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1. Introduction
Let X be a smooth projective curve over Q with the genus g and L(H1(X), s)
be the Hasse-Weil L-function. In [B1], Beilinson defines a regulator map

regD : H2
M(X,Q(m + 2)) → H2

D(X,R(m + 2))

for an integer m = 0, where H2
M(X,Q(r)) is the motivic cohomology (or the ab-

solute chohomology) and H2
D(X,R(r)) is the Deligne cohomology. Let N = 3 be

integers and denote by XN the Fermat curve of exponent N , which is the smooth
projective curve given by the affine equation : xN + yN = 1. In this paper, we
will construct non-zero element of the image of the regulator map regD for Fer-
mat curves XN . This element is connected to the Beilinson’s conjecture which
relates the special values of L-function L(H1(X), s) in [B1]. We have the canoni-
cal isomorphism H2

D(X,R(m+2)) ∼=
[
H1

B(X(C),Q)⊗Q R(2π
√−1)m+1

]DR
from

the Betti cohomology. Here, DR represents the invariant subspace under the
action of complex conjugation on X(C) and 2π

√−1. The Beilinson’s conjecture
predicts that

1. The regulator map induces the Q-lattice structure of H2
D(X,R(m + 2)).

2. Define c ∈ R×/Q× by

g∧ [
regDH2

M(X,Q(m + 2))
]

= c

g∧[
(H1

B(X(C),Q(2π
√−1)m+1)

DR
]

Then, c ≡ L(g)(H1(X),−m) mod Q×.
This conjecture is formulated for a projective smooth variety and has shown
when X is an cyclotomic field and an elliptic curve in [B], [B1]. In the case of
the cyclotomic field, the element of the motivic cohomology or its image of the
regulator map is called by cyclotomic element. In view point of l-adic story and
Hodge story, the cyclotomic element was studies by Deligne and Beilinson in
[B2] and [BD]. We will try to construct the analog of cyclotomic element on the
Fermat curve.

2. Premieres
2.1 Let F be a number field and S = SpecF . We denote by Sm/S the category
of smooth schemes of finite type over S. We will consider the following three
cohomology theories on Sm/S with coefficients F = Q, R, Ql. Let X be a
scheme X of Sm/S.
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(i)When F = Q, we set

Hq(X,Q(r)) := Hq
M(X,Q(r)) = Grr

γK2r−q(X)⊗Q

where Grr
γ is the subquotient of γ-filtration on the K-group.

(ii)When F = R, we set

Hq(X,R(r)) := Hq
D(X,R(r)) = Hq(X(C),R(q)D)DR

which is the hyper cohomology of the complex

R(r)D := 0 →
degree 0

R(2π
√−1)r →

degree 1

OX →
degree 2

Ω1
X → · · · →

degree r

Ωr−1
X → 0.

(iii)When F = Ql for a prime l, we set

Hq(X,Ql(r)) := Hq
et(X,Ql(r)).

These cohomology theories satisfy the nice cohomological properties which is
formulated in [Gi]. We have the regulator maps between these cohomologies

regD :Hq(X,Q(r)) → Hq(X,R(r)),
reget :Hq(X,Q(r)) → Hq(X,Ql(r)).

2.2 We need the notion of homotopical algebra by Quillen in [Q1]. We will give
the interpretation of three cohomology theories from a viewpoint of homotopical
algebra. Let S∗ be the category of pointed simplicial sets. For a scheme X of
Sm/S, we denote by S∗(Xzar) the category of sheaves of pointed simplicial sets
on Xzar. In Brown[Br], Brown and Gersten[BG], they have shown that the
category S∗(Xzar) has a structure as a closed model category. We denote by
Ho(S∗(Xzar))(resp. Ho(S∗)) the homotopical algebra of S∗(Xzar)(resp. S∗).
Then, we have a functor RΓ (X, ) : Ho(S∗(Xzar)) → Ho(S∗). We denote by
KX = Z×Z∞BGL(OX) in Ho(S∗(Xzar)), where Z∞ is the completion functor
defined by Bousfield-Kan in [BoK]. Since X is regular, KX coincides with the
pointed simplicial sheaf GX = QCohS induced from the presheaf of pointed
simplicial sets U 7→ QCoh(U) on Xzar. Here, Coh(U) is the abelian category
of coherent shaef on open set U ⊂ X and Q is the Quillen’s Q-construction in
[Q]. Note that Kq(X) = πqRΓ (X,KX), where πq denote q-th homotopy group
of pointed simplicial set. By Gillet’s methods in [Gi], we have Chern class maps

cDr : KX → K(2r,RπanR(r)D)

cet
r : KX → K(2r,RπetQl(r))

in the homotopical algebra, where Rαet : D(Xet) → D(Xzar) and Rαan :
D(X(C)an) → D(Xzar) are the canonical derived functors and K is the Dold-
Puppe’s construction D(Xzar) → Ho(S∗(Xzar)). Note that H2r−q

