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Abstract For every irreducible random walk on Z2 with zero mean and finite 2 + δ absolute
moment (0 ≤ δ < 1) we obtain fine asymptotic estimates of the probability that the first visit of
the walk to the horizontal axis takes place at a specified site of it. 2

running head: Hitting distributions of a line

1 Introduction and Results

In this paper we consider an irreducible random walk on the square lattice Z2 having zero mean
and finite 2 + δ absolute moment (0 ≤ δ < 1) and obtain fine asymptotic estimates of the hitting
distribution of the horizontal axis {(s, 0) : s ∈ Z}, when the walk is started from a point (0, n) on
the vertical axis, as |s| + |n| → ∞. This distribution, denoted by Hn(s), would play a significant
role in the theory of two dimensional random walks, but does not seem to have received sufficient
investigation it would deserve since the advent of Donsker’s invariance principle. According to that
principle the distribution Hn(s), if suitably normalized, is asymptotically equivalent as n → ∞
to the Cauchy distribution |n|/π(n2 + s2). This equivalence however is in the topology of weak
convergence of probability measures and does not imply the equivalence in any stronger sense like
point-wise comparability even when n tends to infinity with |s/n| bounded away from infinity, let
alone when n remains in a finite interval or gets indefinitely large but in a small order of s. In
our asymptotic formula the leading term of Hn(s) is determined in all cases of |s| + |n| tending
to infinity, entailing a fairly uniform equivalence in a poin-wise level so that even the tail of the
probability (i.e., its asymptotic behavior for large s) is in a good agreement with that of the Cauchy
distribution (but with the factor |n| replaced by the potential of the one dimensional walk of the
vertical component). The proofs are done by Fourier analytic method.

Let p(x) = p(x1, x2), x = (x1, x2) ∈ Z2 be a probability distribution on Z2 which is aperiodic
in the sense that the set {x ∈ Z2 : p(x) > 0} is not included in any proper subgroup of Z2, and
satisfies ∑

xp(x) = 0 and
∑

|x|2+δp(x) <∞, (1.1)

where 0 ≤ δ < 1, and consider the random walk Sn = (S(1)
n , S

(2)
n ) on Z2 with i.i.d. increments whose

one-step transition probability is given by p(x, y) = p(y − x). Denote by Px the probability law of
the walk started at x ∈ Z2 and by Ex the expectation by Px. Let L = {x ∈ Z2 : x2 = 0} (the first
coordinate axis). Then Hn(·), the hitting distribution mentioned above, is written as

Hn(s) = P(0,n)

[
S

(1)
τ(L) = s

]
,

where τ(L) = inf{n > 0 : Sn ∈ L}, the first positive time when Sn visits L.
Let Q be the covariance matrix of S1 under P0 and write Q(θ), θ = (θ1, θ2) ∈ R2 for the

quadratic form associated to it so that Q(θ) = θ ·Qθ and

Q(θ) = E0[(S1 · θ)2] = σ2
1θ

2
1 + 2σ12θ1θ2 + σ2

2θ
2
2
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where σ12 = E0[S
(1)
1 S

(2)
1 ] and σj =

√
E[|S(j)

1 |2] (j = 1, 2). Set σ = |detQ|1/4 and define the norm

‖x‖ = σ ·
√
Q−1(x) = σ−1

√
σ2

2x
2
1 − 2σ12x1x2 + σ2

1x
2
2,

where Q−1(x) stands for the quadratic form for the inverse matrix Q−1 of Q. Let a(n) (n ∈ Z2) be
the potential function of the one dimensional random walk S(2)

n :

a(n) =
∞∑

k=0

(
P0[S

(2)
k = 0]− P0[S

(2)
k = −n]

)
,

where the series converges and its sum is larger than or equal to |n|/σ2
2 (cf. Spitzer [7]:P28.8, P31.1).

Put a∗(n) = a(n), n ∈ Z \ {0} and a∗(0) = 1. For s, n ∈ Z define s̃ by

s̃ = s̃(s,−n) = s+ µn, where µ = σ12/σ
2
2.

Put λ = σ2/σ2
2, so that

‖(s,−n)‖2 = λ−1s̃2 + λn2.

It is recalled that 0 ≤ δ < 1 in the moment condition (1.1).

Theorem 1.1 For each ε > 0,

Hn(s) =
1
π
· |n|
‖(s,−n)‖2

[
1 + o

(
1
|n|δ

)]
(|n| > ε|s̃|, |n| → ∞), (1.2)

Hn(s) =
1
π

(
σ2

2a
∗(n)

s̃2/λ
− λ2|n|3
‖(s,−n)‖2s̃2

)[
1 + o

(
log |s̃|
|s̃|δ

)]
(|s̃| > ε|n|, |s̃| → ∞). (1.3)

Here o(1/|n|δ) in (1.2) is uniform for |s̃| < |n|/ε; similarly o(|s̃|−δ log |s̃|) in (1.3) is uniform for
|n| < |s̃|/ε.

Remark 1. (i) In the overlapping region ε|n| < |s̃| < ε−1|n| the two formulae (1.2) and (1.3)
coincide except for the logarithmic factor in the error term owing to the asymptotic relation a(n) =
σ−2

2 |n|(1 + o(|n|−δ)) as |n| → ∞ (cf. [12]: Corollary 6.1) and the identity

λ2|n|3
‖(s,−n)‖2s̃2

=
|n|
s̃2/λ

− |n|
‖(s,−n)‖2

. (1.4)

(ii) If (1.1) is true for 1 ≤ δ < 2, the formula (1.2) (resp. (1.3)) remains valid if we add to its
right side an extra term that is O(1/n2) (resp. O(n/s3)); in the case when all the third moments
of S1 under P0 vanish the extra term is simplified and takes on the form

−C
∗

π
· λn

2 − λ−1s̃2

‖(s,−n)‖4

(
resp. − C∗

π

(
λn2 − λ−1s̃2

‖(s,−n)‖4
+
λ

s̃2

))
, (1.5)

where C∗ = (2π)−1
∫ π
−π

[
σ2

2(1 − ψ(0, l))−1 − (1 − cos l)−1
]
dl. The constant C∗ is non-negative and

vanishes if and only if the walk is continuous in the vertical direction (namely p((x1, x2)) = 0 if
|x2| ≥ 2) [14]. See Section 9 for more detail.

(iii) In the case δ = 0 the formula (1.3) of Theorem 1.1 does not determine the precise leading
term since the error term in the square brackets may be unbounded. To get the error of order o(1)
one needs to impose some additional condition (see Remark 2 below).

(iv) If the walk is symmetric relative to L and continuous in the vertical direction, then the
reflection principle (cf. [7], p.155) can be applied to derive the estimates of Hn(x) from those of the
potential function of the walk that are given in [2], [9] (also cf. [4]).

(v) That a∗(n) appears in the leading term on the right side of (1.3) may be explained by means
of the formula P(0,n)[ |S(2)

k | ≥ K for some k < τ(L) ] = σ2
2a
∗(n)/K + o(n/K) as K → ∞ uniformly
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for |n| < K (cf. [12]): for the hitting site Sτ(L) to be far from the origin the walk is most likely to
once pass across a large ordinate level before returning to L.

Write X and Y for S(1)
1 and S(2)

1 , the first and second components of S1, respectively and P and
E for P0 and E0, respectively, so that σ12 = EXY etc. Define X̃ by

X̃ = X − µY.

A natural sufficient condition for H0(s) to behave like const×s̃−2 as s̃→∞ turns out to be

E[X̃2 log |X̃|] <∞, (1.6)

where t log t = 0 for t = 0. We also write a ∨ b = max{a, b} and a ∧ b = min{a, b} for a, b real.

Theorem 1.2 Suppose that (1.6) holds. Then, as |s| ∨ |n| → ∞

Hn(s) =
1
π
· σ2

2a
∗(n)

‖(s,−n)‖2
[1 + o(1)]. (1.7)

(Here o(1) → 0 whenever |s| ∨ |n| → ∞.)

The next theorem is of interest in the case when (1.6) is violated.

Theorem 1.3 Let ε > 0. Then for |n| < |s|,

Hn(s) =
1
π

(
σ2

2a
∗(n)

s̃2/λ
− λ2|n|3
‖(s,−n)‖2s̃2

)
(1 + o(1)) +

2a∗(n)
λs̃2

Mε(s)(1 + ob(1)),

where
Mε(s) = E

[
X̃2 log

|s̃|
|X̃ − s̃| ∨ |Y | ∨ 1

; |X̃ − s̃| ∨ |Y | < ε|s̃|
]
,

and o(1) → 0 uniformly in n and ob(1) → 0 boundedly as |s| → ∞. Moreover 1 + ob(1) = m(s, n) +
o(1) with 0 ≤ m(s, n) ≤ 1 and o(1) as above.

In the case when X and Y are stochastically independent of each other the leading term in (1.7)
can be derived by using the formula P(0,n)[τ(L) > k] = a∗(n)σ2/

√
πk/2(1 + o(1)) (k → ∞) (cf.

§32 of [7]; see [12] for uniformity in n) as well as the local limit theorem applied to S(2)
n ; this also

provides another explanation for the factor a∗(n) to appear in the leading term. Even if X and Y
are independent, one needs still to suppose the condition (1.6) to ensure (1.7).

Remark 2. (i) Consider the case δ = 0. If |n| > |s̃| the formula (1.2) provides the correct leading
term, while if |s̃|/(|n| ∨ 1) →∞ we have only

Hn(s) =
1
π
· σ

2
2a
∗(n)

s̃2/λ

[
1 + o(log |s̃|)

]
(|s̃| > |n|),

which cannot be improved: in fact by using Theorem 1.3 one can readily infer that for any increasing
function h(t) > 0 such that h(t)/ log t→ 0 as t→∞ there exists a probability p such that p satisfies
(1.1) (with δ = 0) and the error term in the square brackets above is not bounded by h(|s̃|).

(ii) In a similar sense the condition (1.6) cannot be relaxed for validity of (1.3) : for any h(t) > 0
such as in (i) there exists a probability p satisfying (1.1) such that E[X2h(X)] < ∞ and for each
n, lim sups→∞Hn(s)s2 = ∞. On the other hand the formula (1.7) of Theorem 1.2 may hold for
p which fails to satisfy (1.6) if the marginal P [X = s] has sufficiently nice asymptotic behavior as
s → ∞: eg., as Theorem 1.3 shows, if P [X = s] ≤ C|s|3, then (1.7) is true regardless of condition
(1.6). Theorem 1.3 also implies that one-sided moment conditions E[X̃2 log |X̃|;±X̃ > 1] < ∞
entail the corresponding one sided asymptotic forms σ2π−1a∗(n)/s2 of Hn(s) (as s→ ±∞).
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For higher dimensional walks we have analogous results to Theorem 1.1 as discussed in Section
10. From the estimate of Hn(s) as given in Theorem 1.1 one can derive (cf. [11]) that of the hitting
distribution of the negative half of L by considering the one dimensional random walk that is a
trace of Sn left on L and applying the theory of ladder processes as found in [7] or in [1]. Such a
result in turn would give some precise estimate of the hitting distributions of long segments on L, of
which certain upper bounds are obtained by Kesten [5] for simple random walk and by Lawler and
Limic [6] for random walks with finite 5/2 + δ absolute moment. In a separate paper we compute
the asymptotic form of the Green function of the domain Z2 \ L, which is to entail a (less precise)
version of Theorem 1.1, but the computation is more involved than these given in this paper and
indeed relies on some results in this paper.

