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Abstract

We determine Martin boundaries of product domains for elliptic
equations in skew product form via Widder type uniqueness theorems.
We show that the fiber of the Martin boundary at infinity of the base
space degenerates into one point if any nonnegative solution to the
Dirichlet problem for a corresponding parabolic equation with zero
initial and boundary data is identically zero.

1 Introduction

The Widder type uniqueness theorem for a parabolic equation asserts that
its nonnegative solution with zero initial (and boundary) value must be iden-
tically zero; while the Martin representation theorem for an elliptic equation
says that any positive solution of it is represented by an integral of the Mar-
tin kernel with respect to a finite Borel measure on the Martin boundary.
During the last few decades, Widder type and related uniqueness theorems
have been investigated to a satisfactory extent (cf. [9, 15–18, 21, 23, 25, 26,
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28, 32, 34, 42–44, 46, 48, 57–61, 65, 69, 76, 78, 80]), and there has been a signif-
icant progress in determining explicitly Martin boundaries in many impor-
tant cases (cf. [4–7,10–13,20,29–31,36,38–40,49–51,53–56,63,64,66,72,73]).
Among others, Ishige and Murata [44] showed that under a general and sharp
condition, any nonnegative solution to the Cauchy problem for a parabolic
equation is determined uniquely by its initial value; while Murata [64] con-
structed Martin boundaries for a wide class of elliptic equations in skew
product form.

The purpose of this paper is to determine explicitly Martin boundaries for
elliptic equations in skew product form via Widder type uniquness theorems
for parabolic equations by applying general results on Martin boundaries
given in [64].

We consider positive solutions of an elliptic equation in skew product
form

Lu ≡ (L1 +W1L2)u = 0 in D = D1 ×D2 ⊂M = M1 ×M2. (1.1)

Here D is a non-compact domain of a product Riemannian manifold M , Li

with i = 1 or 2 is an elliptic operator on a domain Di of a Riemannian
manifold Mi, and W1 is a positive measurable function on M1. We assume
that (L,D) is subcritical, i.e. there exists a minimal positive Green function
of L on D. In order to determine explicitly the Martin boundary ∂MD of D
with respect to L, we study uniqueness of nonnegative solutions to the initial
and boundary value problem for a parabolic equation

(∂t +W−1
1 L1)v = 0 in D1 × (0,∞), (1.2)

v(x, 0) = 0 on D1, (1.3)

v(x, t) = 0 on ∂D1 × (0,∞). (1.4)

(It is needless to say that when D1 = M1, the condition (1.4) is redundant,
and the problem reduces to the initial value problem.) We shall show from
the uniqueness of nonnegative solutions that the fiber of ∂M(D1 × D2) at
infinity of the base space D1 reduces into one point.

Now, in order to state our main theorem, we fix notations and recall
several notions and facts. For i = 1 or 2, let Mi be a connected separable
ni-dimensional smooth manifold with Riemannian metric of class C0. With
N = M1 or M2, TxN and TN denote the tangent space to N at x ∈ N and
the tangent bundle, respectively. We denote by End(TxN) and End(TN)
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the set of endmorphisms in TxN and the corresponding bundle, respectively.
The inner product on TN is denoted by 〈X, Y 〉, where X, Y ∈ TN ; and
|X| = 〈X,X〉1/2. The divergence and gradient with respect to the metric on
N are denoted by div and ∇, respectively. Let L1 be an elliptic differential
operator on M1 of the form

L1u = −m−1
1 div(m1A1∇u−m1uC1)− 〈B1,∇u〉+ V1u, (1.5)

where m1 is a positive measurable function on M1 such that

m1 and m−1
1 are bounded on any compact subset of M1, (1.6)

A1 is a symmetric measurable section on M1 of End(TM1), B1 and C1 are
measurable vector fields on M1, and V1 is a real-valued measurable function
on M1. We assume that L1 is locally uniformly elliptic on M1, i.e., for any
compact set K in M1 there exists a positive constant λ such that

λ|ξ|2 ≤ 〈(A1)xξ, ξ〉 ≤ λ−1|ξ|2, x ∈ K, (x, ξ) ∈ TM1. (1.7)

Denote by ν1 the Riemannian measure on M1, and put dµ1 = m1dν1. For
1 ≤ p ≤ ∞, denote by Lp

loc(M1) = Lp
loc(M1, dµ1) the set of complex-valued

functions on M1 locally p-th integrable with respect to dµ1. We assume that

|B1|2, |C1|2, V1 ∈ Lp
loc(M1, dµ1), for some p > max(

n1

2
, 1). (1.8)

Let W1 be a positive measurable function on M1 such that

W1,W
−1
1 ∈ L∞loc(M1, dµ1). (1.9)

Let L2 be an elliptic differential operator on D2 of the form

L2u = −m−1
2 div(m2A2∇u−m2uB2)− 〈B2,∇u〉+ V2u, (1.10)

where m2, A2, B2, and V2 satisfy the conditions (1.6), (1.7), and (1.8) with
obvious modifications. Note the L2 is formally selfadjoint with respect to the
measure dµ2. We assume that the generalized principle eigenvalue λ0 of L2

on D2 is finite, i.e., with Λ being the set of all real numbers λ such that the
equation (L2 − λ)u = 0 in D2 has a positive solution,

λ0 ≡ sup Λ > −∞. (1.11)
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We denote by L2 the Dirichlet realization of L2 on D2, i.e., the selfadjoint
operator on L2(D2, dµ2) associated with L2 on D2 (cf. Subsection 2.2 of [64]).
We assume the hypothesis (SMI2) for (L2, D2), which is composed of three
conditions (S), (M), and (I), i.e., semismallness, minimality and intrinsic
ultracontractivity for (L2, D2). Let us state the conditions (S), (M) and (I).
We say that the semigroup e−tL2 generated by −L2 is IU (i.e., intrinsically
ultracontractive) when λ0 is the first eigenvalue of L2, and there exists a
positive continuous decreasing function C(t) on (0,∞) such that

p2(x2, y2, t) ≤ C(t)e−λ0tφ0(x2)φ0(y2), x2, y2 ∈ D2, t > 0, (1.12)

where φ0 is a normalized positive eigenfunction associated with λ0, p2(x2, y2, t)
is the integral kernel of the semigroup e−tL2 . For IU, see [22, 24, 64] and ref-
erences therein. We assume the following condition (I).

(I) The semigroup e−tL2 is IU and the function C(t) in (1.12) satisfies

lim
t→0

t logC(t) = 0. (1.13)

For example, when D2 is compact this condition is satisfied with C(t) =
αt−n2/2 for some positive constant α (cf. Example 9.2 of [64]). The condi-
tion (I) implies that the spectrum of L2 consists of discrete eigenvalues with
finite multiplicity. Let λ0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of L2 re-
peated according to multiplicity. Let φj be an eigenfunction associated with
λj (j = 0, 1, 2, . . .) such that {φj}∞j=0 is a complete orthonormal system of
L2(D2, dµ2). It follows from (I) that φj/φ0 ∈ L∞(D2) for any j ≥ 1. We
assume the following condition (S).

(S) The constant function 1 is a semismall perturbation of L2 − λ on D2

for some λ < λ0.
This condition means that for any ε > 0 there exists a compact subset K of
D2 such that∫

D2\K
g(x0

2, z)g(z, y2)dµ2(z) ≤ εg(x0
2, y2), y2 ∈ D2 \K, (1.14)

where x0
2 is a reference point in D2, and g is the Green function of L2 − λ

on D2 with respect to the measure dµ2 (cf. [62]). When D2 is compact, the
condition (S) is redundant. When D2 is non-compact, we denote by D∗

2 and
∂MD2 the Martin compactification and Martin boundary of D2 with respect
to L2−λ, respectively (cf. [14,49,64,73,79] and references therein). We recall
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that for any η ∈ ∂MD2 there exists a sequence {yj
2}j in D2 such that {yj

2}j

has no point of accumulation in D2 and the sequence {g(·, yj
2)/g(x

0
2, y

j
2)}j

of functions on D2 converges locally uniformly to the Martin kernel h(·, η),
which is a positive solution of the equation (L2 − λ)u = 0 in D2. We also
recall a positive solution u is said to be minimal if another positive solution
satisfies v ≤ u, then v = cu for some constant c. When D2 is non-compact,
we assume the following condition (M).

(M) For any η ∈ ∂MD2, the Martin kernel h(·, η) for (L2 − λ,D2)
is minimal.

When D2 is compact, we put D∗
2 = D2 and ∂MD2 = ∅ as convention. The

condition (S) implies that for any j = 1, 2, . . ., the function φj/φ0 has a
continuous extension [φj/φ0] up to the Martin boundary ∂MD2 (cf. Theorem
6.3 of [71] and Theorem 5.12 of [64]). The condition (M) together with (I)
and (S) implies that the family {[φj/φ0]; j = 0, 1, 2, · · · } separates finite Borel
measures on D∗

2 (cf. Proposition 9.7 of [64]). Throughout the present paper
we assume the hypothesis (SMI2):

(SMI2) The conditions (S),(M) and (I) are satisfied for (L2, D2).
For example, (SMI2) holds when D2 is a relatively compact Lipschitz domain
and L2 is an elliptic operator on the whole space M2 of the form (1.10) with
the coefficients satisfying the conditions (1.6), (1.7) and (1.8) with obvious
modifications (cf. Example 9.3 of [64]).

