{\text { v.b. }} M$ is $A S D: \Longleftrightarrow R_{+}{ }^{\mathbb{}} \equiv 0$

These attain the absolute infimum of the Yang-mills functional.

- g is $A S D: \Longleftrightarrow W_{+} \equiv O$ (conf.inv. condition)

$$
R m(g) \in \Lambda^{2} \otimes \Lambda^{2}=\stackrel{\Lambda_{+}}{\stackrel{\oplus}{\Lambda_{-}} \otimes \stackrel{\Lambda_{-}}{\oplus}} \quad\left(\begin{array}{c}
\text { SD part of } L C \text { conn } \\
\text { on } \Lambda_{+} \\
\hline
\end{array}\right)
$$

W_{+}: traceless part of $\Lambda_{+} \otimes \Lambda_{+}$component
These attain the absolute infimum of the Weyl functional

$$
[g] \longmapsto \int_{M}|W|^{2} d v_{g} .
$$

$l_{p} \subset Z \subset \Lambda_{+}$unit sphere bole (ck $\Lambda_{+}=3$)

- l_{p} : the space of orthogonal ax str.-s on $T_{r} M$ that are compatible with the orientation
$\cdots \rightarrow 2$ has a natural almost $c x$ str. J

The (Pentose, Atiyah-Hitchin-Singer)
J : integrable $\Longleftrightarrow g: A S D$

The complex manifold Z is called the Twistor Space of an ASD mfd $\left(M^{4},[g]\right)$

Basic properties of twistor spaces

- $l_{p}=\pi^{-1}(p)$ is a $c x$ submfd of 2 ,
$\frac{\text { twistor }}{\text { line }}$ satisfying $N_{\ell+1 Z} \simeq \theta(1) \oplus \theta(1)$
$-\exists \sigma: 2 \rightarrow 2$ anti-hol involution
neal str.

Conversely, these structures define an ASD conformal structure on M.

$$
\{\text { ASD str. on } M\} \underset{\uparrow}{\stackrel{1: 1}{\longleftrightarrow}}\left\{\begin{array}{l}
\text { Twistor spaces } \\
\text { over } M
\end{array}\right\}
$$

pentose corresp.

More basic properties of twistor spaces

- So $K(2)=-\infty$ if 2 :pt.
$-K_{2} \mid e \simeq \theta(4)$
- Ki admits a natural square root F as a hol. line bole.
- F: fundamental lime bale. This satisfies

$$
\left.F\right|_{e} \simeq \theta(2), \quad \sigma^{*} F=\bar{F}, \quad F \otimes F \simeq K_{z}^{-1}
$$

\oint Two basic theorems on acpt twistor spaces

Thm (Hitchin'81) Z:cpt twistor space, ${ }^{\exists}$ Kähler metric on Z

$$
\begin{aligned}
\Rightarrow Z \simeq & \mathbb{C} P^{3} \text { or } \mathbb{F}=\left\{(x, l) \mid x \in l \subset \mathbb{C} P^{2}\right\} \\
& \downarrow \\
& \frac{\downarrow}{\mathbb{C} P^{2}}
\end{aligned}
$$

Outline of a proof. First notice that $K^{-1}>0$ from Kählerity.
So 2 is Faro. Then investigate $|F|$ by using Riem. Rock, and Kodaria vanishing, with effective use of σ and l.

Thy (Campana '91) If Z is Moishezon (or of Fujiti Class C) then the base sp. M is home. to $n \overline{\mathbb{C P}^{2}}$, where $0 \overline{\mathbb{C O}^{2}}=S^{4}$

- X: Moishezon: $\Leftrightarrow X$: birational to a prof. alg. variety $\Leftrightarrow a(z)=3$ (alg. dim.)
$-X: \varphi \Longleftrightarrow X$: birational to a cpt Kähler $m f d$.
Outline of a proof. Consider the chow scheme of 2 , parameterizing twistor lines through a point. These lines cover Z from compactness of Chow scheme. This means simply connectedness of 2 , and so is M. Then a topological argument using Riem. Rock means $b_{2}^{+}(M)=0$, which implies $M \underset{\text { (homes) }}{\simeq} n \overline{\mathbb{C}} \bar{P}^{2}$ by Freedman \& Donaldson. II