We conclude this section with the following result on the integrated tail En(s) = Hn(s)+Hn(s+
1) + · · ·, which is much easier to obtain. The result is stated only for δ = 0.

Theorem 1.4 As s̃/(|n| ∨ 1) →∞, En(s) =
σ2

2a
∗(n)

πs̃/λ
(1 + o(1)).

It is noted that in the case when s̃/n remains bounded, the invariance principle gives the correct
limit value : for each K > 0, En(s) = 1

2 − 1
π arctan(s̃/λn) + o(1) as n→∞ with |s̃|/n < K.

2 Preliminary formulae and estimates.

Let Ĥn(t) (t ∈ R) denote the characteristic function of the probability distribution Hn(·):

Ĥn(t) =
∑

s∈Z

Hn(s)eits.

Define
ψ(θ) = ψ(θ1, θ2) = E0

[
eiθ·S1

]
(θ = (θ1, θ2) ∈ [−π, π)2)

and

πk(t) =
1
2π

∫ π

−π

e−ikl

1− ψ(t, l)
dl (t 6= 0). (2.1)

Lemma 2.1 If 0 < |t| ≤ π, then

Ĥn(t) =
π−n(t)
π0(t)

(n 6= 0) (2.2)

and
Ĥ0(t) = 1− 1

π0(t)
. (2.3)

The proof of this lemma is standard and postponed until the last section (Appendix (A)).
We must compute

Hn(s) =
1
2π

∫ π

−π

π−n(t)
π0(t)

e−istdt (n 6= 0). (2.4)

In carrying out the computation we suppose that Q is diagonal:

Q(t, l) = σ2
1t

2 + σ2
2l

2,

which gives rise to no loss of generality as will be discussed in Section 9 (see (10.2)) . From (1.1)
one obtains

1− ψ(t, l) =
1
2
Q(t, l)(1 + o(|t|δ + |l|δ)) (|t| ∨ |l| → 0)
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and then, changing the variable of integration by u = l/t, observes that as t→ 0,

|t|π0(t) =
1
2π

∫ π

−π

|t|dl
1− ψ(t, l)

=
1
π

∫ π/|t|

−π/|t|
dl

Q(1, l)
+ o(|t|δ) (2.5)

(see Lemma 2.3 below for evaluation of the error term) and the integral on the right side equals
π/σ2 +O(t), so that

1/π0(t) = σ2|t|+ o(|t|1+δ). (2.6)

Our main task for proof of the first formula (1.2) of Theorem 1.1 is to derive from

Hn(s) =
1

(2π)2

∫ π

−π

e−istdt

π0(t)

∫ π

−π

einldl

1− ψ(t, l)
(2.7)

the following lemma, whose proof will be given in the next section.

Lemma 2.2 For each ε > 0, uniformly for |s| < |n|/ε as |n| → ∞

Hn(s) =
σ2

(2π)2

∫ π

−π
|t| cos st dt

∫ ∞

−∞
2 cosnl dl
Q(t, l)

+ o

( |n|1−δ

s2 + n2

)
. (2.8)

Using the following identities for the well-known pair of cosine transforms

σ2|t|
2π

∫ ∞

−∞
2 cosnl dl
Q(t, l)

= e−λ|nt| and
∫ ∞

−∞
e−λ|nt| cos stdt =

2λ|n|
s2 + λ2n2

with λ =
σ1

σ2

as well as the trivial estimate
∫
|t|>π e

−λ|nt| cos st dt = O(e−λ|n|), we immediately deduce from Lemma
2.2 the formula (1.2) which may be written as

Hn(s) =
1
π
· λ|n|
s2 + λ2n2

[
1 + o

(
1
|n|δ

)]
(|s̃| < |n|/ε). (2.9)

In the case |s| > |n| the leading term is to be different from one that comes up above and it will
be desirable to arrange the expression on the right side of (2.4) so that an integral that is to become
the minor term is separated from one involving the main term. This is achieved by rewriting Ĥn as

Ĥn(t) =
π−n(t)− π0(t) + a(n)

π0(t)
+ 1− a(n)

π0(t)
(n 6= 0).

Under the condition E0[|Y |2] <∞ (remember (X,Y ) is written for (S(1), S(2))) we have

a(n) =
1
2π

∫ π

−π

1− einl

1− φ(l)
dl where φ(l) = ψ(0, l). (2.10)

(Cf. [3]; also Appendix of [12].) Set

en(t) =
1
2π

∫ π

−π

[
1

1− ψ(t, l)
− 1

1− φ(l)

]
(einl − 1)dl

and ρ(t) =
1

π0(t)

so that en(t) = π−n(t)− π0(t) + a(n) and

Ĥn(t) = ρ(t)en(t) + 1− a∗(n)ρ(t) (2.11)

(valid also for n = 0).　We shall show

1
2π

∫ π

−π
ρ(t)e−istdt = − σ2

π|s|2 + o

(
log |s|
|s|2+δ

)
, (2.12)
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and
1
2π

∫ π

−π
ρ(t)en(t)e−istdt =

λ2|n|3
π‖(s,−n)‖2s2

+ o

(
n log |s|
|s|2+δ

)
. (2.13)

The second formula (1.3) of Theorem 1.1 immediately follows from these ones.
The error terms in (2.8), (2.12) and (2.13) are evaluated by integration by parts. In the case

|s| < |n| we shall integrate by parts with respect to l to derive the error estimate in (2.8) which is
at most o(1/n), whereas in the case |s| > |n| we seek an error estimate of o(n/s2) or better and
thereby need to perform integration by parts twice with respect to t. At the final steps of these
processes we shall apply Lemma 11.2 in the former case and Lemma 11.4 in the latter, both of which
are derived by standard methods in Fourier analysis. The proofs of Theorems 1.2 and 1.3 involve
certain methods that are less standard.

Change of variables as being made in the derivation of (2.5) will be of repeated use in the
succeeding sections (sometimes with the roles of t and l reversed) and we here present trite estimates
of integrals as involved in (2.5) as the following lemma for convenience of later citation.

Lemma 2.3 Let δ, α and m are real numbers such that δ ≥ 0 and α > −1. If b(t, l) is a continuous
function on [−1, 1]× [−1, 1] such that b(t, l) = o(|t|δ + |l|δ) as |t| ∨ |l| → 0, then as t→ 0

∫ 1

0

lαb(t, l)
[Q(t, l)]m

dl =

{
o(|t|α+δ+1−2m) if α+ δ + 1− 2m < 0
o(log |t|) if α+ δ + 1− 2m = 0.

.

The rest of the paper is organized as follows. The proof of Theorem 1.1 is finished in Section 3
except for two lemmas which are proved in Section 4. In Section 5 we give some detailed estimates
of en(t), which are needed for the proof of Theorem 1.2 given in Section 6. Theorems 1.3 and 1.4
are proved in Sections 7 and 8, respectively. Section 9 is devoted to the case when δ ≥ 1 in our
basic moment condition (1.1). In Section 10 we indicate a way to reduce the problem to the case
when Q is diagonal; also briefly discuss the higher dimensional case as mentioned before. Section
11, the last section, is Appendix consisting of (A) the proof of Lemma 2.1 and (B) several lemmas
of Fourier analytical nature.

3 Proof of Theorem 1.1

In Sections 3 through 8 we suppose that Q is diagonal: Q(t, l) = σ2
1t

2 +σ2
2l

2. The proof of Theorem
1.1 given below is continuation of its outline advanced in the preceding section.

The case |s| < |n|. We have only to prove Lemma 2.2, namely to evaluate the difference of the
leading term on the right side of (2.8) from Hn(s). Write it as (2π)−2(r + r̃) so that

(2π)2Hn(s) = σ2
∫ π

−π
|t|e−istdt

∫ ∞

0

4 cosnl
Q(t, l)

dl + r(s, n) + r̃(s, n),

where
r(s, n) =

∫ π

−π
ρ(t)e−istdt

∫ π

−π

[
1

1− ψ(t, l)
− 2
Q(t, l)

]
einldl (3.1)

and
r̃(s, n) =

∫ π

−π
(ρ(t)− σ2|t|)e−istdt

∫ π

0

4 cosnl
Q(t, l)

dl −
∫ π

−π
σ2|t|e−istdt

∫ ∞

π

4 cosnl
Q(t, l)

dl

(recall ρ(t) = 1/π0(t)). We carry out estimation of r only: that of r̃ is similar but only simpler
because of the absence of a sinnl part in it (see (3.2) below). On first reversing the order of
integration and then integrating by parts (with respect to l)

r(s, n) = − 1
in

∫ π

−π
einl dl

∫ π

−π
F (t, l)e−istdt where F (t, l) =

−∂lψ(t, l)ρ(t)
(1− ψ(t, l))2

− 4σ2
2lρ(t)

[Q(t, l)]2

6



(∂l indicates the partial differentiation). From the readily verified bounds

|F (t, l)| = o
( |tl|(|t|δ + |l|δ)

(t2 + l2)2
)

and |∂lF (t, l)| = o
( |t|(|t|δ + |l|δ)

(t2 + l2)2
)

(|t| ∨ |l| → 0),

one employs Lemma 2.3 to deduce that
∫ π
−π |F (t, l)|dt = o(|l|δ−1) and

∫ π
−π |∂lF (t, l)|dt = o(|l|δ−2).

If δ > 0, these two estimates imply the required one, i.e., sups |r(s, n)| = o(|n|−1−δ), according to
the last assertion of Lemma 11.2 in Appendix (with the roles of n and s reversed: the convergence
in Lemma 11.2 is as s→∞ and uniform in n in reverse to the present situation).

In the case δ = 0 the same reasoning is inadequate and we need to look at the inner integral in
(3.1) more closely. To this end we decompose r = re + ro where

{
re
ro

}
=

∫ π

−π
ρ(t)e−istdt

∫ π

−π

[
1

1− ψ(t, l)
− 2
Q(t, l)

]{
cosnl
i sinnl

}
dl. (3.2)

Lemma 3.1 sups (|ro(s, n)| ∨ |re(s, n)|) = o(|n|−1−δ).