We assume that either D1 = M1 and M1 is non-compact, or D1 is a
Lipschitz domain of M1, i.e., for any boundary point z, the domain D1 in
a coordinate neighborhood of z is the upper side of a Lipschitz continuous
graph. Consider (weak) solutions of the Dirichlet problem (1.2), (1.3) and
(1.4). When ∂D1 6= ∅, the boundary condition (1.4) means that for any
ψ ∈ C∞

0 (M1) and T > 0,

ψv ∈ L∞((0, T );L2(D1, dµ1)) ∩ L2((0, T );H1
0 (D1, dµ1)),

whereH1
0 (D1, dµ1) is the closure of C∞

0 (D1) in the Sobolev spaceH1(D1, dµ1)
of order 1. We introduce the following condition (U1), i.e., uniqueness for
the positive Dirichlet problem for (∂t +W−1

1 L1, D1).
(U1) Any nonnegative solution of the problem (1.2), (1.3) and (1.4) must

be identically zero.
Let L = L1 + W1L2 and D = D1 × D2. We assume that (L,D) is

subcritical, i.e., there exists the (minimal positive) Green function G of L
on D. This implies that (L1 + λjW1, D1) are also subcritical for any j =
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0, 1, · · · (cf. Theorem 7.4 of [64]). Denote by Hj the Green function for
(L1 + λjW1, D1). Fix a reference point x0 ∈ D. Denote by

D∗, ∂MD, ∂mD, and K(x, ξ)
the Martin compactification, Martin boundary, minimal Martin boundary,
and Martin kernel for (L,D), respectively. Similarly,

D∗
1, ∂MD1, ∂mD1 and k0(x1, ξ1)

denote those for (L1 + λ0W1, D1). It is known that the closure D1 of D1 in
M1 is continuously imbedded into D∗

1 and ∂D1 ⊂ ∂mD1 (cf. Theorem 2.1
of [55]). We put

Γ1 = ∂MD1 \ ∂D1.

We are now ready to state our main theorem.

Theorem 1.1 Assume the conditions (SMI2) and (U1). Then the following
(i)–(vi) hold true:

(i) With d2 being an ideal point outside of D∗
2, the Martin boundary ∂MD

is equal to the disjoint union of Γ1 × {d2}, ∂D1 ×D∗
2, and D1 × ∂MD2:

∂MD = Γ1 × {d2} t ∂D1 ×D∗
2 tD1 × ∂MD2. (1.15)

Furthermore,

∂mD = (Γ1 ∩ ∂mD1)× {d2} t ∂D1 ×D∗
2 tD1 × ∂MD2. (1.16)

In particular, ∂mD = ∂MD if and only if Γ1 ⊂ ∂mD1, i.e., ∂mD1 = ∂MD1.
(ii) For ξ1 ∈ Γ1, a subset U of D∗ is a neighborhood of ξ̃1 = (ξ1, d2) if and

only if there exists a neighborhood U1 of ξ1 in D∗
1 such that

U ⊃ (U1 ∩ Γ1)× {d2} ∪ (U1 ∩D1)×D∗
2. (1.17)

(iii) For ξ ∈ ∂D1×D∗
2 ∪D1× ∂MD2, a subset U of D∗ is a neighborhood

of ξ if and only if there exist neighborhoods U1 and U2 of ξ1 and ξ2 in D1

and D∗
2, respectively, such that U1 × U2 ⊂ U .

(iv) For ξ ∈ Γ1 × {d2},

K(x, ξ) = k0(x1, ξ1)φ0(x2)/φ0(x
0
2), x ∈ D. (1.18)

(v) For ξ ∈ ∂D1 ×D∗
2,

K(x, ξ) = k(x, ξ)/k(x0, ξ), x ∈ D, (1.19)
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where k(·, ξ) is a positive solution of (1.1) defined by

k(x, ξ) =
∞∑

j=0

kj(x1, ξ1)φj(x2)[φj/φ0](ξ2), x ∈ D, (1.20)

kj(x1, ξ1) = lim
D13y1→ξ1

Hj(x1, y1)/H0(x
0
1, y1), j = 0, 1, 2, · · · . (1.21)

Here the series on the right hand side of (1.20) converges uniformly on (F ×
E)× (∂D1 ×D∗

2) for any relatively compact domains F ⊂ D1 and E ⊂ D2.
It also converges in L∞(∂D1 × D∗

2;L
2(F × D2)) for any relatively compact

domain F in D1. Furthermore, k(x, ξ) is continuous on D× (∂D1×D∗
2), and

kj(·, ξ1) is a positive solution of (L1+λjW1)u = 0 inD1 for any j = 0, 1, 2, · · · .
(vi) For ξ ∈ D1 × ∂MD2,

K(x, ξ) = H(x, ξ)/H(x0, ξ), x ∈ D, (1.22)

where H(·, ξ) is a positive solution of (1.1) determined by

H(x, ξ) =
∞∑

j=0

Hj(x1, ξ1)φj(x2)[φj/φ0](ξ2), x ∈ (D1 \ {ξ1})×D2. (1.23)

Here the series on the right hand side of (1.23) converges uniformly on any
compact subset of (D1 \ {ξ1})×D2. It also converges in L2(F ×D2) for any
relatively compact domain F in D1 \ {ξ1}. Furthermore, H is continuous on
D × (D1 × ∂MD2).

Theorem 1.1 says that the uniqueness for a parabolic equation implies
that the fiber of ∂M(D1 ×D2) at infinity of the base space D1 reduces into
one point. This theorem will be proved in Section 5. The condition (U1) in
Theorem 1.1 implies that for ξ1 ∈ Γ1 the limit kj(x1, ξ1) = 0 for any j ≥ 1
(see Lemma 5.3 in Section 5). This means that the perturbation W1 of the
operator L1 + λ0W1 on D1 is big in some sense, since the Green function Hj

of L1 + λjW1 on D1 becomes smaller as the positive function W1 becomes
bigger. Now, we introduce the following condition (S1), i.e., semismallness
of W1, which is complementary to the condition (U1).

(S1) W1 is a semismall perturbation of L1 + λ0W1 on D1.
This condition means that for any ε > 0 there exists a compact subset K of
D1 such that∫

D1\K
H0(x

0
1, z)W (z)H0(z, y1)dµ1(z) ≤ εH0(x

0
1, y1), y1 ∈ D1 \K,
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where x0
1 is a reference point in D1. By Theorem 3.1 and Proposition 3.4

to be stated in Section 3, both the conditions (S1) and (U1) do not hold
together. Interestingly, in several important cases, either (S1) or (U1) holds.

When (S1) holds, the Martin compactification (D1 × D2)
∗ of D1 × D2

with respect to L is extremely simple. In this case, (D1 × D2)
∗ is regular:

(D1 ×D2)
∗ = D∗

1 ×D∗
2.

Theorem 1.2 Assume the conditions (SMI2) and (S1). Then the following
(i)–(iii) hold true.

(i) The Martin compactification D∗ of D with respect to L is homeomor-
phic to D∗

1 ×D∗
2. In particular,

∂MD = Γ1 ×D∗
2 t ∂D1 ×D∗

2 tD1 × ∂MD2. (1.24)

Furthermore,

∂mD = (Γ1 ∩ ∂mD1)×D∗
2 t ∂D1 ×D∗

2 tD1 × ∂MD2. (1.25)

In particular, ∂mD = ∂MD if and only if Γ1 ⊂ ∂mD1, i.e., ∂mD1 = ∂MD1.
(ii) The assertion (v) of Theorem 1.1 holds with ∂D1 replaced by Γ1∪∂D1.

In particular, the Martin kernel K(x, ξ) for ξ ∈ (Γ1 ∪ ∂D1)×D∗
2 is given by

(1.19).
(iii) The assertion (vi) of Theorem 1.1 holds.

Theorem 1.2 is a special case of Theorem 9.1 of [64] (see Theorem 4.2 in
Section 4). This theorem says that ”smallness” of W1 implies the regularity
of (D1 × D2)

∗ , while Theorem 1.1 says that ”bigness” of W1 implies the
degeneration of the fiber at infinity.

Here, as an application of Theorems 1.1 and 1.2, we give a simple ex-
ample concerning positive harmonic functions on horn-shaped domains in
RN+1, N ≥ 2. Further examples will be given in Section 8.

Theorem 1.3 Let α and β be Lipschitz continuous functions on [1,∞) such
that α > β and (α(r)− β(r))/r is decreasing. Let

D1 = {(r, s) ∈ R2; α(r) > s > β(r), 1 < r <∞}.

Let D2 be a Lipschitz domain in the unit sphere SN−1 of RN or the whole
space SN−1, where N ≥ 2. Let L = −∆ on RN+1 and

D = {(z, s) ∈ RN ×R1;α(|z|) > s > β(|z|), |z| > 1, z/|z| ∈ D2}.
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(i) Suppose that ∫ ∞

1

(α(r)− β(r))r−2dr <∞. (1.26)

Then D∗ is homeomorphic to D∗
1 ×D2, where D∗

1 = D1 ∪ {∞} is the closure
of D1 in the one-point compactification of R2. Furthermore, ∂MD = ∂mD =
∂MD1 ×D2 ∪D1 × ∂D2 and ∂MD1 = ∂mD1 = ∂D1 ∪ {∞}.

(ii) Suppose that ∫ ∞

1

(α(r)− β(r))r−2dr = ∞. (1.27)

Then D∗ is homeomorphic to (D1 × D2) t {(∞, d2)}, where a fundamental
neighborhood system of the ideal point (∞, d2) is given by the family

{({(r, s) ∈ D1; ε
−1 < r <∞}×D2) ∪ {(∞, d2)}}0<ε<1.