D (X,R(r)) =
πqRΓ (X,K(2r,RπanR(r)D))) and H2r−q

et (X,Ql) = πqRΓ (X,K(2r,RπetQl(r))).
The regulator maps regD and reget are induced from the Chern class map cDr
and cet

r .
2.3 For integer n = 0, we set the finite ordered set [n] := {0 < 1 < 2 < · · · < n}.
Let I be the category whose objects are [n] for n = 0 and whose morphisms are
all maps with preserving the order of elements of objects. A simplicial scheme
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of Sm/S is a contravariant functor from I to Sm/S. We define an augmented
simplicial scheme of Sm/S by a pair of scheme X and a simplicial scheme over
X. When X• is an augmented simplicial scheme of Sm/S, we denote by X−1

the augmented scheme of X• and by X=0 the simplicial scheme of X• and by
Xn the scheme of n-simplices of X=0 for n = 0. Let asSm/S be the category
of augmented simplicial schemes of Sm/S. For X• of asSm/S, we define the
cohomology theories by the following way. We set the objects of Ho(S∗)

K(X=0) := coholim
n∈I

RΓ (Xn,KXn
),

RΓ (X=0,R(r)) := coholim
n∈I

RΓ (Xn,K(2r,RπanR(r)D))),

RΓ (X=0,Ql(r)) := coholim
n∈I

RΓ (Xn,K(2r,RπetQl(r))),

K(X•) := coholim
(
RΓ (X−1,KX−1) → K(X=0

)
),

RΓ (X•,R(r)) := coholim
(
RΓ (X−1,K(2r,RπanR(r)D))) → RΓ (X=0,R(r))

)
,

RΓ (X•,Ql(r)) := coholim
(
RΓ (X−1,K(2r,RπetQl(r))) → RΓ (X=0,Ql(r)).

)
.

Here, coholim is th homotopy inverse limit functor constructed by Bousfield-
Kan in [BoK]. Then, the cohomologies of X• are defined by

H2r−q
M (X•,Q(r)) := Grr

γπqK(X•),

H2r−q
D (X•,R(r)) := πqRΓ (X•,R(r)),

H2r−q
et (X•,Ql) := πqRΓ (X•,Ql(r)).

We have the following exact sequence.

· · · → Hn(X•) → Hn(X−1) → Hn(X=0) → Hn+1(X•) → · · ·
There exists the regulator maps regD and reget between these cohomologies.

3. Constructions
3.1 Let S be a base scheme. We set T = Gm

2
S the 2-dimensional torus over S

with coordinate functions x, y. We define the augmented simplicial scheme T•
over S by the following. We denote Ti(nd) the non-degenarate i-simplices of T•.

T−1 = T,

T0(nd) = Tx t Ty,

T1(nd) = Tx ∩ Ty = V (x = y = 1),
Ti(nd) = ∅ if i 6= 0, 1

The boundary maps of T• are induced from the canonical imbeddings.
Let n ∈ Z=1. We define T (−n)• the augmented simplicial scheme over S by

the following inductive way.

T (−1)• = T•,

T (−n)• = tot(T (−n + 1)• ×S T•) for n = 2

Here, we take tot(T (−n + 1)• ×S T• the total simlicial scheme from the bi-
simplicial scheme T (−n+1)•×ST•. The −1-part of T (−n) is the 2n-dimensional
torus Tn = Gm

2n.
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Proposition 3.1.1 Let X• be an augmented simplicial scheme over S. Then
there exists a following canonical isomorphism of cohomologies.

Hq−2n(X•,F(r − 2n)) ∼= Hq(tot(X• ×S T (−n)•),F(r))

If x1, y1, · · · , xn, yn are the coordinate functions of T (−n)−1 = Tn, then the
above isomorphism coincide with the cup product of x1 ∪ y1 ∪ · · ·xn ∪ yn.