Proof. The case δ > 0 has been dealt with. Let δ = 0. As above we infer first that as |t| ∨ |l| → 0
∫ π

−π
|F (t, l)|dt = o(1/l);

∫ π

−π
|∂lF (t, l)|dt = o(1/l2), (3.3)

and then that sups |re| = o(1/n) (use the first assertion of Lemma 11.2 of Appendix)
For estimation of ro we exploit the fact that sinnl is an odd function of l and to this end put

h(t, l) =
ρ(t)
2

[
1

1− ψ(t, l)
− 1

1− ψ(t,−l)
]

= ρ(t)
iE[eiXt sinY l]

(1− ψ(t, l))(1− ψ(t,−l))
so that

ro = 2i
∫ π

0
sinnldl

∫ π

−π
e−isth(t, l) dt and ∂lh(t, l) =

1
2
[F (t, l)− F (t,−l)].

From EXY = σ12 = 0 it follows that E[eiXt sinY l] = o(|tl| + l2). Hence
∫ π
−π e

−isth(t, l) dt → 0 as
l→ 0 uniformly in s and by integrating by parts

ro =
i

n

∫ π

+0
cosnl dl

∫ π

−π
[F (t, l)− F (t,−l)]dt.

Now the required estimate, i.e. sups |ro| = o(1/n), follows from (3.3) in view of Lemma 11.2. 2

Up to now we have shown (1.2), the first formula of Theorem 1.1.

The case |s| ≥ |n|. We must prove (2.12) and (2.13). For the proof of the latter we set

g(t, l) = ρ(t)

[
1

1− ψ(t, l)
− 1

1− φ(l)

]
, (3.4)

so that
ρ(t)en(t) =

1
2π

∫ π

−π
g(t, l)(einl − 1)dl

and carry out simple computations to see that for t 6= 0,

∂tg(t, l) =
ψ′ρ

(1− ψ)2
+

(ψ − φ)ρ′

(1− ψ)(1− φ)

and ∂2
t g(t, l) =

(
(1− ψ)ψ′′ + 2[ψ′]2

)
ρ

(1− ψ)3
+

2ψ′ρ′

(1− ψ)2
+

(ψ − φ)ρ′′

(1− ψ)(1− φ)
,

7



where a dash as well as ∂t denotes (partial) differentiation with respect to t: ψ′ = ∂tψ = ∂ψ/∂t.
It is easy to see (under the condition δ > 0) that ρ′ is bounded, en(±0) = 0 and e′n(t) = o(1/t)

as t → 0 (which will be proved under δ = 0 in Sections 4 and 5); in particular (ρen)′(±0) = 0.
Then, performing integration by parts with the help of this last relation as well as of the periodicity
of ρen, we obtain

1
2π

∫ π

−π
ρ(t)en(t)e−istdt = − 1

2πs2

∫ π

−π
(ρen)′′(t)e−istdt

=
−1

4π2s2

∫ π

−π
e−istdt

∫ π

−π
∂2

t g(t, l)(e
inl − 1)dl, (3.5)

where because of possible singularity at the origin the outer integral must in general be understood
to be an improper integral (which exists since the boundary values (ρen)′(±0) do).

Let w(t) be a smooth even function such that w = 1 in a neighborhood of 0 and w = 0 for
|t| > 1 and set

F1(t, l) = w(t)∂2
t

[
2σ2|t|
Q(t, l)

]
(t 6= 0) (3.6)

and make decomposition
∂2

t g(t, l) = F1 + F2 + F3 (t 6= 0), (3.7)

with F2(t, l) =
ρ′′(t)

1− ψ(t, l)
− ρ′′(t)

1− φ(l)

and F3 being the rest ∂2
t g(t, l)− F1 − F2; explicitly

F3 =
ψ′′ρ

(1− ψ)2
+

2[ψ′]2ρ
(1− ψ)3

+
2ψ′ρ′

(1− ψ)2
− w(t)

(
|t|∂2

t

2σ2

Q
− 8σ2σ2

1|t|
Q2

)
. (3.8)

In the next section we obtain an explicit form of the contribution of F1 (Lemma 4.1); according to
it the right side of (3.5) can be written as

− λ2|n|3
π‖(s,−n)‖2s2

− 1
4π2s2

∫ π

−π
e−istdt

∫ π

−π
(F2 + F3)(einl − 1)dl +O(1/s4). (3.9)

Note that 2σ2|t|/Q(t, l) appearing in the definition of F1 is the principal part of ρ/(1− ψ).

Lemma 3.2 Let 0 ≤ δ < 1. Then as |s| → ∞,

1
2π

∫ π

−π
ρ(t)en(t)e−istdt = − λ2|n|3

π‖(s,−n)‖2s2
+ o

(n log |s|
|s|2+δ

)
.

Proof. Let δ > 0. In view of the formulae (3.5) and (3.9) it suffices to show that

Ik :=
∫ π

−π
e−istdt

∫ π

−π
Fk(t, l)(1− einl)dl = o

(n log |s|
|s|δ

)
(k = 2, 3). (3.10)

It follows that as t− t′ → 0 and t2 + l2 → 0,

F3(t, l) =
|t|

[Q(t, l)]2
× o

(
|t|δ + |l|δ

)
(3.11)

and

|F3(t, l)− F3(t′, l)| = |t− t′|
[Q(t, l)]2

× o
(
|t|δ + |l|δ

)
+

1
[Q(t, l)]3/2

× o
(
|t− t′|δ

)
.

According to Lemma 11.4 (with ω = (1, 0)) of Appendix (B) these bounds together yield the required
estimate of I3, provided δ > 0. The case δ = 0 is dealt with at the end of this section.
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The estimation of I2 is done in a similar way if δ > 0: write I2 = 2π
∫
e−istρ′′(t)en(t)dt, observe

that |en(t)| and |te′n(t)| are uniformly bounded by a constant times |n| (we shall give more detailed
estimates for both of them in Section 5) and apply the estimates concerning ρ′′ given in Lemma 4.2
of Section 4 and you will find the required estimate of I2 in view of Lemma 11.4 (with d = 1). 2

The proof of (2.12) is similar but only simpler: one has only to observe that
∫ π
−π |t|w(t)e−istdt =

2
∫ π
0 tw(t) cos st dt = −2s−2 +O(s−N ) for every N > 0 and

∫ π

−π

(
ρ(t)− σ2|t|w(t)

)
e−istdt = o

(
log |s|
|s|2+δ

)
.

In the case δ > 0 the latter is obtained by applying Lemmas 4.2 and 11.4 as in the proof of Lemma
3.2. If δ = 0, we once integrate by parts the above integral and then split the range of the resulting
integral at t = ±1/|s|. The integral on |t| < 1/|s| is O(1/s2) since ρ′ is bounded and the other on
|t| ≥ 1/s is o((log |s|)/s2) owing to ρ′′ = o(1/t) (Lemma 4.2). Thus (2.12) has been verified.

For the proof of Lemma 3.2 in the case δ = 0 we can proceed as in the argument just made
above (namely we prove that

∫
|t|<1/s(ρen)′e−istdt = O(1/s) and

∫
|t|≥1/s(ρen)′e−istdt = o((log |s|)/s2)

of which the details will be found in the beginning of Section 6; see (6.2) and a similar estimate for
F1 given after it). This completes the proof of Lemma 3.2 and hence the proof of Theorem 1.1.

4 Lemmas on F1(t, l) and ρ(t)

In this section we prove two lemmas that have been applied in the second half of the preceding
section, of which all the arguments given in this section are independent. Recall it is supposed that
Q is diagonal (so that λ = σ2/σ2

2 = σ1/σ/2). The first lemma concerns the function

F1(t, l) = w(t)∂2
t

[
2σ2|t|
Q(t, l)

]
= w(t)

(at2 + bl2)|t|
[Q(t, l)]3

, (t 6= 0),

where a = 4σ4
1σ

2 and b = −12σ6 (these values of a, b are of no significance in what follows).

Lemma 4.1 Uniformly in n, as |s| → ∞,

1
4π2s2

∫ π

−π
e−ist dt

∫ π

−π
F1(t, l)(einl − 1)dl =

λ2|n|3
π‖(s,−n)‖2s2

+O

(
1
s4

)
.

Proof. Let n > 0. Twice differentiate the both sides of the identity
∫ π

−π

2σ2|t|
Q(t, l)

(einl − 1)dl = 2πe−λn|t| − 2π −
∫ ∞

π

4σ2|t|
Q(t, l)

(cosnl − 1)dl

and multiply by w(t) the obtained derivatives, and you see
∫ π

−π
F1(t, l)(einl − 1)dl = 2π(λn)2e−λn|t|w(t)− 2

∫ ∞

π
F1(t, l)(cosnl − 1)dl (t 6= 0). (4.1)

Then deduce that as s→∞
1

4π2

∫ π

−π
e−ist dt

∫ π

−π
F1(t, l)(einl − 1)dl

=
λ2n3

π‖(s,−n)‖2
− 4π(λn)2

∫ ∞

0
[1− w(t)]e−λnt cos st dt+O

(
1
s2

)
,

which, the last integral being O(|s|−N ) (since nN+2
∫∞
0 (1−w)e−λntdt is bounded), shows the asymp-

totic formula of the lemma. 2

Remark 3. For n 6= 0 the asymptotic formula of Lemma 4.1 is valid and unaltered even if einl

replaces einl − 1. It is noted however that for the derivation of (3.5) the factor einl − 1 plays a
significant role and can not be replaced by einl.
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Lemma 4.2 (i) ρ(t) = σ2|t| + o(|t|1+δ), ρ′(t) = ±σ2 + o(|t|δ) and ρ′′(t) = o(|t|δ−1) as t → ±0;
(ii) for |t1| < |t2|, as t1 − t2 → 0

|ρ′′(t1)− ρ′′(t2)| = o
( |t1 − t2|
|t1|2−δ

)
+ o

( |t1 − t2|δ
|t1|

)
; (4.2)

(iii) moreover, if

ζ(t) = − ρ
2

2π

∫ π

−π

∂2
t ψ + E[X2eilY ]

(1− ψ)2
dl (4.3)

and ρ̃′′(t) = ρ′′(t)− ζ(t), then ρ̃′′ is differentiable for |t| > 0 and ρ̃′′′(t) = o(|t|δ−2) as t→ 0

Proof. The first estimate of (i) is the same as (2.6). Similarly to the verification of it one deduces
π′0(t) = −(σ2t2)−1t/|t| + o(|t|δ−2), and substitution from it as well as from ρ(t) = σ2|t| + o(|t|1+δ)
into ρ′ = −ρ2π′0 gives the desired estimate of ρ′. For verification of the rest of the lemma observe

ρ′′ =
2(ρ′)2

ρ
− ρ2π′′0 and π′′0 =

1
2π

∫ π

−π

ψ′′

(1− ψ)2
dl +

1
2π

∫ π

−π

2[ψ′]2

(1− ψ)3
dl,

where ψ′ = ∂tψ and ψ′′ = ∂2
t ψ. Then as above we see that ρ2π′′0 ∼ 2(ρ′)2/ρ = 2σ2|t|−1(1 + o(1)) as

t→ 0, hence ρ′′(t) = o(|t|−1). Put

θ(t) :=
2ρ2

σ2|t|3 +
ρ2

2π

∫ π

−π

σ2
1

(Q/2)2
dl − ρ2

2π

∫ π

−π

2(σ2
1t)

2

(Q/2)3
dl,

so that

ρ̃′′(t)− θ(t) =
2(ρ′)2

ρ
− 2ρ2

σ2|t|3 −
ρ2

2π

∫ π

−π

(
2[ψ′]2

(1− ψ)3
− 2(σ2

1t)
2

(Q/2)3

)
dl

+
ρ2

2π

∫ π

−π

(
1

(1− ψ)2
− 1

(Q/2)2

)
E[X2eilY ]dl +

ρ2

2π

∫ π

−π

E[X2(eilY − 1)]
(Q/2)2

dl.