Furthermore, ∂MD = ∂mD = {(∞, d2)}∪∂D1×D2∪D1×∂D2 and ∂MD1 =
∂mD1 = ∂D1 ∪ {∞}.

A special case of this theorem was shown under more stringent condition
by Ioffe and Pinsky [40], and related results were announced by Maz’ya [50].
The assertion (i) of Theorem 1.3 was shown by Aikawa and Murata [4] (see
also Theorem 6.3 in Section 6). The assertion (ii) will be proved in Section
6.

The remainder of this paper is organized as follows. In Section 2, we
recall uniqueness theorems for parabolic equations given in [44] and [65],
and give an application to a concrete example related to Theorem 1.3. In
Section 3, we recall criteria for non-h-bigness, and observe that the Widder
type uniqueness theorem implies h-bigness. In Section 4, we recall general
results on Martin boundaries for elliptic equations in skew product form
given in [64]. In section 5, we prove Theorem 1.1. Theorem 1.3 is proved in
Section 6. There we also give a theorem on small perturbation, and generalize
the assertion (i) of Theorem 1.3. In Section 7, we give a generalization of
Theorems 1.1 and 1.2. By applying it, we give several concrete examples in
Section 8.
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2 Uniqueness theorems for parabolic

equations

In this section we recall uniqueness theorems in [42] and [65], and give an ap-
plication to a simple example related to Theorem 1.3. Let N be a connected
separable smooth manifold with Riemannian metric of class C0. We assume
that the Riemannian manifold N is complete. Let P be an elliptic operator
on N of the form

Pu = −w−1div(wa∇u− wuc)− 〈b,∇u〉+ qu, (2.1)

where w, a, b, c, q satisfy the conditions (1.6), (1.7) and (1.8) with obvious
modifications. We further assume that P is uniformly elliptic on N , i.e.,
there exists a positive constant κ such that

κ|ξ|2 ≤ 〈axξ, ξ〉 ≤ κ−1|ξ|2, (x, ξ) ∈ TN. (2.2)

We denote by ν the Riemannian measure on N , and put dλ = wdν. First,
consider the Cauchy problem

Pu = 0 in N × (0,∞), (2.3)

u(x, 0) = u0(x) on N, (2.4)

where P = ∂t + P and u0 ∈ L2
loc(N, dλ). In order to give a Widder type

uniqueness theorem, we need two conditions. Put q± = max(±q, 0). Fix a
point O in N , and let d(x) = dist(O, x) be the Riemannian distance between
O and x ∈ N . Put B(O,R) = {x ∈ N ; d(x) < R} for R > 0. Let ρ be a
positive continuous increasing function on [0,∞). Then the condition [RB-ρ]
(i.e., relative boundedness with scale function ρ) to be imposed on b, c, q− is
as follows.

[RB-ρ] There exist constants α1 > 0, 0 ≤ β1 < 1, 0 < β2 < 1, 0 < β3 < 1
such that β1 + β2 + β3 < 1 and∫

B(O,R)

[
1

4β2

〈a−1b, b〉+
1

4β3

〈a−1c, c〉+ q−
]
ψ2dλ (2.5)

≤ β1

∫
B(O,R)

〈a∇ψ,∇ψ〉dλ+ α1ρ(R)2

∫
B(O,R)

ψ2dλ

for any R > 1 and ψ ∈ C∞
0 (B(O,R)).
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The second condition to be imposed on P is the following condition [PHP-
ρ], i.e., the parabolic Harnack principle with scale function ρ.

[PHP-ρ] There exists a positive constant α2 such that for any

(x, t) ∈ N × (0,∞), 0 < r ≤ 1

ρ(d(x))
,

any nonnegative solution u of the equation

Pu = 0 in Q = B(x, r)× (t− r2, t+ r2) (2.6)

satisfies the inequality
sup
Q−

u ≤ α2 inf
Q+

u, (2.7)

where

Q− = B(x,
r

2
)× (t− 3

4
r2, t− 1

4
r2),

Q+ = B(x,
r

2
)× (t+

1

4
r2, t+

3

4
r2).

For the parabolic Harnack inequality (2.7), see [15,27,33,41,44,48,52,75,77]
and references therein. We are now ready to state a Widder type uniqueness
theorem, which is a time independent elliptic operator case of Theorem 2.2
in [44].

Theorem 2.1 Suppose that the conditions [RB-ρ] and [PHP-ρ] hold with ρ
satisfying ∫ ∞

1

dr

ρ(r)
= ∞. (2.8)

Then a nonnegative solution u of the Cauchy problem (2.3) and (2.4) is
determined uniquely by the initial data u0.

Let Ω be a domain in N . We next consider the Dirichlet problem

Pu = 0 in Ω× (0,∞), (2.9)

u(x, 0) = u0(x) on Ω, (2.10)

u(x, t) = 0 on ∂Ω× (0,∞), (2.11)

where u0 satisfies ηu0 ∈ L2(Ω, dλ) for any η ∈ C∞
0 (N). Let Lip([0, 1]; Ω) be

the set of Lipschitz continuous curves in Ω. For x, y ∈ Ω, put

Γ(x, y) = {γ ∈ Lip([0, 1]; Ω); γ(0) = x, γ(1) = y, γ(s) ∈ Ω for 0 < s < 1}.
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Denote by l(γ) the length of a curve γ ∈ Lip([0, 1]; Ω), and put

dΩ(x, y) = inf{l(γ); γ ∈ Γ(x, y)}. (2.12)

Fix a point O in Ω, and put dΩ(x) = dΩ(O, x) for x ∈ Ω. Let ρ be a positive
continuous increasing function on [0,∞). For R > 0, put

ΩR = {x ∈ Ω; dΩ(x) < R}, Ω∧
R =

⋃
x∈ΩR

B(x,
1

ρ(dΩ(x))
). (2.13)

We impose on P and Ω the following condition [RB-ρΩ] (i.e., relative bound-
edness with scale function ρ and domain Ω) and [PHP-ρΩ] (i.e., the parabolic
Harnack principle with scale function ρ and domain Ω).

[RB-ρΩ] The condition [RB-ρ] holds with B(O,R) replaced by Ω∧
R.

[PHP-ρΩ] There exist a compact subset K of N and a positive constant
α2 such that for any

(x, t) ∈ (Ω \K)× (0,∞), 0 < r ≤ 1

ρ(dΩ(x))
,

any nonnegative solution u of the equation (2.6) satisfies the inequality (2.7).
In order to give a Widder type uniqueness theorem for the Dirichlet prob-

lem, we further need two conditions: [PCE-ρ] (i.e., the parabolic Carleson
estimate with scale function ρ) and [OBC-ρ] (i.e., off-boundary curve condi-
tion with scale function ρ). In what follows, K denotes the compact set in
[PHP-ρΩ].

[PCE-ρ] There exist positive constants γ1, γ2, α3 satisfying the following:
For any

(x, t) ∈ (∂Ω \K)× (0,∞), 0 < r ≤ 1

ρ(dΩ(x))
,

and any connected component ω(x, r) of Ω ∩ B(x, r), one can find a point
x̃ ∈ ω(x, r) such that

B(x̃, γ1r) b ω(x, r) ∩B(x,
r

2
), dist(B(x̃, γ1r), ∂ω(x, r)) > γ2r, (2.14)

and any nonnegative solution u of the equation

Pu = 0 in Qω = ω(x, r)× (t− r2, t+ r2), (2.15)

u = 0 on (∂ω(x, r) \ Ω)× (t− r2, t+ r2) (2.16)
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satisfies the inequality
sup
Q−ω

u ≤ α3 inf
Q+

ω

u, (2.17)

where

Q−
ω = (ω(x, r) ∩B(x,

r

2
))× (t− 3

4
r2, t− 1

4
r2),

Q+
ω = B(x̃, γ1r)× (t+

1

4
r2, t+

3

4
r2).

[OBC-ρ] For any ε > 0 there exist positive constants δ and C satisfying
the following: For ant x ∈ Ω \K with dist(x, ∂Ω) > ε/ρ(dΩ(x)) there exists
a curve γ ∈ Lip([0, 1]; Ω) such that γ(0) = x, γ(1) = O, and

l(γ) ≤ CdΩ(x), dist(γ(s), ∂Ω) >
δ

ρ(CdΩ(x))
, 0 ≤ s ≤ 1. (2.18)

We can show that if Ω is a Lipschitz domain, then these conditions are
satisfied for some ρ. For the parabolic Carleson estimate (2.18), which is
also called the boundary Harnack inequality for parabolic equations, see [41]
and references therein. We are now ready to state a Widder type uniqueness
theorem, Theorem 4.4 of [65].

Theorem 2.2 Suppose that [RB-ρΩ], [PHP-ρΩ], [PCE-ρ] and [OBC-ρ] hold
with ρ satisfying (2.8). Then a nonnegative solution u of the Dirichlet prob-
lem (2.9), (2.10) and (2.11) is determined uniquely by the initial data u0.

Here, as an application of Theorem 2.2, we give a simple example related
to Theorem 1.3.

Theorem 2.3 Let γ ≥ −2. Let α and β be Lipschitz continuous functions
on [1,∞) such that α > β and (α(r)− β(r))rγ/2 is decreasing. Let

Ω = {(r, s) ∈ R2; 1 < r <∞, α(r) > s > β(r)}.

Let P = r−γ(∂2/∂r2 + ∂2/∂s2). Suppose that∫ ∞

1

(α(r)− β(r))rγdr = ∞. (2.19)

Then a nonnegative solution of the Dirichlet problem (2.9), (2.10) and (2.11)
is determined uniquely by the initial data u0.