Remark 3.1.2 In [B2], Beilinson has described the same augmented simplicial
scheme S(−n) which is constructed from T = Gm instead of T = Gm

2. As the
above notation, we have Hq−n(X•,F(r−n)) ∼= Hq(tot(X•×S S(−n)•),F(r)).

3.2 Let n ∈ Z=1 and Tn+1 =

(n+1)-times︷ ︸︸ ︷
T ×S · · · ×S T be the 2n + 2-dimensional torus

with coordinate x0, y0, x1, y1, · · · , xn, yn. From subschemes of Tn+1, we want to
define an augmented bi-simlicial scheme Y

(n)
•• over S whose −1-part is Y

(n)
−1• =

Tn+1
• . For 0 5 i 5 n, we set the S-scheme

Y
(n)
{i}• =

n-times︷ ︸︸ ︷
T• ×S · · · ×S T•

and we take the immersion

ι{i} : Y
(n)
{i}• ↪→ Y

(n)
−1•,

which is defined by

ι{i} =





idT ×S · · · ×S idT ×S

i-th

diag ×S idT ×S · · · ×S idT for 0 5 i 5 n− 1
idT ×S · · · ×S idT ×S {(1, 1)} for i = n

,

where the i-th map is the diagonal map: diag : T• → T• ×S T•;α 7→ (α, α). We
regard Y

(n)
{i}• as a simplicial subscheme of Y

(n)
−1• = Tn+1

• by the immersions ι{i}.
For any subset A ⊆ {0, 1, · · ·n}, we set

Y
(n)
A• =

⋂

i∈A

Y
(n)
{i}• ⊆ Y

(n)
−1•.

There exists the canonical isomorphism Y
(n)
A• ∼= Tn+1−#A

• over S. For k ∈ Z=0,

the non-degenarate k-simplices part Y
(n)
k(nd)• of Y

(n)
•• is defined by

Y
(n)
k(nd)• =

{⊔
#A=k+1 T

(r)
A• if 0 5 k 5 n

∅ otherwise.

and the boundary maps are induced form canonical injections. Then Y
(n)
•• is a

bi-simplicial scheme over S.
3.3 We take a divisor D of T defined by equation xy = 1 and we set an open
subscheme U = T \D. Let t : U → T be the canonical immersion.

Lemma 3.3.1 there exists a weak homotopy equivalence of cohomology theories
induced from the following canonical morphism of S-simplicial schemes

Y
(n−1)
U,t ×S S(−1)•

∼=−−→ mapping−fiber
[
U ×S Y

(n)
•

jn−−−→ Y
(n)
U,t

]
.

4



Lemma 3.3.2 There exists an isomorphism

Hp−2n(U,F(q − 2n)) ∼= Hp(U ×S Y
(n)
• ,F(q))

From (3.3.1) and (3.3.2), we know that there exists the following long exact
sequence

· · · −−−−→ Hq(Y (l)
U,t,F(r)) −−−−→ Hq−2l(U,F(r − 2l)) −−−−→

Hq−1(Y (l−1)
U,t ,F(r − 1)) −−−−→ Hq+1(Y (l)

U,t,F(r)) −−−−→ · · ·
by the assumptions for each cohomology theory. Using the theory of exact
couples, we obtain a spectral sequence

El,q
1 = H2(q+l)+α(U,F(2l + β)) ⇒ H2(q+l+n)+α(Y (n)

U,t ,F(2n + β)) (3.3.3)

Remark 3.3.4 The above spectral sequence is an analog of the Beilinson’s
work in [B2]. When U = P1\{0, 1,∞}, he has constructed the following spectral
sequence concerned with the cyclotomic element.

El,q
1 = Hq+l(U,F(l + β)) ⇒ Hq+l+n(Ỹ (n)

U,t ,F(n + β))

Here, Ỹ
(n)
U,t is the same augmented simplicial scheme which is constructed by the

same method.

Proposition 3.3.5 For n = 1, there exists the following commutative diagram
of exact sequences.

0 → H1
M(S,Q(2n + 1)) −−−−→ H2n+1

M (Y (n)
U,t ,Q(2n + 1)) αM−−−−→ H1

M(U,Q(1))yreg

yreg

yreg

0 → H1(S,F(n + 1)) −−−−→ H2n+1(Y (n)
U,t ,F(2r + 1) α−−−−→ H1(U,F(1))

The image of αM is generated by the elements 1−xy, x, y ∈ O(U)× = H1
M(U,Q(1)).

Remark 3.3.6 The same statement for H2n+2
M (Y (n)

U,t ,Q(2n + 2)) is not ev-

ident. But, there exist the canonical map αM : H2n+2
M (Y (n)

U,t ,Q(2n + 2)) →
H2
M(U,Q(2)) which induced from the spectral sequence.