With the help of the estimates ψ′′ = −σ2
1 + o(|t|δ + |l|δ), ψ′ = −σ2

1t + o(|t|1+δ + |l|1+δ) etc. an
application of Lemma 2.3 shows that both ζ(t) and ρ̃′′(t)−θ(t) are o(|t|δ−1). It in particular follows
that ρ̃′′(t) = o(1/t), hence θ(t) = o(1/t), which in turn implies θ(t) = O(1) and θ′(t) = O(1/t) since
|t|3θ/ρ2 is ‘analytic’ in |t|. Consequently ρ′′(t) = o(|t|δ−1). Similarly we obtain ρ̃′′′(t) = o(|t|δ−2).

If hl(t) = ψ′′(t, l), then hl(t)−hl(t′) = o(|t−t′|δ) uniformly in l, and we deduce that ζ(t) satisfies
the property (4.2) in place of ρ′′. In view of the estimate ρ̃′′′(t) = o(|t|δ−2) the function ρ̃′′ also
satisfies the same property without the second term on the right side of (4.2). Thus (4.2) is verified.
2

5 Estimation of en(t)

In this section we consider the case δ = 0 only. The results obtained in this section will be used in
the succeeding sections. Set

{
he

n(t)
ho

n(t)

}
=

1
2πn

∫ π

−π

[
1

1− ψ(t, l)
− 1

1− φ(l)

]{
cosnl − 1

sinnl

}
dl,

so that en(t)/n = he
n(t) + iho

n(t). Recall that en(t) = π−n(t)− π0(t) + a(n).

Lemma 5.1 Put f(x) = |x|−1(e−|x| − 1) + 1 (= 1
2! |x| − 1

3! |x|2 + · · ·) and define rn(t) via

he
n(t) = σ−2

2 f(λnt) + rn(t).

Then limt→0 supn |rn(t)| = limn→∞ supt |rn(t)| = 0 and rn(t) = o(nt) as nt → 0 and these same
estimates hold true both for |t|r′n(t) and for t2r′′n(t) in place of rn(t).
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Proof. By E[XY ] = 0 we have ψ(t, l)− φ(l) = −1
2σ

2
1t

2 + t× o(|t|+ |l|) and hence

ψ − φ

(1− ψ)(1− φ)
− −2λ2t2

Q(t, l)l2
=
t× o(|t|+ |l|)

(t2 + l2)l2
(5.1)

as |t| ∨ |l| → 0. The required estimate of rn(t) follows from

1
π

∫ π

0

−2λ2t2

Q(t, l)l2
(cosnl − 1)dl =

1
π

∫ n

0
dt

∫ π

0

2λ2t2

Q(t, l)
· sin tl

l
dl =

e−λnt − 1 + λnt

σ2
2λnt

+O(t2/n).

The estimates of |t|r′n(t) are obtained by simply observing that the derivative with respect to t of
the left side of (5.1) is o(|t| + |l|)/(t2 + l2)l2 (make a telescopic decomposition of the difference of
two ratios in (5.1)). The second derivative is treated similarly. 2

The next lemma is an immediate corollary of the preceding lemma.

Lemma 5.2 Uniformly in n ≥ 1 and |t| < π, (i) |he
n(t)| ³ |nt| ∧ 1 (namely, C−1(|nt| ∧ 1) ≤

|he
n(t)| ≤ C(|nt| ∧ 1) for some constant C > 0); and (ii) |t(he

n)′(t)| ³ |nt| ∧ 1.

Lemma 5.3
lim

n→∞ sup
t

∣∣∣∣
∫ π

−π

1
1− ψ(t, l)

sinnl
n

dl

∣∣∣∣ −→ 0. (5.2)

Moreover limt→0 supn |ho
n(t)| = limn→∞ supt |ho

n(t)| = 0.

Proof. Denote by I = I(t, n) the integral appearing in (5.2). Then

I =
∫ π

−π

iE[eitX sin lY ]
(1− ψ(t, l))(1− ψ(t,−l))

sinnl
n

dl.

Since E[XY ] = 0, we can write

E[eitX sin lY ] = E[eitX(sin lY − lY )] + E[(eitX − 1− itX)Y ]l;

correspondingly we decompose I = I1 + I2. In view of the integrability

∫ π

−π

E| sin lY − lY |
|l|3 dl = E

[ ∫ |Y |π

−|Y |π
| sinu− u|

|u|3 du|Y |2
]
< 4E[Y 2] <∞, (5.3)

the dominated convergence theorem shows that I1 converges to zero as n → ∞ uniformly in t;
moreover it also follows that

I1 −→
∫ π

−π

1
1− φ(l)

sinnl
n

dl

as t→ 0 uniformly in n. The second part I2 converges to zero as n→∞ uniformly in t, ε < |t| ≤ π
for every ε > 0 ; but in the inequality

|I2| ≤ C
E|(eitX − 1− itX))Y |

|t|
∫ π

−π

|t|l2
(t2 + l2)2

∣∣∣∣
sinnl
nl

∣∣∣∣dl,

the integral on the right side is uniformly bounded and the fraction before it approaches zero as
t→ 0, so that the convergence as n→∞ is uniform in |t| ≤ π. These show the three assertions of
the lemma simultaneously. 2

Lemma 5.4 limt→0 supn |t(ho
n)′(t)| = 0 and limt→0 supn |t2(ho

n)′′(t)| = 0.
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Proof. For the proof of the first half it suffices (owing to skew symmetry in l) to verify that as t→ 0
∫ π

−π

[∣∣∣E[XeiXt+iY l]
∣∣∣ ·

∣∣∣∣
1

(1− ψ)2
− 4
Q2

∣∣∣∣ +
4|E[XeiXt sinY l]|

[Q(t, l)]2

]
|tl|dl→ 0.

But this follows from Lemma 2.3 since E[XeiXt+iY l] = O(|t| + |l|) and E[XeiXt sinY l] = o(|l|) as
|t|+ |l| → 0). The proof of the second one is similar. 2

As a consequence of Lemmas 5.1, 5.3 and 5.4 we have

Lemma 5.5 If f(x) = |x|−1(e−|x| − 1) + 1, then en(t)/|n| = σ−2
2 f(λnt) + rn(t) + ho

n(t) with
rn(t) + ho

n(t), t(rn + ho
n)′(t) and t2(rn + ho

n)′′(t) approaching zero as t → 0 uniformly in n. In
particular each of en(t)/n, te′n(t)/n and t2e′′n(t)/n tends to zero as nt → 0 and are uniformly
bounded.

In the next section we apply the result of this section only for (6.2). It is noted that we have
dealt and will deal with the derivatives e′n(t), e′′n(t) but only implicitly in the estimation of the
integral of F3 through the identity

1
2π

∫ π

−π
F3(t, l)(1− einl)dl = ρ(t)e′′n(t) + 2ρ′(t)e′n(t)− 1

2π

∫ π

−π
F1(t, l)(1− einl)dl,

wherein we shall need to more closely look at them in relation to the corresponding parts involved
in its last term.

6 Proof of Theorem 1.2

We are to evaluate Hn(s) for |s| > |n| under the condition (1.6), i.e. under E[X2 log |X|] <∞. Let
g, F1, F2 and F3 are functions defined in (3.4) and (3.7). Because of possible singularity at the
origin we separate

ηα
s,n :=

1
4π2

∫

|t|<α/|s|
e−istdt

∫ π

−π
∂2

t g(t, l)(e
inl − 1)dl

from the integral on the right side in (3.5) and write the latter as

1
2π

∫ π

−π
ρ(t)en(t)e−istdt =

−1
4π2s2

∫

α/s<|t|<π
e−istdt

∫ π

−π
∂2

t g(t, l)(e
inl − 1)dl − ηα

s,n

s2
. (6.1)

Recalling
∫
∂tg(einl− 1)dl = 2π(ρen)′ one integrates by parts back and uses Lemma 5.5 to find that

1
n
ηα

n,s → 0 as s→∞ and α ↓ 0 in this order uniformly for |n| < |s|. (6.2)

In the same limit we have also
∫
|t|<α/|s| e

−istdt
∫ π
−π F1(t, l)(einl − 1)dl→ 0 and, in view of (3.9),

Hn(s) = a∗(n)H0(s)− λ2|n|3
π‖(s, n)‖2s2

− 1
4π2s2

∫

α/s<|t|<π
e−istdt

∫ π

−π
(F2 + F3)(einl − 1)dl + o

(
n

s2

)
.

Our task for the rest of the proof consists of proving that for each α > 0

1
n

∫

α/s<|t|<π
e−istdt

∫ π

−π
(F2 + F3)(einl − 1)dl→ 0 as s→∞ uniformly for |n| < |s| (6.3)

and of obtaining a correct asymptotic form of H0 and Lemma 4.1). For both purposes we shall
make use of the assumption (1.6), which will be applied via the following lemma.

Lemma 6.1 E[X2 log |X|] <∞ if and only if
∫∫

[−π,π]2
E0

[
X2(1−cos tX)

] dtdl

t2 + l2
<∞, and if this

is the case, then
∫∫

[−π,π]2
E0

[
X2|1− eitX |

] dtdl

t2 + l2
<∞.
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Proof. The integral
∫∫

[−π,π]2
(1− cos tX)1(|tX| < 1)

dtdl

t2 + l2
is dominated by

∫ π

−π
dl

∫

|t|<1/|X|
|tX|dt
t2 + l2

≤ 4
∫ ∞

0
dv

∫ 1

0

udu

u2 + v2
<∞,

while the same integral but on |tX| ≥ 1 equals

41(|X| 6= 0)
∫ π

1/|X|
1− cos tX

t
dt

∫ π/t

0

du

1 + u2
∼ C log |X|

as |X| → ∞ (with C = 4
∫∞
0 (1 + u2)−1du). Thus the equivalence of the first half of the lemma

follows. The second half is proved by the same argument that is just advanced. 2

Now we proceed into evaluation of H0, in which we need to cope with the delicate circumstance
that there is little information available as to regularity of ρ′′ other than ρ′′(t) = o(1/t).