13



Proof. We show the theorem along the line given in the proof of Theorem
5.6 of [65]. Let N = {(r, s) ∈ R2; r > 0}. Introduce a Riemannian metric
g = (f(r)δij) on N , where δ11 = δ22 = 1, δ12 = δ21 = 0, and f is a positive
smooth function on (0,∞) such that f(r) = rγ for r > 1/2 and f(r) = r−2

for 0 < r < 1/4. Then N becomes a complete Riemannian manifold with
this metric g. Let ∇ and div be the associated gradient and divergence on
N , respectively. We have

P = div ◦ ∇ on {(r, s) ∈ N ; r > 1/2}.

Thus [RB-ρΩ] obviously holds. Let us show the conditions [PHP-ρΩ], [PCE-
ρ] and [OBC-ρ]. Put h(r) = α(r) − β(r). Since h(r)/r is bounded, we can
choose a sufficiently small positive number θ so that

2−1rγ/2|x− y| ≤ dist(x, y) ≤ 2rγ/2|x− y| (2.20)

for any x, y ∈ E(r, s, θh(r)) = {z ∈ N ; |z − (r, s)| < θh(r)} with (r, s) ∈ Ω.
Put ζ(r) = (α(r) + β(r))/2, O = (2, ζ(2)) and r̂ = (r, ζ(r)). We have

dΩ(r̂, (r, s)) = |s− ζ(r)|rγ/2 ≤ 2−1h(r)rγ/2 (2.21)

for any (r, s) ∈ Ω. Put F (r) =
∫ r

2
tγ/2dt for r ≥ 2. Since α and β are

Lipschitz continuous, there exists a positive constant C such that

F (r) ≤ dΩ(r̂) ≤ CF (r), r ≥ 2. (2.22)

Since h(r)rγ/2 is bounded, it follows from (2.21) and (2.22) that for any
(r, s) ∈ Ω with r ≥ 3

C1F (r) ≤ dΩ((r, s)) ≤ C2F2(r), (2.23)

where C1 and C2 are positive constants independent of (r, s). Define a func-
tion r(R) from [0,∞) to [2,∞) by F (r) = R. Recalling that h(r)rγ/2 is
decreasing, define ρ by

ρ(R) = 1/κh(r(R))r(R)γ/2 (2.24)

for a sufficiently small positive constant κ. Here, in view of (2.20) and (2.23),
we have chosen κ so small that for any x = (r, s) ∈ Ω with r ≥ 3

B(x, 1/ρ(C1F (r))) ⊂ E(r, s, θh(r)). (2.25)

14



By (2.19), ρ satisfies (2.8). In order to show [OBC-ρ], choose a curve com-
posed of the line segment with endpoints x = (r, s) and r̂ and the curve
{τ̂ ; 2 ≤ τ ≤ r}. Then [OBC-ρ] follows from (2.20), (2.21), (2.22) and
(2.23). Let us show [PHP-ρΩ]. Let t > 0, x = (r, s) ∈ Ω, 0 < η < θ,
and E(r, s, ηh(r)) the Euclidean ball with center (r, s) and radius ηh(r). Put
σ = ηh(r)rγ/2. In view of (2.20), (2.23) and (2.25), we consider the equation

∂u

∂τ
+y−γ(

∂2u

∂y2
+
∂2u

∂z2
) = 0 in QE = E(r, s, σr−γ/2)×(t−σ2, t+σ2). (2.26)

It suffices to show that the inequality

sup
Q−E

u ≤ α2 inf
Q+

E

u, (2.27)

where

Q−
E = E(r, s,

1

2
σr−γ/2)× (t− 3

4
σ2, t− 1

4
σ2),

Q+
E = E(r, s,

1

2
σr−γ/2)× (t+

1

4
σ2, t+

3

4
σ2).

Change the variable (y, z) to

(Y, Z) = (rγ/2(y − r) + r, rγ/2(z − s) + s).

Then the equation becomes

∂u

∂τ
+

(
r

y

)γ (
∂2u

∂Y 2
+
∂2u

∂Z2

)
= 0 in Σ = E(r, s, σ)× (t−σ2, t+σ2), (2.28)

and Q±
E become

Σ− = E(r, s,
σ

2
)× (t− 3

4
σ2, t− 1

4
σ2),

Σ+ = E(r, s,
σ

2
)× (t+

1

4
σ2, t+

3

4
σ2).

Note that σ is less than some small positive number, and (r/y)γ is bounded
from above and below by positive constants. Thus the standard parabolic
Harnack inequality shows the desired inequality (2.27). It remains to show
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[PCE-ρ]. We treat only a boundary point x on the lower bank. Let x =
(r, β(r)) with r ≥ 3. In view of the above argument, put

B(Y ) = rγ/2β(r−γ/2(Y − r) + r) + (1− rγ/2)β(r).

It suffices to consider a nonnegative solution of the equation

∂u

∂τ
+ (r/y)γ

(
∂2u

∂Y 2
+
∂2u

∂Z2

)
= 0 (2.29)

in ΣB = (E(r, β(r), σ) ∩ {Z > B(y)})× (t− σ2, t− σ2),

u = 0 on (E(r, β(r), σ) ∩ {Z = B(y)})× (t− σ2, t− σ2). (2.30)

Since the function B(Y ) is Lipschitz continuous, the standard parabolic Car-
leson estimate yields the inequality

sup
Σ−B

u ≤ α3 inf
Σ+

B

u,

where

Σ− = (E(r, β(r),
σ

2
) ∩ {Z > B(Y )})× (t− 3

4
σ2, t− 1

4
σ2),

Σ+ = E(r, β(r) +
σ

4
, γ1σ)× (t+

1

4
σ2, t+

3

4
σ2)

for a sufficiently small positive number γ1. This shows [PCE-ρ]. Hence The-
orem 2.3 follows from Theorem 2.2. 2

Remark 2.4 Actually, the condition (2.19) is also a necessary condition for
the Widder type uniqueness theorem to hold. Indeed, suppose that∫ ∞

1

(α(r)− β(r))rγdr <∞.

Apply Theorem 6.1 in Section 6 with ν1(r) = r and Φ(t1) = tγ1 . Then we
obtain that rγ is a small perturbation of −∆ on Ω. Thus Remark 3.5 and
Theorem 3.1 in Section 3 show that there exists a positive solution of (2.9),
(2.10) and (2.11) with u0 = 0.
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3 h-big perturbations

In this section we recall a non-uniqueness theorem in [65], and observe that
the Widder type uniqueness theorem implies h-bigness.

Let N be a connected separable smooth manifold with Riemannian metric
of class C0. Let L be an elliptic operator on N of the form

Lu = −m−1div(mA∇u−mCu)− 〈B,∇u〉+ V u, (3.1)

where m,A,B,C, V satisfy the conditions (1.6),(1.7) and (1.8), with obvious
modifications. Let W be a positive measurable function on N such that
W,W−1 ∈ L∞loc(N, dλ), dλ = mdν, where ν is the Riemannian measure on N .
Let Ω be a domain of N . We consider the Dirichlet problem

(∂t +W−1L)u = 0 in Ω× (0,∞), (3.2)

u(x, 0) = 0 on Ω, (3.3)

u(x, t) = 0 on ∂Ω× (0,∞). (3.4)

It is needless to say that when Ω = N , the condition (3.4) is redundant,
and the problem reduces to the Cauchy problem. Suppose that (L,Ω) is
subcritical, i.e., there exists the Green function G of L on Ω. Let h be a
positive solution of the Dirichlet problem

Lv = 0 on Ω, (3.5)

v = 0 on ∂Ω. (3.6)

Here, the boundary condition (3.6) means v ∈ H1
0,loc(Ω). Following [35], we

say that W is h-big (on Ω) when any function v satisfying

(L+W )v = 0 and 0 ≤ v ≤ h on Ω (3.7)

must be identically zero. Otherwise, W is said to be non-h-big (on Ω).
Theorem 2.5 of [65] partially reads as follows.

Theorem 3.1 The following are equivalent:
(i) W is non-h-big.
(ii) There exist a non-empty domain E ⊂ Ω and a positive solution f of

the Dirichlet problem

Lf = 0 on E, f = 0 on ∂E
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such that 0 < f ≤ h on E and∫
E

GE(x, y)W (y)f(y)dλ(y) <∞, x ∈ E, (3.8)

where GE is the Green function of L on E with respect to the measure dλ.
(iii) There exists a solution u of (3.2), (3.3) and (3.4) such that 0 <

u(x, t) ≤ h(x) on Ω× (0,∞).

We should mention here that the statement of the assertion (ii) is slightly
different from that of the assertion (II) of Theorem 2.5 in [65], but they
are equivalent because a nonnegative solution of an elliptic equation on a
connected open set is positive or identically zero.

The following is a direct consequence of this theorem which will be used
in proving Theorem 1.1.

Proposition 3.2 Suppose that the Dirichlet problem (3.2), (3.3) and (3.4)
has no nonnegative solution which is not identically zero. Then W is h-big
for any positive solution h of (3.5) and (3.6).

Remark 3.3 When a positive solution h satisfies an appropriate growth
condition at infinity, a Täcklind type uniqueness theorem (cf. [44,65]) can be
used also as a sufficient condition of h-bigness.

We conclude this section with remarks on semismall perturbations (cf. Sec-
tion 5 of [64]).

Proposition 3.4 Suppose that W is a semismall perturbation of L on Ω.
Then W is non-h-big for any positive solution h of (3.5).