3.4 We will construct elements which is an analog of the motivic polylogarithm
on P1 \ {0, 1,∞}.

Definition 3.4.1 Let N be an integer N = 1. We will construct a polylogarithm
element ΠN by the following way.
(i)When N = 2n + 1 is odd, we define an element Π2n+1 by

Π2n+1 ∈ H2n+1(Y (n)
U,t ,Q(2n + 1))

such that αM(Π2n+1) = 1−xy ∈ Im(αM) ⊂ H1
M(U,Q(1)) = O(U)×⊗ZQ from

(3.3.5).
(ii)When N = 2n + 2 is even, we define an element Π2n+2 by

Π2n+2 := Π2n+1 ∪ π∗(x) ∈ H2n+2(Y (n)
U,t ,Q(2n + 2)).
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Here, when π : Y
(n)
U,t → U is the canonical projection, π∗(x) is the image

of x ∈ O(U)× ⊗Z Q = H1
M(U,Q(1)) under the map π∗ : H1

M(U,Q(1)) →
H1(Y (n)

U,t ,Q(1)).

By the projection formula, we know that αM(Π2n+2) = {1 − xy, x} ∈
K2(U)⊗Z Q = H2

M(U,Q(2)).

4. Results
4.1 Let N = 3 be integers and denote by X̄N the Fermat curve of exponent N ,
which is the smooth projective curve given by the affine equation : xN +yN = 1.
We denote by XN := X̄N ∩ U an affine Fermat curve. We take the canonical
injection tN : XN → U . We obtain the augmented bi-simplicial scheme Y

(n)
XN ,tN

and the canonical morphism tN : Y
(n)
XN ,tN

→ Y
(n)
U,t . The following morphism of

the spectral sequences is induced form tN .

El,q
1 = H2(q+l)+α(U,F(2l + β)) ⇒ H2(q+l+n)+α(Y (n)

U,t ,F(2n + β))
↓ ↓

El,q
1 = H2(q+l)+α(XN ,F(2l + β)) ⇒ H2(q+l+n)+α(Y (n)

XN ,tN
,F(2n + β))

(4.1.1)
We get the following proposition on the affine Fermat curve.

Proposition 4.1.2 The above bottom spectral sequence on the Fermat curve
degenerates at E1.

Proof: The boundary map El,q
1 → El+1,q

1 is the cup product of the element
{x, y} ∈ K2(XN )⊗ZQ. In Milnor K-group K2(XN ), we know that N2{x, y} =
{xN , yN} = {xN , 1− xN} = 0. So, the proof is complete. ¤
From the above proposition, we get the filtration Fq of H2n+2(Y (n)

XN ,tN
,F(2n+2))

such that Grq
F = H2q(XN ,F(2q). So, this implies that there exists the following

element.
αn = Π2n+2 −Π2n ∪ xn ∪ yn ∈ H2

M(XN ,Q(2n + 2))

If regD(αn) is not zero, then regD(αn) sholud present the value of L-function
L(H1(X̄N ), s) at s = −2n. We will compute the value of regD(αn). When n = 0,
we have α0 = {1− xy, x}. In [R], Ross compute the value of regD{1− xy, x}.
4.2 Let ζ = exp(2ı

√−1), and let Ai,j denote the automorphism of XN (C) given
by (x, y) 7→ (ζix, ζjy). Let t1/N denote the principal branch of the N -th root
function, and let γ : [0, 1] → XN (C) denote the path from (1, 0) to (0, 1) given
by γ(t) = (t1/N , (1− t)1/N ). For integers m and n, let γm,n denote the following
closed path on XN (C).

γm,n := γ −Am,0γ + Am,n −A0,nγ

From the computation of the double complex of the differential modules on
XN (C), we obtain the following formula.

reg(α1) = log(1− xy)(log x)2
dx

x
∈ H2

D(U,R(4))

For α > 0, we define by

Bm(α) :=
∫ 1

0

dtm
tm

. . .

∫ t3

0

dt2
t2

∫ t2

0

tα1 (1− t)α dt1
t1

.
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When m = 1, This function coincides with the beta function B1(α) = 1
2B(α, α).

Theorem 4.2.1 The element α1 ∈ H2
M(XN ∩ U,Q(4)) has non-zero image

under the regulator map regD : H2
M(XN ,Q(4)) → H2

D(XN ,R(4)).

Proof: We describe the pairing of reg(α1) and some close path γ = γ1,1+γ1,−1

by using the above functions. We computes that

〈reg(α), γ〉 =
3

8π3

∞∑

k=1

sin
2πk

N

(
1− cos

2πk

N

)
B3

(
k

N

)

For 0 5 M 5 N − 1, we set βM =
∑

k≡M mod N

1
k

B3

(
k

N

)
. Then, we get the

following.

〈reg(α), γ〉 =
[ N−1

2 ]∑

M=1

sin
2πk

N

(
1− cos

2πk

N

)
(βM − βN−M )

Since β1 > · · · > βN−1, the above is not zero. So, the proof is complete. ¤
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