Evaluation of H0. For simplicity let s > 0. Then, recalling 2πH0(s) = − ∫ π
−π ρ(t)e

−istdt we directly
derive

2πs2H0(s) =
[
ρ′(t)e−ist

]α/s

t=−α/s
+ is

∫

|t|<α/s
ρ′(t)e−istdt+

∫

α/s<|t|<π
ρ′′(t)e−istdt (6.4)

independently of the arguments made above. From the relation ρ′ = σ2t/|t| + o(1) it follows that
as s → ∞ and α ↓ 0 in this order, the first term converges to 2σ2 and the second one to zero. For
the derivation of the desired estimate of H0 we must prove that for each α > 0,

lim
s→∞

∫

α/s<|t|<π
ρ′′(t)e−istdt = 0. (6.5)

For the proof we make use of the decomposition of ρ′′ in Lemma 4.2:

ρ′′(t) = ρ̃′′(t) + ζ(t), where ζ(t) = − ρ
2

2π

∫ π

−π

∂2
t ψ + E[X2eilY ]

(1− ψ)2
dl. (6.6)

Note that ρ̃′′ is differentiable for |t| > 0, while ζ(t) may not. In any case we have

Lemma 6.2 (i)
∫ π
−π |ζ(t)|dt <∞ if E[X2 log |X|] <∞ and (ii) ρ̃′′′(t) = o(|t|−2) as t→ 0.

Proof. (i) is immediate from Lemma 6.1. (ii) is obtained in Lemma 4.2 2

Remark to Lemma 6.2. One can show that
∫ π
−π |ρ′′(t)|dt < ∞ if E[X2 log |X|] < ∞, which is

useful but dispensable; we shall need to use the second assertion of the lemma in several places.

The proof of (6.5) is now given as follows. The integrability of ζ(t) implies that its contribution
vanishes in the limit under consideration and that the improper integral

∫ π
−π ρ̃

′′dt exists. On using
the latter fact together with the bound ρ̃′′′ = o(1/t2) the contribution of ρ̃′′ also vanishes (see Lemma
11.2 of Appendix).

We can thus conclude that H0(s) = π−1σ2s−2(1 + o(1)) under E[X2 log |X|] <∞.

We turn to the proof of (6.3). First consider the contribution of F3 and break it into two parts:

ΘI =
∫

α/s<|t|<π
e−istdt

∫ π

−π
[l2F3(t, l)]

1− cos nl
l2

dl,

ΘII =
∫

α/s<|t|<π
e−istdt

∫ π

−π

[
lF3(t, l)

]sin nl
l

dl.

We have
|F3| ≤ |t|

[Q(t, l)]2
c(t, l) (6.7)
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with c(t, l) bounded and c(t, l) → 0 (|t|+ |l| → 0) and, making use of this, infer that ΘI = n× o(1)
as s→∞ (see Lemma 11.1 of Appendix). The corresponding estimate of ΘII requires the condition
(1.6).

Lemma 6.3 If E[X2 log |X|] <∞, then ΘII/n→ 0 as |s| → ∞ uniformly in n.

Proof. Put

h(t, l) = ρ(t)
∂2

t ψ(t, l) + E[X2eilY ]
(1− ψ(t, l))2

and fn(t) =
∫ π

−π
[lF3(t, l)− lh(t, l)]

sinnl
nl

dl,

so that
ΘII = n

∫

α/s<|t|<π
e−istdt

∫ π

−π
lh(t, l) · sinnl

nl
dl + n

∫

α/s<|t|<π
e−istfn(t)dt. (6.8)

As before fn(t) is differentiable for t 6= 0 while h(·, l) may not. By the same arguments that prove
Lemma 6.2 one verifies that

(i)
∫
[−π,π]2 |lh(t, l)|dtdl <∞ if E[X2 log |X|] <∞ and

(ii) supn |fn(t)| = o(|t|−1) and supn |f ′n(t)| = o(|t|−2) as t→ 0.

Taking these into account, we make use of Lemmas 11.1 and 11.2 of Appendix for the first and the
second terms, respectively, to conclude that ΘII = n× o(1). 2

It remains to deal with the contribution of F2 in (6.3). Suppose E[X2 log+ |X|] <∞. Put

F21 =
ρ′′(t)

1− ψ(t, l)
and F22 =

ρ′′(t)
1− φ(l)

,

so that F2 = F21 − F22. In the evaluation of H0 made above we have verified
∫

α/s<|t|<π
e−istdt

∫

|l|<π
F22(1− einl)dl = 2πa(n)

∫

α/s<|t|<π
ρ′′(t) e−istdt = n× o(1). (6.9)

In a similar way the integral involving F21 sinnl is estimated to be n× o(1) in view of (5.2).
Finally we work with F21(1− cosnl). We make decomposition ρ′′ = ρ̃′′ + ζ in (6.6). On the one

hand the integrability of ζ (Lemma 6.3 (i)) implies, by dominated convergence, that
∫ π
−π |ζ(t)| · |1−

ψ|−1dt = o(1/l2) as l → 0 and hence the contribution of ζ is n × o(1) in view of Lemma 11.1. On
the other hand, noting that for some constant C

∫

|l|<π

1
|1− ψ| · |1− cosnl|dl ≤ Cn;

∫

|l|<π

∣∣∣∣
∂tψ

(1− ψ)2

∣∣∣∣ · |1− cosnl|dl ≤ C
n

|t| ,

we apply Lemma 11.2 to see that the contribution of ρ̃′′ is n× o(1). We accordingly conclude that∫
α/s<|t|<π e

−istdt
∫ π
−π F21(1− cosnl)dl = n× o(1) for each α > 0 as required.

The proof of (6.3) is now complete. Summarizing the results obtained above we have

Proposition 6.1 If E[X2 log |X|] <∞, then uniformly for n < |s|, as |s| → ∞,
∫ π

−π
ρ(t)en(t)e−istdt = − σ2

1

πσ2
2

· |n|3
‖(s,−n)‖2s2

+
n

s2
× o(1).

Combined with (2.11) and the estimate of H0(s) already obtained this formula yields

Hn(s) =
σ2

2a
∗(n)

π‖(s, n)‖2
(1 + o(1)) (|s| > n),

which together with the first half of Theorem 1.1 finish the proof of Theorem 1.2 (in view of the
asymptotic form of a(n) as mentioned in Remark 1 (i)).
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7 Proof of Theorem 1.3

Let s > 0 throughout this section. First consider H0. The proof starts from the expression of
2πs2H0(s) given in (6.4). The sum of the first two terms of it equals

[
ρ′(t)e−ist

]α/s

t=−α/s
+ is

∫

|t|<α/s
ρ′(t)e−istdt = 2σ2 +

∫

|t|<α/s
ρ′′(t)e−istdt.

But
∫
|t|<α/s ρ

′′(t)dt = (ρ′(α/s)− σ2
2) + (−σ2

2 − ρ′(−α/s)) → 0 and
∫
|t|<α/s |ρ′′(t)(e−ist− 1)|dt→ 0 as

s→∞ locally uniformly in α, so that

2πs2H0(s) = 2σ2 +
∫

α/s<|t|<π
ρ′′(t)e−istdt+ o(1), (7.1)

where o(1) → 0 as s → ∞ for each α > 0. Thus, on letting α = 1, the assertion of Theorem 3 is
paraphrased that ∫

1/s<|t|<π
ρ′′(t)e−istdt =

2
λ
Mε(s)(1 + o(1)) + o(1). (7.2)

Recall (6.6), i.e., the decomposition ρ′′ = ρ̃′′+ ζ made in (iii) of Lemma 4.2, where we observed that∫
1/s<|t|<π ρ̃

′′(t)e−istdt→ 0 (under the existence of the second moment only); hence (7.2) is reduced
to

J(s) :=
∫

1/s<|t|<π
ζ(t)e−istdt =

2
λ
Mε(s)(1 + o(1)) + o(1). (7.3)

The proof of this relation is given below, of which the method is the same as one devised in [9] for
similar formulae.

We write

ζ(t) =
ρ2(t)
2π

∫ π

−π

E[X2eilY (eitX − 1)]
(1− ψ(t, l))2

dl

and decompose ζ = ζ0 + ζ1 + ζ2 where

ζ0(t) =
ρ2

2π

∫ π

−π

E[X2eilY eitX(1− w(Xt))]
(1− ψ)2

dl; ζ1(t) = − ρ
2

2π

∫ π

−π

E[X2eilY (1− w(Xt))]
(1− ψ)2

dl

and ζ2(t) =
ρ2

2π

∫ π

−π

E[X2eilY (eitX − 1)w(Xt)]
(1− ψ)2

dl.

Here w is a smooth function introduced just prior to (3.6). We may suppose that w(t) = 1 for
|t| < 1/2.

Similarly to the proof of Lemma 6.1 we see that

∫ π

−π
|ζ2(t)|dt ≤ C

∫ 1

0
du

∫ ∞

0

u2|eiu − 1|
(u2 + v2)2

dv <∞,

which in view of the Riemann-Lebesgue lemma implies that
∫

1/s<|t|<π
ζ2(t)e−istdt = o(1). (7.4)

Note that |w′(Xt)Xt| as well as 1 − w(Xt) is bounded by a constant times the indicator function
1{|Xt|>1/2}. On observing that ζ1(t) = o(1/t) and ζ ′1(t) = o(1/t2), an integration by parts gives

∫

1/s<|t|<π
ζ1(t)e−istdt = o(1).

We are left with ζ0. Split the range of integration into three parts according as |X−s| ≥ εs, |X−
s| < εs or X = s and call J1, J2 and J3, respectively, their contributions to

∫
1/s<|t|<π ζ0(t)e

−istdt.

15



We then integrate by parts with respect to t by factorizing the integrand as eit(X−s)×(the other) to
deduce that for each ε > 0, as s→∞

|J1| =
1
2π

∣∣∣∣
∫

1/s<|t|<π
ρ2dt

∫ π

−π

E[X2eit(X−s)(1− w(Xt))eilY ; |X − s| ≥ εs]
(1− ψ)2

dl

∣∣∣∣

≤ CE

[
sX2

|X − s| ; |X − s| ≥ εs, |X| ≥ s

2

]
+ C

∫ π

1/s
E

[
X2

|X − s| ; |X − s| ≥ εs, |X| ≥ 1
2t

]
dt

t2

−→ 0.

Here for the inequality we have made use of the relations ρ(π) = ρ(−π), w(±Xπ) = 1 for X 6= 0,
s−2

∫ π
−π(s−2 + l2)−2dl = O(s) and t

∫ π
−π(t2 + l2)−2dl = O(1/t2).

We may suppose that ε < 1
4 and w(x) = 0 if |x| ≥ 3/4, so that on the event |X − s| < εs,

1− w(Xt) = 1 for |t| ≥ 1/s. Taking this into acount we write J2 in the form

J2 = E

[
X2

∫

1/s<|t|<π

eit(X−s)

|t| h(t)dt; 1 ≤ |X − s| < εs

]
, (7.5)

where

h(t) = h(t, Y ) =
1
2π

∫ π

−π

|t|ρ2eilY

(1− ψ)2
dl.

Split the range of the integral under the expectation symbol in (7.5) according as |(X − s)t| > 1 or
≤ 1 and call J21 and J22 the corresponding parts of J2.