Proof. The semismallness of W implies∫
Ω

G(x, y)W (y)h(y)dλ(y) <∞, x ∈ Ω

(cf. Proposition 3.3 of [62]). Thus W is non-h-big by virtue of Theorem 7.19
of [35] (see also Theorem 4.1 of [35]). 2

Remark 3.5 We say that W is a small perturbation of L on Ω when for any
ε > 0 there exists a compact subset K of Ω such that∫

Ω\K
G(x, z)W (z)G(z, y)dλ(z) ≤ εG(x, y), x, y ∈ Ω \K.
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It is known (cf. [62]) that if W is a small perturbation, then it is a semismall
perturbation, i.e., for any ε > 0 there exists a compact subset K of Ω such
that ∫

Ω\K
G(x0, z)W (z)G(z, y)dλ(z) ≤ εG(x0, y), y ∈ Ω \K,

where x0 is a point fixed in Ω. Thus, if W is a small perturbation of L on Ω,
then W is non-h-big for any positive solution h of (3.5).

4 Martin boundaries for elliptic equations in

skew product form

In this section we recall general results in [64], from which Theorem 1.1 is
derived. Consider the equation (1.1). For (L2, D2), we assume the same
conditions as in Section 1; so L2 is the operator (1.10) on D2 satisfying the
hypothesis (SMI2). But, in this section, we treat L1 and D1 under more
general conditions although we use the same notations as in Section 1. Let
D1 be a non-compact domain of M1. Let L1 be an elliptic operator on D1 of
the form (1.5), where m1, A1, B1, C1, V1 satisfy the conditions (1.6), (1.7) and
(1.8) with M1 replaced by D1. Let W1 be a positive measurable function on
D1 such thatW1,W

−1
1 ∈ L∞loc(D1, dµ1). Let L = L1+W1L2 andD = D1×D2.

We assume that (L,D) is subcritical. We denote by D∗
1, ∂MD1, ∂mD1, and

k0 the Martin compactification, Martin boundary, minimal Martin boundary,
and Martin kernel for (L1+λ0W1, D1), respectively. For an open set Ω ⊂ D1,
we denote by Ω∗ the closure of Ω in D∗

1; while Ω denotes the closure Ω in
the relative topology of D1. We denote by L∗1 the formal adjoint operator of
L1 with respect to dµ1. For an elliptic operator P on an open set Ω ⊂ D1, a
subset F of Ω such that F ∩ Ω = F , and a family F of positive solutions of
Pu = 0 in Ω, we put S = (F , P,Ω, F ). We say that CP (i.e., the comparison
principle) holds for S when there exists a positive constant c such that for
any u and v in F

c
v(x)

v(y)
≤ u(x)

u(y)
≤ c−1v(x)

v(y)
, x, y ∈ F. (4.1)

We impose on {(L1+λjW1, D1)}∞j=0 the following condition (ZCS1), i.e., zero
limit, comparison principle and semismallness.

(ZCS1) There exist subsets Ξ0 and Ξ∞ of ∂MD1 such that Ξ0∪Ξ∞ = ∂MD1
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and the following conditions (ZC) and (CS) are satisfied.
(ZC) For any ξ1 ∈ Ξ0, there exist domains Ui (i = 1, 2, 3, 4) of D1 such

that

Ui ⊂ Ui+1 for i = 1, 2, 3, ξ1 ∈ U∗
1 ∩ ∂MD1, x0

1 ∈ U3 \ U1, (4.2)

lim
U33y1→ξ1

h1(x1, y1)/h0(x
0
1, y1) = 0, x1 ∈ U3, (4.3)

where h1 (resp. h0) is the Green function of L1 + λ1W1 (resp. L1 + λ0W1)
on U4. Furthermore, CP holds for S and R, where

S = ({H0(·, y1); y1 ∈ U1 ∪ (D1 \ U3)}, L1 + λ0W1, U3 \ U1, ∂U2), (4.4)

R = ({H1(x
0
1, ·), h1(x

0
1, ·)}, L∗1 + λ1W1, U4 \ {x0

1}, ∂U3).

(CS) For any ξ1 ∈ Ξ∞, there exist domains Ei (i = 1, · · · , 8) of D1 such
that

Ei ⊂ Ei+1 for i = 1, · · · , 7, ξ1 ∈ E∗
1 ∩ ∂MD1, x0

1 ∈ E6 \ E5, (4.5)

W1 is a semismall perturbation of L1 + λ0W1 on E8, (4.6)

and CP holds for Si (i = 1, 2, 3), Tj and Uj (j = 0, 1, · · · ), where

Si = ({H0(·, y1); y1 ∈ E2i−1 ∪ (D1 \ E2i+1)}, (4.7)

L1 + λ0W1, E2i+1 \ E2i−1, ∂E2i),

Tj = ({Hj(·, y1); y1 ∈ E6} ∪ {hj(·, y1); y1 ∈ E6},
L1 + λjW1, E8 \ E6, ∂E7),

Uj = ({Hj(x
0
1, ·), hj(x

0
1, ·)},

L∗1 + λjW1, E8 \ {x0
1}, ∂E6), j = 0, 1, 2, · · · .

Here hj is the Green function of L1 + λjW1 on E8.
This condition (ZCS1) always holds when D1 is one dimensional (cf. [64]).

The semi-localized condition (4.3) and (4.6) are useful in treating domains
having several connected components at infinity. Note that CP holds for
(4.7), for example, if E8 \ E1 is a compact subset of D1.

We are now ready to state Theorem 9.1 of [64] except for the case where
D1 is compact.

Theorem 4.1 Assume the conditions (SMI2) and (ZCS1). Then the follow-
ing (i)–(iv) hold true:
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(i) With d2 being an ideal point outside of D∗
2, the Martin boundary ∂MD

is equal to the disjoint union of Ξ0 × {d2},Ξ∞ ×D∗
2 and D1 × ∂MD2:

∂MD = Ξ0 × {d2} t Ξ∞ ×D∗
2 tD1 × ∂MD2. (4.8)

Furthermore,

∂mD = (Ξ0 ∩ ∂mD1)× {d2} t (Ξ∞ ∩ ∂mD1)×D∗
2 tD1 × ∂MD2. (4.9)

In particular, ∂mD = ∂MD if and only if ∂mD1 = ∂MD1.
(ii) The assertions (ii) and (iv) of Theorem 1.1 hold with Γ replaced by

Ξ0.
(iii) The assertions (iii) and (v) of Theorem 1.1 hold with ∂D1 replaced

by Ξ∞.
(iv) The assertion (vi) of Theorem 1.1 holds.

A special case of this theorem is worth stating.

Theorem 4.2 Assume (SMI2). Suppose that W1 is a semismall perturba-
tion of L1 + λ0W1 on D1. Then the Martin compactification D∗ of D with
respect to L is homeomorphic to D∗

1 ×D∗
2, and all the assertions of Theorem

4.1 hold with Ξ0 = ∅ and Ξ∞ = ∂MD1.

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying Theorem 4.1 in the last
section. We use the notations in Section 1, and assume the conditions (SMI2)
and (U1). We start with a lemma concerning small perturbation and the
boundary Harnack principle for elliptic equations. For definition of small
perturbation, see Remark 3.5 in Section 3. As for the boundary Harnack
principle, see [3, 5, 19, 20,38,39,55,81].

Lemma 5.1 The condition (CS) of the hypothesis (ZCS1) holds with Ξ∞
and E∗

1 replaced by ∂D1 and E1, respectively.

Here and in what follows we abuse notations as follows: E1 and ∂E1 in
this section mean the closure and boundary of E1 in M1, respectively; so
E1∩D1 and ∂E1∩D1 are equal to the symbols E1 and ∂E1 in the hypothesis
(ZCS1).
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Proof. Let ξ1 ∈ ∂D1. Since D1 is a Lipschitz domain, we can choose a
coordinate system (U, z) such that

U ∩D1 = {z = (z′, zN) ∈ RN ; |z′| < R, 0 < zN − f(z′) < R}, (5.1)

U ∩ ∂D1 = {z ∈ RN ; |z′| < R, zN = f(z′)}, (5.2)

and ξ1 = (0, 0), where f is a Lipschitz continuous function on RN−1. We
denote the right hand side of (5.1) by E(R). For 0 < r < R/8 with x0

1 /∈
E(5r), choose a Lipschitz curve γ in D1 \ E(5r) such that γ(0) = x0

1 and
γ(1) = (0, f(0) + 6r). For s > 0, put

F (s) = {p ∈M1; dist(p, γ(t)) < s, 0 ≤ t ≤ 1}.