Basic properties of a twistor space Z on $n \overline{\mathbb{C P}}$

$$
-a(Z)=k(Z, F)\left(=k^{-1}(2)\right) \quad \text { (Poon, LeBrun) }
$$

- So Z : Moishezon $\Longleftrightarrow K^{-1}(Z)=3$ (i.e. K^{-1}; big)

$$
-F^{3}=2(4-n)
$$

$$
-x(m F) \stackrel{R . R}{=} \frac{1}{2}(4-n) m^{3}+O\left(m^{2}\right)
$$

\wedge

$$
h^{0}(m F)+h^{2}(m F)
$$

$n<4$	$n=4$	$n>4$
+	0	-

$$
F^{3}
$$

${ }_{0}^{11}$ by Hitchin vanishing the if Seal $(g)>0$

- So $K^{-1}(2)=3$ if $n<4$ and $\operatorname{scal}(g)>0$.
- If $n \geq 4, a(2)<3$ in general. But there are many Z on $n \mathbb{C} \overline{P^{2}}, n \geq 4$, which satisfy $a(Z)=3$. These satisfy $F^{3}<0$ \& $F i$ big.

Classification of twistor spaces on $2 \overline{\mathbb{C P}^{2}}$

Thy (Poon '86). If g is an ASD metric on $2 \overline{\mathbb{C P}^{2}}$ satisfying $\operatorname{scal}(g)>0$, its twistor space 2 has the following structure: $\quad h^{\circ}(F)=6, \quad B s|F|=\varnothing$,

The moduli space is 1 -dim, connected.

The first examples of Moishezon twistor spaces on $n \overline{\mathbb{C}} p^{2}, n$: arbitrary
Tho (LeBrun 191) There exists a family of ASD metrics on $n \overline{\mathbb{C P}^{2}}$ (explicitly constructible), whose twistor spaces have the following structure: $\begin{array}{ll}\quad h^{\circ}(F)=4, & B s|F|= \\ (\text { if } n>2)\end{array} \quad \begin{aligned} & C \mid \\ & S I\end{aligned}$

conic bale

These metrics admit an S^{\prime}-action, and the map. Φ can be regarded as a quotient map of the \mathbb{C}^{*}-action.

These twistor spaces are generalized to much more general S^{\prime}-actions:

The (H. 2009, 2010) For "many" S^{\prime}-action on $n \overline{\mathbb{C P P}^{2}}$, we can construct a family of Moishezon twistor spaces having the following structure:

Φ can be regarded as a quotient map of the \mathbb{C}^{*}-action

Remarks on the theorem

- These twistor spaces are obtained as an S^{\prime}-equivariant deformations of the twistor spaces of Joyce metrics (1995), for suitable subgroups $S^{1} \subset T^{2}\left(\curvearrowright\left(n \overline{\mathbb{C}} \bar{P}^{2}\right.\right.$, Joyce $\left.)\right)$
- The quotient surface \mathcal{J} corresponds to Einstein- Weal structure on 3-dim. space, and are (new) examples of minitwistors.
- I itself has a moduli.

Classification of twister spaces on $3 \overline{\mathbb{C} P^{2}}$
Thy (Poon, Kreupler-Kurke '92) If Z is a twistor space of an ASD metric on $3 \overline{\mathbb{C P}^{2}}$ with seal >0, the twistor space satisfies $h^{0}(F)=4$.
(1) If $B S|F| \neq \phi, Z$ is a LeBrun twistor space.
(2) If $B S|F|=\phi, Z$ has the following structure:

$$
Z \underset{\left(\begin{array}{c}
\text { gen. } \\
2: 1
\end{array}\right]}{|F|} \underset{R}{\cup} \text { branch dir. }
$$

B : (singular) quartic
"double covering type"

Note: A substantial part of their analysis is to determine an explicit form of defining equation of B.