By integration by parts

|J21| ≤ E

[
X2

∫

1/|X−s|<|t|<π

∣∣∣∣
∫ (sign t)∞

t

ei(X−s)u

|u| duh′(t)
∣∣∣∣dt; 1 ≤ |X − s| < εs

]
+ o(1), (7.6)

where sign t = t/|t|. Since | ∫∞|t| e±i|X−s|uu−1du| ≤ C/|(X−s)t| and |h′(t)| ≤ C/|t|, the outer integral
under the expectation is bounded, hence J21 is o(1) (as s→∞).

For evaluation of J22 we further decompose it into three parts in the same way as we did J but
by means of Y in place of X − s and call J221, J222 and J223 those that correspond to |Y | ≥ εs,
0 < |Y | < εs and Y = 0, respectively. The same method that is applied to J1 verifies J221 = o(1).
In what follows we prove that the remaining parts, i.e., J222, J223 and J3, together constitute Mε(s).
For simplicity we consider the double integral involved in J222 only on the first quadrant t > 0, l > 0,
and let J̃222 denote the corresponding one fourth of it, so that

J̃222 =
1
2π
E

[
X2

∫ 1/|X−s|

1/s
dt

∫ π

0

ρ2ei[t(X−s)+lY ]

(1− ψ)2
dl; 1 ≤ |X − s| < εs, 1 ≤ |Y | < εs

]
.

By means of the indefinite integral
∫∞
l u−1eiY udu we integrate by parts as in (7.6) to see that the

upper limit π of the inner integral may be replaced by α/|Y | with an arbitrarily small α > 0; also
1/|X − s| may be replaced by α/|X − s|. These in turn allow ei[t(X−s)+lY ] in the integrand to be
replaced by 1. Now observing that

∫ 1/|X−s|

1/s
dt

∫ 1/|Y |

0

ρ2dl

(1− ψ)2
=

∫ 1/|X−s|

1/s
g(Y t)

dt

t
(1 + o(1)) where g(x) =

∫ 1/|x|

0

4σ4du

[Q(1, u)]2
, (7.7)

that g(x) → π/λ (x → 0) and g(x) < C/|x| (|x| > 1) and then that as (|X − s| ∨ |Y |)/s → 0, the
double integral above takes on the form (π/λ) log[s/(|X − s| ∨ |Y |)] · (1 + o(1)), we obtain

J222 =
2
λ
E

[
X2 log

s

|X − s| ∨ |Y | ; 1 ≤ |X − s| < εs, 1 ≤ |Y | < εs

]
(1 + o(1)) + o(1).

In the same way we also obtain

J223 =
2
λ
E

[
X2 log

s

|X − s| ; 1 ≤ |X − s| < εs, Y = 0
]
(1 + o(1)) + o(1);
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J3 = s2E

[ ∫

1/s<|t|<π

h(t)
|t| dt; X = s

]
=

2
λ
E

[
X2 log

s

|Y | ∨ 1
;X = s, |Y | < εs

]
(1 + o(1)) + o(1).

Thus we conclude J222 + J223 + J3 = 2λ−1Mε(s)(1 + o(1)) + o(1). The proof of (7.2) is complete.

The case n 6= 0. In the proof of Theorem 1.2 the term ΘI and the second half of ΘII in (6.8)
are disposed of without using the extra moment condition; the contribution of F22 given in (6.9)
cancels out with that involved in a(n)H0(s) (see (7.1)). The remaining terms among those arising
from F2 + F3 are the first half of ΘII in (6.8) and the contribution of F21, both of which we must
examine. As for F21 the factor ρ′′(t) may be replaced by ζ(t). From these observations it follows
that

Hn(s) =
1
π

(
σ2

2a
∗(n)

s2/λ
− λ2|n|3
‖(s,−n)‖2s2

)
[1 + o(1))] +

JA + JB

2πs2
(|s| > ε|n|, |s| → ∞),

where
JA = −

∫

1/s<|t|<π
[en(t)− a(n)]ζ(t)e−istdt

JB =
−i
2π

∫

1/s<|t|<π
e−istdt

∫ π

−π
ρ(t)

E[X2eiY l(eiXt − 1)]
(1− ψ)2

sinnldl

and o(1) is uniform in n. The estimation of JA and JB proceeds parallel to that of J and we only
point out what modification is needed. To this end it is convenient to write ζA, JA

k etc. for the
corresponding functions.

First we prove that
JB = |n|Mε(s)× o(1). (7.8)

We must show that the convergence is uniform in n. Those for which this matters are the convergence
in (7.4) with ζB

2 in place of ζ2 and the estimation of JB
222 +JB

222 +JB
3 . The former one, for which the

Riemann-Lebesgue lemma is used, can be disposed of by applying Lemma 11.1. For the latter we
observe that first 1− ψ may be replaced by 1

2Q and then eiY l by i sinY l; hence it suffices to verify

E

[
X2

∫ 1/|X−s|∨1

1/s
dt

∫ 1/|Y |

0

ρl sinY l
[Q(t, l)]2

dl; |X − s| < εs, 0 < |Y | < εs

]
= o(1).

This however is obvious from
∫ 1
0 dt

∫ α
0 (t2 + l2)−2tl2dl = 1

2 arctanα ≤ α/2 (α > 0). Thus (7.8) has
been proved.

Since both en(t)/n and te′n(t)/n are uniformly bounded and en(t)/n → 0 as t → 0, the very
same arguments leading to (7.3) verifiy that s→∞

JA = 2λ−1a(n)Mε(s)(1 + ob(1)),

but here uniformity of ob(1) is not claimed (and not true in general). To have some uniform estimate
we use the decomposition en(t) = |n|[f(λnt)/σ2

2 + rn(t) + ho
n(t)] given in Lemma 5.5. According to

the estimates stated therein the contribution of rn(t) + ho
n(t) is o(1). We then infer from (7.3) that

JA =
2
λ

(
a(n)− |n|

σ2
2

)
Mε(s)(1 + o(1)) +

∫

1/s<|t|<π

|n|(1− f(λnt))
σ2

2

ζ(t)e−istdt+ o(1). (7.9)

On arguing as in the case of J222 (we have the additional factor |n|(1− f(λnt)) = (1− e−λ|nt|)/λ|t|
in the second integral in (7.7)) the last integral may be written in the form

2|n|
λσ2

2

E

[
X2 log

s

|X − s| ∨ |Y | ∨ n ; 1 ≤ |X − s| ∨ |Y | < εs

]
(1 + o(1)) + o(1). (7.10)

Finally use the bound a(n) ≥ |n|/σ2
2 ([7]:P31.1) and note that the expectation above is not larger

than Mε(s) to obtain the second assertion of Theorem 1.3. Thus its proof is complete.
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8 Proof of Theorem 1.4

Although Theorem 1.4 can be derived from Theorem 1.3 by elementary computations, here is given
a direct proof. We are to make estimation of the integrated tail En(s) = Hn(s) +Hn(s + 1) + · · ·
in the case δ = 0. For each α > 0 define a probability, cα say, on Z by

cα(0) =
1
πα

− 2e−2πα

1− e−2πα
; cα(s) =

1
π
· α

α2 + s2
s 6= 0

and put Cα(s) = cα(s) + cα(s+ 1) + · · ·. Using the Poisson summation formula one sees that

ĉα(t) :=
∑
s

cα(s)eist =
∑
s

e−α|t+2πs| − 2e−2πα

1− e−2πα
;

hence
Cα(s) =

α

πs
+O

(
α

(α2 + s2)2

)
as

α

s
→ 0 and ĉα(t) = e−α|t| + rα(t)

with rα(t) being differentiable arbitrarily many times, rα(0) = r′α(0) = 0 and r′′α(t) bounded for
α ≥ 1, |t| < π. In view of (2.11) and Lemma 5.5, Ĥn(t) = 1 − a∗(n)ρ(t) + o(nt) as nt → 0, in
particular |Ĥn(t) − ĉσ2a∗(n)(t)|/t is integrable about the origin. Also, as in the proof of Lemma
5.2, one observes that Ĥ ′

n(t) = O(n) and Ĥ ′′
n(t) = O(n/t) (t 6= 0). Now we take α = σ2a∗(n) and

compare En with Cα:

En(s)− Cσ2a∗(n)(s) =
1
2π

∫ π

−π

Ĥn(t)− ĉσ2a∗(n)(t)
1− e−it

e−istdt.

Splitting the range of integration at |t| = K/s and making integration by parts for the integral over
K/s ≤ |t| ≤ π one infers that the integral on the right side may be written as

−1
s

∫

K/s<|t|<π

Ĥ ′
n(t)

1− e−it
e−istdt− 2σ2a∗(n)

s

∫ π

K/s

e−σ2a∗(n)t

t
cos st dt+ o

( |n| ∨ 1
s

)

as s/(|n|∨1) →∞ for each K > 1. On integrating by parts once more the first integral is dominated
by a constant times |n|/K. On the other hand changing the variable shows that the second integral
is dominated by 1/K. These together verify that as s/(|n| ∨ 1) → ∞, En(s) − σ2a∗(n)/πs =
o((|n| ∨ 1)/s) as desired.

9 The case δ ≥ 1

In this section we consider the case when the moment condition (1.1) holds for some δ ≥ 1. Main
results are given in (9.5) and (9.7) where all the third moments are supposed to vanish.

Make decomposition π0(t) = I(t) + II(t), where

I(t) =
1
2π

∫ π

−π

2dl
Q(t, l)

and II(t) =
1
2π

∫ π

−π

[
1

1− ψ(t, l)
− 2
Q(t, l)

]
dl.

Then
I(t) =

2λ
π|t|σ2

1

(
π

2
− arctan

λ|t|
π

)
=

1
σ2|t| −

2
(σ2π)2

+ a2|t|2 + · · · . (9.1)

For evaluation of II(t) we set f(t, l) = ψ(t, l)− 1 + 1
2Q(t, l) and further decompose

II(t) =
1
π

∫ π

−π

f(0, l)
(1− ψ(t, l))Q(t, l)

dl +
1
π

∫ π

−π

f(t, l)− f(0, l)
(1− ψ(t, l))Q(t, l)

dl. (9.2)
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Suppose 1 ≤ δ < 2. Then, the first term on the right side can be written as C∗/σ2
2 + 2/(σ2π)2 +

o(|t|δ−1), where we have used the identity

C∗ − 1
2π

∫ π

−π

[
σ2

2

1− φ(l)
− 2
l2

]
dl =

1
2π

∫ π

−π

[
2
l2
− 1

cos l

]
dl = − 2

π2

(the first equality is simply by definition of C∗ given in Remark 1 (ii)). On the other hand

f(t, l)− f(0, l) = − i
6
E[X3]t3 − i

2
E[X2Y t2l +XY 2tl2] + o(|t|2+δ + |t||l|1+δ),

as |t| + |l| → 0, which together with
∫∞
0 [Q(1, u)]−2du = π/4(σ1σ)2 and

∫∞
0 u2[Q(1, u)]−2du =

π/4(σ2σ)2 shows that the second term in (9.2) equals − i
6(σ1σ)−2E[X3]− i

2(σ2σ)−2E[XY 2]) sign t+
o(|t|δ−1) in view of Lemma 2.3. It is worth noting that the term lead by E[X2Y ] contributes only
a constant multiple of |t| (the next order term of the expansion) since it is an odd function of l. In
any way, combined with (9.1), these estimates give

σ2π0(t) = |t|−1 + λC∗ − i((6σ2
1)
−1E[X3] + (2σ2

2)
−1E[XY 2] ) sign t+ o(|t|δ−1),

or what is the same thing,

ρ(t) = σ2|t| − σ2
1C

∗t2 + iC]t|t|+ o(|t|δ+1). (9.3)

where C] = (6λ)−1E[X3] + 2−1λE[XY 2]. One easily obtains that ρ′′′(t) = o(|t|δ−2) (t 6= 0) and
then that

H0(s) =
σ2

πs2
− 2C]

s3
+ o

(
log |s|
|s|2+δ

)
(|s| → ∞).