Choose s so small that F (8s) ⊂ D1 \ E(5r). For i = 6, 7, 8, put Ei =
E(ir) ∪ F (is). Modifying F (is) if necessary, we may assume that Ei are
relatively compact Lipschitz domain of D1. For i = 1, · · · , 5, put Ei = E(ir).
Then Ei ∩D1 ⊂ Ei+1 for i = 1, · · · , 7, ξ1 ∈ E1 ∩ ∂D1, and x0

1 ∈ E6 \ E5. In
the coordinate system (U, z) the operator L1 + λ0W1 has the form

w(L1 + λ0W1)u = −
∑

1≤i,j≤N

∂i(aij∂ju)−
∑

1≤j≤N

bj∂ju+
∑

1≤j≤N

∂j(cju) + qu,

(5.3)
where w is a positive measurable function with w,w−1 ∈ L∞(E(R)) and
ai,j, bj, cj, q satisfy the condition (1.7) and (1.8) with obvious modifications.
Thus, rechoosing r and s sufficiently small if necessary, we can show by
Theorem 9.1’, Proposition 9.2 and the proof of Corollary 6.1 of [8] that W1,
which is bounded on E8, is a small perturbation of L1 + λ0W1 on E8 (see
also [1, 62]). This implies (4.6). Let i = 1, 2, 3. By the boundary Harnack
principle, there exists a positive constant c such that

c
v(x)

v(y)
≤ u(x)

u(y)
≤ c−1v(x)

v(y)
, x, y ∈ ∂E2i ∩D1, (5.4)

for any positive solutions u and v of the equation (L1 + λ0W1)u = 0 in
E2i+1 \ E2i−1 such that

u = v = 0 on {z ∈ RN ; (2i− 1)r < |z′| < (2i+ 1)r, zn = f(z′)}

(cf. Theorem 1.3 of [55]). We have abused notations: ∂E2i in (5.4) is the
boundary of E2i in M1, and so ∂E2i ∩D1 is the boundary of E2i in D1 which
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is equal to ∂E2i in (4.7). Let us give another proof of (5.4). Denote by P the
operator on the right hand side of (5.3), and put

Qu = −
∑

1≤i,j≤N

∂i(aij∂ju).

Choose a relatively compact Lipschitz domain E ⊂ D1 such that E ∩D1 ⊂
E2i+1 \E2i−1 and E ⊃ U ∩D1 for some neighborhood U of ∂E2i ∩D1. Let u
and v be positive solutions of the equation Pu = 0 in E such that they are
continuous up to the boundary and vanish on {z ∈ ∂E; zn = f(z′)}. Let û be
a positive solution of the equation Qû = 0 in E with û = u on ∂E. Denote by
µx and νx, x ∈ E, the harmonic measures for P and Q, respectively. Then
there exists a positive constant c1 such that c1µx ≤ νx ≤ c−1µx, x ∈ E
(cf. Proposition 8.3 and the comment after Theorem 9.1’ of [8]). Thus
c1u(x) ≤ û(x) ≤ c−1

1 u(x), x ∈ E. Similarly, c1v(x) ≤ v̂(x) ≤ c−1
1 v(x), x ∈ E.

By Theorem 1.4 of [19], there exists a positive constant c2 such that

c2
v̂(x)

v̂(y)
≤ û(x)

û(y)
≤ c−1

2

v̂(x)

v̂(y)
, x, y ∈ ∂E2i ∩D1.

This implies (5.4). Now for y1 ∈ E2i−1 ∪ (D1 \ E2i+1), H0(·, y1) is a positive
solution of the equation (L1 + λ0W1)u = 0 in E2i+1 \ E2i−1 which vanishes
on {z ∈ ∂(E2i+1 \ E2i−1); zn = f(z′)}. Hence CP holds for Si given by (4.7).
Similarly, CP holds for Tj and Uj given by (4.7). 2

The following lemma is a simple observation, but plays a critical role in
proving Theorem 1.1.

Lemma 5.2 Let h(x1) = k0(x1, ξ1) for some ξ1 ∈ Γ1 = ∂MD1 \ ∂D1, where
k0 is the Martin kernel for (L1 + λ0W1, D1). If W1 is h-big, then

lim
D13y1→ξ1

H1(x1, y1)/H0(x
0
1, y1) = 0, x1 ∈ D1. (5.5)

Proof. Although the lemma is essentially Lemma 5.8 of [64], we give a proof
since it is simple. Suppose that (5.5) does not hold. Then there exists a
sequence {yj

1}∞j=1 in D1 such that yj
1 → ξ1 and

v(x) = lim
j→∞

H1(x1, y
j
1)/H0(x

0
1, y

j
1)
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is a positive solution of the equation (L1 + λ1W1)v = 0 in D1 satisfying
0 < v ≤ h. This is a contradiction, since (λ1 − λ0)W1 is also h-big (cf.
Propositions 7.16 and 3.7 of [35]). 2

Lemma 5.3 Let h(x1) = k0(x1, ξ1) for some ξ1 ∈ Γ1. Then (5.5) holds.

Proof. By the a priori estimates near boundary points, h is a positive solution
in H1

0,loc(D1) of the equation (L1 + λ0W1)h = 0 in D1. It follows from the
assumption (U1) that any nonnegative solution of the problem

(∂t +W−1
1 (L1 + λ0W1))v = 0 in D1 × (0,∞),

v(x, 0) = 0 on D1,

v(x, t) = 0 on ∂D1 × (0,∞)

must be identically zero. Thus, by Proposition 3.2 in Section 3, W1 is h-big.
Hence Lemma 5.2 implies (5.5). 2

We are now ready to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. We claim that the condition (ZC) of the hypothesis
(ZCS1) holds with Ξ0 replaced by Γ1. Choose domains Ui (i = 1, · · · , 4) such
that D1\U1 is a compact subset of D1, U4 = D1, Ui∩D1 ⊂ Ui+1 for i = 1, 2, 3,
and x0

1 ∈ U3 \ U1. Then (4.2) holds. By Lemma 5.3, (4.3) holds. By the
Harnack inequality, (CP) holds for S and R given by (4.4). This proves the
claim, which together with Lemma 5.1 implies that the hypothesis (ZCS1)
holds with Ξ0 = Γ1 and Ξ∞ = ∂D1. Hence Theorem 4.1 in the last section
shows Theorem 1.1. 2

6 Martin boundaries of horn-shaped domains

In this section we show the assertion (ii) of Theorem 1.3, and give a gener-
alization of the assertion (i) of Theorem 1.3.

6.1 Small perturbations

In this subsection we give a theorem on small perturbation. By using it we
also give an improvement of Theorem 4 of [4], from which the assertion (i)
of Theorem 1.3 follows.
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Let Ω be a domain in R2 such that (−∆,Ω) is subcritical, i.e., there
exists the Green function H of −∆ on Ω (cf. Theorem 8.33 of [37]). Let
Φ(t1, · · · , tl) be a nonnegative Borel measurable function on (0,∞]l. Define
Ψ(t1, · · · , tl) by

Ψ(t1, · · · , tl) = sup
4−1<c1,··· ,cl<4

Φ(c1t1, · · · , cltl).

Let νj (j = 1, · · · , l) be (0,∞]-valued continuous superharmonic function on
Ω. Put

W (z) = Φ(ν1(z), · · · , νl(z)).

Then we have the following

Theorem 6.1 Suppose that∫
Ω

Ψ(ν1(z), · · · , νl(z))dz <∞, (6.1)

where dz is the Lebesgue measure on R2. Then W is a small perturbation
of −∆ on Ω.

Proof. Let ∂∞Ω be the boundary of Ω in the one point compactification of
R2. Let F be the set of points in ∂∞Ω which are irregular with respect to the
Dirichlet problem for harmonic functions on Ω. Then there exists a positive
superharmonic function v on Ω such that limz→x v(z) = ∞ for all x ∈ F (cf.
Lemmas 9.18 and 9.19 of [37]). For an interval I in (0,∞], denote by χI the
characteristic function of I. For δ > 0, put

φδ(z) = χ(0,δ)(H(z, y0)) + χ(δ−1,∞](v(z)),

where y0 is a point fixed in Ω. Then there exists a positive constant cl
depending only on l such that

1

H(x, y)

∫
Ω

H(x, z)H(z, y)φδ(z)W (z)dz (6.2)

≤ cl

∫
Ω

φ4δ(z)Ψ(ν1(z), · · · νl(z))dz, x, y ∈ Ω,

(cf. [2], Theorem 1 of [4] and the remark which follows it). We have

lim
δ→0

φ4δ(z) = 0 for a.e. z,
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since limz→xH(z, y0) = 0 for any regular boundary point x in ∂∞Ω. By the
Lebesgue dominated convergence theorem, for any ε > 0 there exists δ > 0
such that the right hand side of (6.2) is less than ε. Put K = {z ∈ Ω;φδ(z) =
0}. Since φδ(z) ≥ 1 on a neighborhood of ∂∞Ω, K is a relatively compact
subset of Ω. Thus we have

1

H(x, y)

∫
Ω\K

H(x, z)H(z, y)W (z)dz

≤ 1

H(x, y)

∫
Ω

H(x, z)H(z, y)φδ(z)W (z)dz < ε

for any x, y ∈ Ω. Hence W is a small perturbation of −∆ on Ω. 2

The following is an improvement of Theorem 4 of [4].

Theorem 6.2 Let D1 be a domain in {(r, s) ∈ R2; r > 0}. Let D2 be
a Lipschitz domain in SN−1 or the whole space SN−1, where N ≥ 2. Let
L = −∆ on RN+1 and

D = {(z, s) ∈ RN ×R1; (|z|, s) ∈ D1, z/|z| ∈ D2}. (6.3)

Suppose that ∫ ∫
D1

drds

r2
<∞. (6.4)

Then the Martin compactification D∗ for (L,D) is homeomorphic to D∗
1×D2,

where D∗
1 is the Martin compactification for (−∆, D1). In particular, ∂MD

is homeomorphic to (D1 × ∂D2) ∪ (∂MD1 ×D2). Furthermore,

∂mD = (D1 × ∂D2) ∪ (∂mD1 ×D2).