Classification of Moishezon twister spaces on 4 $\overline{\bar{C} P^{2}}$
The (H.2014) If Z is a Moishezon twistor space on $4 \overline{\pi P}^{2}$, the anti-canonical map $\Phi: Z \xrightarrow{|2 F|} \mathbb{C} P^{N}$ satisfies one of the following:
(1) Φ is birational over the image. $(N=6$ or 8$)$ scroll of planes
(2) Φ is 2:1 over the image. $N=4$. The branch divisor is of the form
 $p^{-1}(\Lambda) \cap B$, where B is a quartic hypersurface.
(3) $\operatorname{dim} \Phi(2)=2(N=4,5$ or 8$)$, and Z is birational to a
U conic bundle over $\Phi(Z)$.
\{LeBrun, generalized LeBrun\}

Remarks on the theorem

- Defining eq. of $\Phi(2)$ can be given in a concrete form for any case. For example, in (1) (= birational type), if $N=\left(h^{\circ}\left(-K_{2}\right)-1=\right) 6$, $\Phi(2)=(2,2,2)$ of some special kind.
- The case (2) can be regarded as a generalization of the similar one on $3 \overline{\mathbb{C P}}^{2}$ to $4 \overline{\mathbb{C P}}^{2}$.
(Both have a double covering STr, branch is determined by a quartic)
- A substantial part is devoted to determine an equation of B.
- I always has indeterminacy locus, and a concrete elimination can be given. (\Rightarrow "birational geometry of twistor spaces")

Moishezon twistor spaces on $n \overline{\mathbb{C P}}, n>4$

- No complete classification is obtained yet.
- If $h^{\circ}(F) \geq 4, \quad Z=$ LeBrun
- If $h^{\circ}(F)=3, \quad Z \simeq$ Campana-Kreupler (1998)
having conic belle sir by |F|
- If $h^{\circ}(F)=2$, known examples are:
- generalized LeBrun (H.2010). having \mathbb{C}^{*}-action
- double covering type \longrightarrow next slide
- No example is known satisfying $h^{\circ}(F) \leq 1$.
with \mathbb{C}^{*}-action no \mathbb{C}^{*}-action
Thm (H.2008,2015) For any $n>4$, there exist families of twistor spaces having the following structure:
scroll of planes rat.norm.curve
branch divisor of $\Phi=p^{-1}(\Lambda) \cap B, B$: quartic hypersurface
- These are characterized by presence of a member of IFI whose pluri-anti-canonical system enjoies a double covering property.

On a proof of the theorem

- One difficulty is to show that the double covering map from the member extends to 2 (to give $\Phi: 2 \cdots \not p^{-1}(1)$).
- Another difficulty is to derive a constraint for the branch
divisor. (Defining equation of the quartic hypersurface B.)
- In these analysis, interesting birational geometry arises.

Further directions

- To extend the last theorem in full generality. (It has turned out, there exist a large number of families of Z of double covering type, which contain the above two families as very special cases.)
- To show that
generalized LeBrun \& double covering type exhaust Z satisfying $h^{\circ}(F)=2$.
- To pursue a connection with Fano 3-folds
- Recall $a(2)=3 \Leftrightarrow\left|K_{z}^{-1}\right|: b l g \Longleftrightarrow K^{-1}(2)=3$
- Structure of surfaces with $K^{-1}(X)=2$ is as follows:

The (Sakai '84) The anti-canonical model of X has only isolated \mathbb{Q}-Gorenstein singularities, and $m K^{-1}$ is ample for some $m \in \mathbb{N}$.

- Analogous result for 3-fold seems to be not known. (Ref property is not assumed.)

Projective models of Moishezon twistor spaces

$$
\begin{array}{ll}
2 \overline{\mathbb{C} P^{2}} & 2 \frac{|F|}{\text { birr }} X_{2,2} \subset \mathbb{C} P^{5} \\
3 \overline{\mathbb{C} P^{2}} & 2 \stackrel{|F|}{2: 1} \mathbb{C} P^{3} \supset B^{\mathbb{C}} \text { quartic. } \\
4 \overline{\mathbb{C} P^{2}} & 2 \frac{|2 F|}{\text { bir. }} X_{2,2,2} \subset \mathbb{C} P^{6} \\
& Z \frac{|2 F|}{\text { bir. }} X \subset \mathbb{C} P^{8}
\end{array}
$$

t intersection of 10 quadrics
All these are limits of Fano 3-folds of the same types. So perhaps all Moishezon Z are birational to Fano 3-folds with singularities.