(If δ > 2, the error term may be replaced by O(|s|−4).
Now we turn to the integral (2.7). The essential contributions to it of the terms −σ2

1C
∗t2 and

iC]|t|t in (9.3) are given by

−σ2
1C

∗

4π2

∫∫

[−π,π)2

t2w(t)
1− ψ(t, l)

ei(−st+nl)dtdl = −C
∗

π
· λn

2 − λ−1s̃2

‖(s,−n)‖4
+ o

(
log(|n| ∨ |s̃| ∨ 2)
‖(s,−n)‖3

)
(9.4)

and
iC]

4π2

∫∫

[−π,π)2

t|t|w(t)
1− ψ(t, l)

ei(−st+nl)dtdl =
C]

π(λσ)2
· 2|ns̃|
‖(s,−n)‖4

+ o

(
log(|n| ∨ |s̃| ∨ 2)
‖(s,−n)‖3

)

(as ‖(s,−n)‖ → ∞ for both formulae), respectively. Here we truncate the integrand by w(t) since
the functions t2 and t|t| are not periodic.

Suppose that |n| > ε|s̃| and δ ≥ 1. Apart from the leading term there arises a rational function
of (s̃, n) similar to the above ones plus an error term, which together may be written in the form
{s, n}4‖(s,−n)‖−6 + o(n−2−δ) if δ < 2, where {s, n}4 represents a homogeneous polynomial of
(s, n) of degree 4 with coefficients that are linear combinations of the third moments E[XjY 3−j ]
(j = 0, 1, 2, 3).

If δ ≥ 2, one obtains the next order estimate and in the case when all the third moments vanish
the result is given in a rather simple form:

Hn(s) =
1
π
· |n|
‖(s,−n)‖2

− C∗

π
· λn

2 − λ−1s̃2

‖(s,−n)‖4
+O

(
1
n3

)
(|n| > ε|s̃|, |n| → ∞). (9.5)

For the case |s̃| > ε|n| we examine the contribution of −σ2
1C

∗t2 to the integral (2.13). To this end
we follow the arguments given in the second half of Section 3 with ρ replaced by −σ2

1C
∗t2. Suppose

Q to be diagonal and consider the integral corresponding to that involving F1. Then similarly to
the proof of Lemma 4.1 one finds that

1
4π2s2

∫ π

−π
e−istdt

∫ π

−π
w(t)∂2

t

[−σ2
1C

∗t2

Q(t, l)

]
(einl−1)dl = −C∗

(
λn2 − λ−1s2

π‖(s,−n)‖4
+

λ

πs2

)
+O(|s|−N ) (9.6)
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for each N > 0. On the other hand on arguing with ρ+σ2
1C

∗t2 in place of ρ the error term in (2.13)
becomes o((n log |s|)/|s|3+δ) if 1 ≤ δ ≤ 2 plus a term involving the third moments as its coefficient;
the latter is of the order magnitude O(n/|s|3).

Again suppose that δ > 2 and all the third moments vanish. Then for |s̃| > ε|n|, as |s̃| → ∞

Hn(s) =
1
π

(
σ2

2a
∗(n)

s̃2/λ
− λ2|n|3
‖(s,−n)‖2s̃2

)
− C∗

π

(
λn2 − λ−1s̃2

‖(s,−n)‖4
+
λ

s̃2

)
+O

(
n

|s|4
)
. (9.7)

(If δ = 2, we need the logarithmic factor in the numerator in the O term as in (9.4).) In view of the
expansion σ2

2a
∗(n) = |n|+C∗− (signn)E[Y 3]/3σ2

2 +O(1/n) (cf. Appendix of [12]) the two formulae
(9.5) and (9.7) are consistent. The last O terms in them seem to represent the correct order (i.e.
not replaced by a smaller order term) in general. (This is the case at least for simple random walk
for which a(n) = |n| and the second order term can be explicit.)

Proof of (9.7) is outlined below. First note that the third order term of the expansion of ρ(t)
takes on the form a|t|3 (apart from λ and σ the coefficient a involves only the two fourth moments
E[X4] and E[X2Y 2]; E[Y 4] is absorbed in C∗ and both E[X3Y ] and E[XY 3] contribute only the
next order term). On the one hand we compute I3 :=

∫ |t|3en(t)e−istdt in a similar way to the above
and find that I3 = O(n/s4). On the other hand under the present assumptions on the moments
we have |∂2

t F3| ≤ |Q|−3/2, the contribution to the double integral in (3.9) of its even (w.r.t. l)
part is directly evaluated to be O(n/s2) (hence O(n/s4) as a whole). For the odd part use the last
assertion of Lemma 11.4 to have the same bound. As for the function F2 the factor ρ′′ in it may be
understood to be o(tδ−1) since the terms up to the order of magnitude O(t3) may be considered as
being subtracted from ρ. Hence its contribution is negligible and (9.7) is concluded.

10 The case d ≥ 3 and reduction to the diagonal case.

This section concerns the random walk on Zd for d ≥ 2. In the first half of it we exhibit some
algebraic manipulations which reduce our problem to that in the case when Q is diagonal and in
the second some higher dimensional analogue of what is given in Section 2.

Let X and Y be, respectively, Zd−1-valued and Z-valued random variables of zero mean and
finite variance. Let R be the covariance matrix of X, γ = E[Y X] (∈ Rd−1) and σ2

d = E[Y 2], so
that the covariance matrix of S1 := (X,Y ) and its quadratic form are given by

Q =

(
R γ
tγ σ2

d

)
,

and Q(θ, l) = R(θ) + 2(γ · θ)l + σ2
dl

2 (θ ∈ Rd−1, l ∈ R), respectively. Set

µ = γ/σ2
d and X̃ = X − µY

and let R̃ be the covariance matrix of random (d − 1)-vector X − µY . Each component of X̃ is
perpendicular to Y ; R̃ is the (d − 1)-dimensional symmetric matrix whose quadratic form is given
by

R̃(θ) = E[(X̃ · θ)2] = R(θ)− σ2
d(µ · θ)2 (θ ∈ Rd−1),

so that R̃ = R− σ2
dµ

tµ and

Q(θ, l) = E[(X̃ · θ + Y l̃)2] = R̃(θ) + σ2
d l̃

2 where l̃ = l + µ · θ.

R̃ is positive definite. Indeed, for θ 6= 0, taking l = −µ · θ, we have R̃(θ) = Q(θ, l) > 0.
Denote by Q̃ the covariance matrix of (X̃, Y ) and let A be the d × d matrix which transforms

(θ, l) into (θ, µ · θ + l), and A−1 its inverse:

Q̃ =

(
R̃ 0
0 σ2

d

)
, A =

(
I 0
tµ 1

)
, tA−1 =

(
I −µ
0 1

)
,
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where I stands for the unit matrix. Then

Q(θ, l) = Q̃(θ, l̃) = Q̃(A[θ, l]),

where A[θ, l] denotes the action of A on the d-column vector [θ, l] consisting of a (d − 1)-vector θ
and a number l; hence Q = tAQ̃A, detQ = det Q̃ and

Q−1(x, k) = Q̃−1(x̃, k) where x̃ = x− µk. (10.1)

Now we consider a random walk Sn on Zd with the law of S1 under P0 equal to that of (X,Y ) and
the corresponding hitting distributionHn(x), (x, 0) ∈ Ld of the hyper plane Ld = {(x, 0) : x ∈ Zd−1}.
Let ψ(θ, l) = E[eiX·θ+iY l] ((θ, l) ∈ Td−1 × [−π, π), Td−1 = [−π, π]d−1). The functions πn(θ) of
θ ∈ Td \ {0} are defined in the same way as in the case d = 2 and the obvious analogue of Fourier
representation of Hn(x) by it is valid:

πk(θ) =
1
2π

∫ π

−π

eikldl

1− ψ(θ, l)
; Hn(x) =

1
(2π)d−1

∫

Td−1

π−n(θ)
π0(θ)

e−ix·θdθ (n 6= 0),

and similarly for H0. It therefore follows that if ψ̃(θ, l) = E[eiX̃·θ+iY l] (= ψ(θ, l − µ · θ) ) and

π̃k(θ) =
1
2π

∫ µ·θ+π

µ·θ−π

e−ikl

1− ψ̃(θ, l)
dl =

1
2π

∫ π

−π

e−ikl

1− ψ̃(θ, l)
dl (θ 6= 0)

(note that ψ̃(θ, ·) is periodic), then πk(θ) = π̃k(θ)eikµ·θ so that

Hn(x) =
1

(2π)d−1

∫

Td−1

π̃−n(θ)
π̃0(θ)

e−i(x+nµ)·θdθ (n 6= 0). (10.2)

By virtue of the last formula we may suppose that Q(θ, l) is of the form R(θ)+σ2
dl

2 for evaluation
of Hn(x), in particular for the proofs of Theorems 1 and 2 (see below for more details).

Let d ≥ 3. The principal term of Hn in the higher dimensions is derived by using the classical
formula

1
(2π)d

∫

Rd

|θ|
|θ|2 + l2

e−ix·θeinldldθ =
π

(2π)d−1

∫

Rd−1
e−|n||θ|e−ix·θdθ

=
Γ(d/2)
2πd/2

· |n|
(n2 + |x|2)d/2

(10.3)

([8], p.6). Write l̃ = µ · θ + l so that Q(θ, l) = Q̃(θ, l̃) = R̃(θ) + σ2
d l̃

2. Then

π0(θ) =
1
2π

∫ π

−π

dl

1− ψ
=

1
2π

∫ −µ·θ+π

−µ·θ−π

dl

1− ψ(θ, l)

∼ 1
π

∫ −µ·θ+π

−µ·θ−π

dl

Q(θ, l)
=

1
π

∫ π

−π

dl̃

Q̃(θ, l̃)
=

1

σd

√
R̃(θ)

+O(1).