Proof. We show the theorem by applying Theorem 4.2. In the polar coordi-
nates of RN ,

L = − ∂2

∂r2
− N − 1

r

∂

∂r
− Λ

r2
− ∂2

∂s2
, (6.5)

where Λ is the Laplace-Beltrami operator on the sphere SN−1. With

L1 = − ∂2

∂r2
− ∂2

∂s2
− N − 1

r

∂

∂r
, W1 =

1

r2
, L2 = −Λ, (6.6)
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we have L = L1 + W1L2. For (L2, D2), the hypothesis (SMI2) holds with
λ0 ≥ 0 (cf. Examples 9.2 and 9.3 of [64]). Let us show that W1 is a small
perturbation of L1 + λ0W1 on D1. We have

P ≡ r−(N−1)/2 ◦ (L1 + λ0W1) ◦ r(N−1)/2 (6.7)

= − ∂2

∂r2
− ∂2

∂s2
+ [λ0 +

(N − 1)(N − 3)

4
]
1

r2
.

Apply Theorem 6.1 with Φ(t1) = t−2
1 and ν1(z) = z1. Then it follows from

(6.4) that W1 = r−2 is a small perturbation of −∆ on D1. Thus the Green
function g of P on D1 is comparable with the Green function H of −∆ on
D1, i.e., cg ≤ H ≤ c−1g for some positive constant c (cf. [62]). This together
with Theorem 6.1 shows that W1 is a small perturbation of P on D1. Denote
by H0(r, s; r̃, s̃) and g(r, s; r̃, s̃) the Green functions of L1 + λ0W1 and P on
D1. Then

g(r, s; r̃, s̃) = (r/r̃)(N−1)/2H0(r, s; r̃, s̃). (6.8)

Thus
g(r, s; z1, z2)g(z1, z2; r̃, s̃)

g(r, s; r̃, s̃)
=
H0(r, s; z1, z2)H0(z1, z2; r̃, s̃)

H0(r, s; r̃, s̃)
.

It follows from this that W1 is a small perturbation of L1 + λ0W1 on D1. In
view of Theorem 4.2, it remains to show that the Martin compactification
D∗

1,L1+λ0W1
of D1 with respect to L1 + λ0W1 is homeomorphic to Martin

compactification D∗
1,−∆ of D1 with respect to −∆. We have

H0(r, s; r̃, s̃)

H0(r0, s0; r̃, s̃)
=

(
r

r0

)(1−N)/2
g(r, s; r̃, s̃)

g(r0, s0; r̃, s̃)
,

where (r0, s0) is a reference point in D1. Thus D∗
1,L1+λ0W1

is homeomorphic
to D1,P which is homeomorphic to D∗

1,−∆, since r−2 is a small perturbation
of −∆ on D1. Hence D∗

1,L1+λ0W1
is homeomorphic to D∗

1,−∆. 2

In Theorem 4 of [4], it was assumed that every boundary point of D1

is regular with respect to the Dirichlet problem. Theorem 6.2 removes this
regularity assumption.

The following is a special case of Theorem 6.2 and a generalization of the
assertion (i) of Theorem 1.3.

Theorem 6.3 Let α and β be continuous functions on [1,∞) such that
α > β. Let D1 = {(r, s) ∈ R2;α(r) > s > β(r), 1 < r <∞}. Let D2, D and
L be as in Theorem 1.3. Then the assertion (i) of Theorem 1.3 holds.
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Proof. By virtue of Theorem 6.2, it suffices to show that D∗
1 = D1∪{∞} and

∂MD1 = ∂mD1 = ∂D1 ∪ {∞}. But this follows from the Carathéodory theo-
rem (cf. [74]) which says that there exists a homeomorphism from D1 ∪{∞}
onto the closed unit disc which is conformal in D1. 2

6.2 Proof of Theorem 1.3 (ii)

In this subsection we show the assertion (ii) of Theorem 1.3 by applying
Theorem 1.1.

Lemma 6.4 Let D1 be as in Theorem 1.3. Then the Martin compactifi-
cation D∗

1 of D1 with respect to L1 + λ0W1 (see (6.6)) is homeomorphic to
D1∪{∞} which is the closure of D1 in the one point compactification of R2.
Furthermore, ∂MD1 = ∂mD1 = ∂D1 ∪ {∞}.

Proof. Let P be the elliptic operator given by (6.7). Let F be the set of all
positive solution u of Pu = 0 in D1 such that u = 0 on ∂D1 and u(r0, s0) = 1
with x0

1 = (r0, s0), Along the line given in the proof of Theorem A of [55],
we show that F consists of one element. Put h(r) = (α(r) − β(r))/2. Let
R > 2 + r0. Noting that α and β are Lipschitz continuous on [1,∞), choose
a positive number δ so small that δh(R) < R/4 and

|α(r)− α(R)|+ |β(r)− β(R)| < h(R)/4 if |r −R| < δh(R).

Put
E(R) = {(r, s) ∈ R2; |r −R| < δh(R), α(r) > s > β(r)}.

Let u ∈ F . Then, Pu = 0 in E(R) and u = 0 on ∂E(R) ∩ ∂D1. Change the
variable (r, s) to (X, Y ):

X = (r −R)/h(R), Y = [s− γ(R)]/h(R),

where γ(R) = (α(R) + β(R))/2. Then the domain E(R) becomes

D(R) = {(X, Y ) ∈ R2; |X| < δ, a(X) > Y > b(X)},

where

a(X) = [α(h(R)X +R)− γ(R)]/h(R),

b(X) = [β(h(R)X +R)− γ(R)]/h(R).
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The equation Pu = 0 in E(R) becomes

(−∆ + VR(X))û = 0 in D(R),

where û(X, Y ) = u(r, s) and

VR(X) = [λ0 + (N − 1)(N − 3)/4][h(R)/R][1 +Xh(R)/R]−2.

Furthermore û = 0 on {(X, Y ) ∈ ∂D(R);Y = a(X) or b(X)}. We see that
there exists a positive constant C independent of R such that

|a(X)− a(X ′)|+ |b(X)− b(X ′)| ≤ C|X −X ′|, X,X ′ ∈ (−δ, δ),
|VR(X)| ≤ C, |X| < δ.

Furthermore, |a(X) − 1| < 1/4 and |b(X) + 1| < 1/4 if |X| < δ. By the
boundary Harnack principle, there exists a positive constant c independent
of R such that for any u, v ∈ F

c
û(0, Y )

û(0, 0)
≤ v̂(0, Y )

v̂(0, 0)
≤ c−1 û(0, Y )

û(0, 0)
, a(0) > Y > b(0).

Hence

c
u(R, s)

u(R, γ(R))
≤ v(R, s)

v(R, γ(R))
≤ c−1 u(R, s)

u(R, γ(R))
, α(R) > s > β(R).

Since u = v = 0 on ∂D1, the maximum principle shows that

c
u(r, s)

u(R, γ(R))
≤ v(r, s)

v(R, γ(R))
≤ c−1 u(r, s)

u(R, γ(R))
(6.9)

for (r, s) ∈ D1 with 1 < r < R. Since u(r0, s0) = v(r0, s0) = 1, this implies
that

c ≤ v(R, γ(R))

u(R, γ(R))
≤ c−1.

Thus
c2u(r, s) ≤ v(r, s) ≤ c−2u(r, s) (6.10)

for (r, s) ∈ D1 with 1 < r < R. Since c is a constant independent of R, (6.10)
holds on D1. Put

ε0 = sup{ε > 0; v > εu on D1}

29



and w = v − ε0u. Then either w = 0 or w > 0 on D1. Suppose that
w > 0. Then w(·)/w(x0

1) ∈ F . By (6.10), w ≥ [w(x0
1)c

2]u on D1 This is
a contradiction. Thus v = ε0u. But v(x0

1) = u(x0
1) = 1. Hence v = u.

This shows that F consists of one element. Let F ′ be the set of all positive
solutions u of (L1+λ0W1)u = 0 in D1 such that u = 0 on ∂D1 and u(x0

1) = 1.
By (6.7), F ′ consists of one element. Choose a sequence {yj

1}∞j=1 in D1 such

that it has no accumulation points in D1 and there exists the limit

lim
j→∞

H0(x1, y
j
1)/H0(x

0
1, y

j
1).

Denote this limit by k0(x1, η1), where η1 is the point in ∂MD1 corresponding
the sequence {yj

1}. We claim that η1 ∈ ∂MD1 \ ∂D1. For any ξ1 = (R,S) ∈
∂D1, choose Ri (i = 1, 2, 3) such that R + r0 < R3 < R2 < R1. Put

Ui = {(r, s) ∈ D1; r > Ri}, i = 1, 2, (6.11)

U3 = {(r, s) ∈ D1; r > R3} ∪ V3,

where V3 is a relatively compact subset of D1 such that x0
1 = (r0, s0) ∈ V3

and U3 is connected. Since the boundary Harnack principle holds for positive
solution of (L1 +λ0W1)u = 0 in U3 \U1 such that u = 0 on ∂D1∩ ∂(U3 \U1),
we have by Lemma 1.5 of [64] that

(U∗
1 ∩ ∂MD1) ∩ ((D1 \ U3)

∗ ∩ ∂MD1) = ∅,

where U∗
1 is the closure of U1 in D∗

1. We have

ξ1 ∈ {(r, s) ∈ ∂D1; r ≤ R3} = (D1 \ U3)
∗ ∩ ∂MD1

and η1 ∈ U∗
1 ∩ ∂MD1. This proves the claim that η1 ∈ ∂MD1 \ ∂D1. By the a

priori estimates, k0(·, η1) ∈ F ′. But F ′ consists of one element. This implies
that for any sequence {yj

1}∞j=1 in D1 with no accumulation points in D1

k0(x1, η1) = lim
j→∞

H0(x1, y
j
1)/H0(x

0
1, y

j
1).