Consequently

ρ(θ) = σd

√
R̃(θ) + o(|θ|).

By simple changes of variables we derive from this and (10.2) that for x ∈ Rd−1,

Hn(x) ∼ σd

(2π)d

∫

T d−1

√
R̃(θ) e−i(x+nµ)·θdθ

∫ π

−π

2einldl

R̃(θ) + σ2
dl

2

∼ 1
(2π)d det R̃−1/2

∫

Rd−1
|θ|e−i

√
R̃
−1

(x+nµ)·θdθ
∫ ∞

−∞
2einl/σddl

|θ|2 + l2
.
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Hence by (10.3) and (10.1) (note that Q̃−1(x+ nµ,−n) = Q−1(x,−n)),

Hn(x) ∼ Γ(d/2)
πd/2

√
detQ

· |n|
[(n/σd)2 + R̃−1(x+ nµ)]d/2

=
Γ(d/2)
πd/2

· |n|
‖(x,−n)‖d

.

This gives a correct asymptotic form of Hn(x) as |n| → ∞. If |n| remains finite, |n| in the numerator
must be replaced by σ2

da
∗(n) as in the two-dimensional case. Thus

Theorem 10.1 If the random walk Sn on Zd is irreducible and has zero mean and finite variances,
then

Hn(x) =
Γ(d/2)
πd/2

· σ2
da
∗(n)

‖(x,−n)‖d
(1 + o(1)).

For verification, in the case, n ≥ |x| the proof given in Section 3 straightforwardly applies to
the higher dimensional case. In the case n < |x| the arguments made for the two dimensions are
only simplified. The analogues of the two lemmas of Section 4 are verified by essentially the same
proofs; the lemmas of Section 5 are almost obviously extended to the dimensions d ≥ 3. It is noted
that if ∇ denotes the gradient operator with respect to θ ∈ Rd−1 and ω = x/|x|, then as θ → 0

(ω · ∇)ρ(θ) = σd
ω · R̃θ

[R̃(θ)]1/2
+ o(1) and (ω · ∇)2ρ(θ) = σd

R̃(ω)− (ω · R̃θ)2/R̃(θ)
[R̃(θ)]1/2

+ o

(
1
|θ|

)
;

in particular (ω · ∇)2ρ(θ) is integrable on |θ| < 1, which trivializes the argument given for the
estimate of H0 in section 6 and makes the moment condition E[|X̃|2 log+ |X̃|] <∞ dispensable.

11 Appendix

(A) We give a proof of (2.2) and (2.3), namely Ĥn(t) = π−n(t)/π0(t) (n 6= 0) and Ĥ0(t) =
1− 1/π0(t), respectively. Let pn(x, y) = Px[Sn = y] and define for |z| < 1

πk(t, z) =
∞∑

ν=0

∑

s∈Z

pν((0, 0), (s, k))eitszν .

Then
∑

k πk(t, z)eikl = (1− zψ(t, l))−1 and hence for t 6= 0,

πk(t, r) =
1
2π

∫ π

−π

e−ikldl

1− rψ(t, l)
−→ πk(t) as r ↑ 1.

It is convenient to bring in the joint distribution

fn(τ, s) = P(0,n)[τ(L) = τ, Sτ(L) = (s, 0)]

and its Abel-Fourier series

Φn(t, z) =
∞∑

τ=1

∑

s∈Z

fn(τ, s)eitszτ .

Using pν((0, n), (s, 0)) =
∑ν

τ=1

∑
j∈Z fn(τ, j)pν−τ ((j, 0), (s, 0)) (ν ≥ 1) and making a routine com-

putation, one then finds that for t ∈ R and |z| < 1,

π−n(t, z) =
∞∑

ν=0

∑

s∈Z

pν((0, n), (s, 0))eitszν

= δn,0 + π0(t, z)Φn(t, z),
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or what is the same thing,

Φn(t, z) =
π−n(t, z)
π0(t, z)

(n 6= 0); Φ0(t, z) = 1− 1
π0(t, z)

, (11.1)

which, on setting z = 1 (for 0 < |t| ≤ π), reduce to (2.2) and (2.3), respectively.

(B) Here we collect several lemmas concerning Fourier analysis and used in this paper.

Lemma 11.1 Let fn(t, l) be a sequence of measurable functions on (−π, π]2 of the form

fn(t, l) = a(t, l)
1− cosnl

nl2
or fn(t, l) = b(t, l)

sinnl
nl

(11.2)

(n = 1, 2, . . .). Suppose that
∫ π
−π |a(t, l)|dt is bounded and tends to zero as l → 0 in the first case

and b(t, l) is integrable on [−π, π]2 in the second case. Then
∫ π

−π
eistdt

∫ π

−π
fn(t, l)dl→ 0 as |s| → ∞ uniformly in n. (11.3)

Proof. Put gn,ε(t) =
∫
ε<|l|<π fn(t, l)dl and hn,ε(t) =

∫ ε
−ε fn(t, l)dl. Then from the assumptions on

fn of the lemma it follows that

lim
n→∞

∫ π

−π
|gn,ε(t)|dt = 0 for each ε > 0; and sup

n

∫ π

−π
|hn,ε(t)|dt −→ 0 as ε ↓ 0.

which together show that limn→∞
∫ π
−π

∣∣∣
∫ π
−π fn(t, l)dl

∣∣∣dt = 0, reducing the assertion to be proved to
the Riemann-Lebesgue lemma. 2

Remark to Lemma 11.1. (i) The pair of two function forms in (11.2) may appear ill-matched
but actually they are well on balance if the supposed conditions on a(t, l) and b(t, l) in the lemma
are taken into account. Indeed, on the one hand the function (1 − cosnl)/nl2 (Fejér’s kernel)
approaches π times Dirac’s delta function as n → ∞; on the other hand sinnl/nl is π/n times
Dirichlet’s kernel and the factor 1/n is apparantly superfluous in comparison to the former one,
which however is needed for counterweighing the possible singularity of

∫
b(t, l)dt at l = 0 that

duly arises: in our application of Lemma 10.1 these two function forms come up in pair (see the
definitions of ΘI and ΘII in Section 6), where we encounter the situation such that a priori we know
only

∫ |b(t, l)|dt = o(1/l).
(ii) If only boundedness of

∫ π
−π |a(t, l)|dt is assumed, the convergence in (11.3) still holds bound-

edly but it is not necessarily uniform. Eg., if a(t, l) = |l|/(t2 + l2), then
∫ π
−π |a(t, l)|dt is bounded,

whereas the double integral in (11.3), taking on the form

4
n

∫ π

0
cos st dt

∫ π

0

(1− cosnl)
(t2 + l2)l

dl = 2π
∫ nπ

0
e−|s/n|u 1− cosu

u2
du+O

(
1
s

)
,

does not uniformly approach zero as s→∞.

Lemma 11.2 Let fn(t) be a sequence of continuous functions on the (half-open) interval (0, 1]
such that as t→ 0

sup
n
|fn(t)| = o(t−1), (11.4)

and that fn are continuously differentiable in t > 0 and satisfies

sup
n
|f ′n(t)| = O(t−2) (11.5)
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or more generally supn

∫ 1
t |dfn(u)| = O(1/t) (t→ 0). Then for each α > 0,

∫ 1

0
fn(t) sin st dt→ 0 and

∫ 1

α/s
fn(t) cos st dt→ 0 as s→∞ uniformly in n. (11.6)

If in addition, the improper integrals
∫ ε
+0 fn(t)dt exist and approach zero as ε ↓ 0 uniformly in n,

then ∫ 1

+0
fn(t) cos st dt→ 0 as s→∞ uniformly in n.

Moreover, if 0 < δ < 1 and the right sides in (11.4) and (11.5) are replaced by o(tδ−1) and O(tδ−2),
respectively, then

∫ 1
0 fn(t)eistdt = o(|s|−δ) as |s| → ∞ uniformly in n.

Proof. From (11.4) it follows that supn

∫ M/s
α/s |fn(t)|dt = o(1) for each M > α and

sup
n

∫ M/s

0
|fn(t)t|dt = o(1/s) for each M > 0. (11.7)

On the other hand integrating by parts yields that as s→∞ and M →∞ in this order
∫ 1

M/s
fn(t)eist dt =

1
is

[fn(t)eist]1t=M/s −
1
is

∫ 1

M/s
eistdfn(t) = O(1/M) → 0.

Combining these yields the relation (11.6). The last assertion is verified in the same way.
For the second assertion of the lemma, using the supposition of it, we observe

∫ α/s
+0 fn(t) cos stdt =∫ α/s

0 fn(t)(cos st− 1)dt+ o(1), but the first term is also o(1) owing to (11.7). 2

Lemma 11.3 Let Λ be any parameter set and {fλ(t)} a family of functions on (0,∞) with
parameter λ ∈ Λ such that

sup
λ
|fλ(1)| <∞ and sup

λ

∫ ε

0
|fλ(t)|dt→ 0 as ε→ 0 (11.8)

and that for each ε > 0, the total variations of fλ on [ε,∞) are bounded: supλ

∫∞
ε |dfλ(t)| < ∞.

Then ∫ M

0
fλ(t)eist dt→ 0 as |s| → ∞ uniformly in λ ∈ Λ and M > 1.

Proof. Integrating by parts we obtain lim sups→∞ supλ,M

∣∣∣
∫ M
ε fλ(t)eistdt

∣∣∣ = 0 for each ε > 0. The
assertion of the lemma then follows from the second condition in (11.8). 2

Lemma 11.4 Let ω be a unit vector in Rd and f(θ) a continuous function on 0 < |θ| < 2, θ ∈ Rd

such that for some constants 0 < δ < 1, K and Mω

|f(θ)| ≤ K|θ|δ−d (|θ| < 2), (11.9)

|f(θ)− f(θ + uω)| ≤Mωu
δ|θ|−d for 0 < u < θ · ω.

Then ∣∣∣∣
∫

|θ|≤1
f(θ)e−irω·θdθ

∣∣∣∣ ≤ Cωr
−δ log r (r > 2π), (11.10)

where the constant Cω may be taken as Aλd(K +Mω)[(1− δ)δ]−1 with a universal constant A and
a constant λd depending only on d. If f satisfies the first condition (11.9) and is differentiable for
θ 6= 0 with |ω · ∇f(θ)| = O(|θ|δ−d−1), then the right side of (11.10) may be replaced by C ′r−δ.
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Moreover if f(θ) = K/|θ|d (i.e., (11.9) with δ = 0) and

|f(θ)− f(θ + uω)| ≤Mω|θ|−d| log u|−1 for 0 < u < θ · ω ≤ 1/2,

then ∣∣∣∣
∫

|ω·θ|≥α/r,|θ|≤1
f(θ)e−irω·θdθ

∣∣∣∣ ≤ Aλd(K +Mω).

Proof. Use the argument given in the beginning of §3, Chapter II of [16]. The details are omitted
since the proof is the same as for Lemma 21 of [10].
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