Since D1 is continuously imbedded into D∗
1, it follows from this that D∗

1 is
homeomorphic to D1 ∪ {∞} and η1 = ∞. Since ∂D1 ⊂ ∂mD1, it remains
to show that ∞ ∈ ∂mD1. Suppose that ∞ /∈ ∂mD1. Then the Martin
representation theorem shows that there exists a finite Borel measure µ on
∂D1 such that

k0(x1,∞) =

∫
∂D1

k0(x1, ξ1)dµ(ξ1).
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For R > 1, put FR = {(r, s) ∈ ∂D1; r ≤ R} and

uR(x1) =

∫
FR

k0(x1, ξ1)dµ(ξ1).

Choose Ui (i = 1, 2, 3) as in (6.11). Since uR(·) ≤ k0(·,∞), Lemma 1.5 of [64]
together with the boundary Harnack principle shows that µ(∂D1 ∩ (∂FR \
∂U3)) = 0. Thus µ(∂D1 ∩ ∂FR) = 0. Since R is arbitrary, this implies that
µ = 0; which is a contradiction. Hence ∞ ∈ ∂MD1. 2

We are now ready to complete the proof of Theorem 1.3 (ii).
Proof of Theorem 1.3 (ii). Recall that the hypothesis (SMI2) for (L2, D2)
holds (cf. Examples 9.2 and 9.3 of [64]). By virtue of Lemma 6.4 and
Theorem 1.1, it suffices to show that the condition (U1) holds. Consider the
equation

(∂t +W−1
1 L1)v = 0 in D1 × (0,∞)

(see (6.6) and (6.7)). We have

r−(N−1)/2 ◦ (∂t +W−1
1 L1) ◦ r(N−1)/2 = ∂t − r2∆ + (N − 1)(N − 3)/4.

Thus Theorem 2.3 and the assumption (1.27) show that any nonnegative
solution of (1.2), (1.3) and (1.4) must be identically zero. i.e., (U1) holds. 2

7 Generalization

In this section we slightly generalize Theorems 1.1 and 1.2 for giving more
concrete examples.

Let L = L1 +W1L2 and D = D1×D2 be as in Section 1. Assume (SMI2)
for (L2, D2). Suppose that

D1 =
N⋃

j=0

Ej, (7.1)

where N is a natural number, Ej (j = 1, · · · , N) are Lipschitz domains in M1

or the whole space M1 such that Ej ∩Ek = ∅ for j 6= k, and E0 is a relatively
compact Lipschitz domain in M1 or an empty set. Here Ej is the closure
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of Ej in M1, while E∗
j denote the closure of Ej in D∗

1. For j = 1, · · · , N ,
consider the Dirichlet problem

(∂t +W−1
1 L1)v = 0 in Ej × (0,∞), (7.2)

v(x, 0) = 0 on Ej, (7.3)

v(x, t) = 0 on ∂Ej × (0,∞). (7.4)

We introduce the following condition.
(US1) There exists an integer l such that (i) 0 ≤ l ≤ N , (ii) for 1 ≤ j ≤ l,

any nonnegative solution of (7.2), (7.3) and (7.4) must be identically zero,
and (iii) for l < j ≤ N , W1 is a semismall perturbation of L1 + λ0W1 on Ej.

Theorem 7.1 Assume the conditions (SMI2) and (US1). Put

Ξ0 =
l⋃

j=1

(E∗
j ∩ ∂MD1) \ ∂D1, Ξ∞ =

N⋃
j=l+1

(E∗
j ∩ ∂MD1) ∪ ∂D1.

Then all the conclusions of Theorem 4.1 hold true. Furthermore, E∗
j ∩E∗

k = ∅
for j, k = 1, · · · , N with j 6= k.

This theorem can be shown as Theorems 1.1 and 1.2. For proving the
last assertion, use Lemma 1.5 of [64] as in the proof of Lemma 6.4.

8 Examples

In this section we give several concrete examples as applications of Theorem
7.1.

Example 8.1 Let L = −∆ on R2+m. LetD2 be a bounded Lipschitz domain
in Rm. Let D1 be a Lipschitz domain in R2 of the form

D1 =
N⋃

j=0

Ej,

where N is a natural number and Ej are Lipschitz domains defined as follows:
For j = 1, · · · , N , let fj be a Lipschitz continuous positive function on [1,∞)
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such that it is decreasing and fj(1) < 1/2; and let

Ej = {(r, s) ∈ R2; |s− j| < fj(r), r > 1}, j = 1, · · · , N,

E0 =
N⋃

j=1

{(r, s) ∈ R2; |s− j| < fj(r), 1 ≤ r < 2} ∪ (0, 1)× (0, N + 1).

Let 0 ≤ l ≤ N be an integer. Suppose that∫ ∞

1

fj(r)dr = ∞, 1 ≤ j ≤ l,∫ ∞

1

fj(r)dr <∞, l < j ≤ N.

For j = 1, · · · , N , let ηj be the point at infinity of the one point compactifi-
cation of Ej; and set ηj 6= ηk for j 6= k. Put

Ξ0 = {ηj; j = 1, · · · , l}, Ξ∞ = {ηj; j = l + 1, · · · , N} ∪ ∂D1.

Let D = D1×D2. Then the Martin boundary ∂MD for (L,D) is homeomor-
phic to

Ξ0 × {d2} ∪ Ξ∞ ×D2 ∪D1 × ∂D2.

Furthermore, ∂MD = ∂mD. Indeed, by Theorems 2.3 and 6.1, the hypothesis
(US1) holds. Furthermore, the same argument as in the proof of Lemma 6.4
shows that ∂MD = ∂mD1 = ∂D1 ∪ {ηj; j = 1, · · · , N}. Thus Theorem 7.1
shows the assertion.

Example 8.2 Let D = {x ∈ Rn; |x| > 1}. let V be a locally bounded
measurable real-valued function on [1,∞). Let L = −∆ + V (|x|). Suppose
that (L,D) is subcritical. Then it is known that ∂MD = ∂mD ⊃ ∂D and the
set

Γ = ∂MD \ ∂D

is homeomorphic to the unit sphere Sn−1 or one point.
(i) Suppose that∫ ∞

1

( sup
1≤s≤r

s2|V (s)|+ 1)−1/2dr

r
= ∞. (8.1)
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Then Γ consists of one point.
(ii) Suppose that r2V (r) + α ≥ 1 on [1,∞) for some positive constant α.

Assume that ∫ ∞

1

(r2V (r) + α)−1/2dr

r
<∞. (8.2)

Then Γ is homeomorphic to the unit sphere Sn−1.

For results related to (i) and (ii), see [45,53,55,56,67,72], and Example 10.1
of [64].

Let us show the assertion (i) by applying Theorem 7.1. In the polar
coordinates of Rn,

L = −r1−n ∂

∂r
(rn−1 ∂

∂r
) + V (r)− Λ

r2
, (8.3)

where Λ is the Laplace-Beltrami operator on the sphere Sn−1. Let D1 =
(1,∞), D2 = Sn−1, L1 = −r1−n(∂/∂r)(rn−1∂/∂r) + V , W1 = r−2, and L2 =
−Λ. Then L = L1 +W1L2 on D = D1 ×D2. Put E0 = (2, 9), E1 = (e2,∞)
and E2 = (1, 3). Then D1 = E0 ∪ E1 ∪ E2. We see that W1 is a small
perturbation of L1 on E2 (cf. Theorem 6.3 of [64]). We claim that for j = 1,
any nonnegative solution of (7.2), (7.3) and (7.4) must be identically zero.
Change the variable r to z = log r. Then (7.2) becomes

[
∂

∂t
− ∂2

∂z2
− (n− 2)

∂

∂z
− e2zV (ez)]v̂ = 0 in (2,∞)× (0,∞), (8.4)

where v̂(z, t) = v(r, t). For R > 0, put

φ(R) = ( sup
0≤z≤R

e2z|V (ez)|+ 1). (8.5)

Choose an increasing step function ψ such that φ ≤ ψ ≤ 2φ, and find a
positive continuous increasing function ρ such that ψ ≤ ρ ≤ 2ψ. Then
φ ≤ ρ ≤ 4φ. By (8.5) and (8.1),∫ ∞

1

dR

ρ(R)
= ∞, sup

0≤z≤R
e2z|V (ez)| ≤ ρ(R)2.

Let v̂ be a nonnegative solution of (8.4) with v̂(z, 0) = 0 on (2,∞) and
v̂(2, t) = 0 on (0,∞). Then, by the scaling argument as in the proof of
Theorem 6.2 of [44]. Theorem 2.2 in Section 2 shows that v̂ = 0. Thus
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the claim holds, and so the condition (US1) is satisfied. Hence Theorem 7.1
shows the assertion (i).

Let us show the assertion (ii). We claim that W1 is a small perturbation
of L1 + αW1 on D1. Let f and g be positive solutions of the equation
(L1+αW1)f = 0 in D1 and (L1+(α+1)W1)g = 0 in D1 with f(1) = g(1) = 0
and f ′(1) = g′(1) = 1, respectively. Change the variable r to z = log r, and
put f̂(z) = f(ez) and ĝ(z) = g(ez). Then the equation becomes

P f̂ ≡ [
d2

dz2
+ (n− 2)

d

dz
− e2zV (ez)− α]f̂ = 0 in (0,∞),

(P − 1)ĝ = 0 in (0,∞),

with f̂(0) = ĝ(0) = 0 and f̂ ′(0) = ĝ′(0) = 1. By (8.2),∫ ∞

0

(e2zV (ez) + α)−1/2dz <∞.

Then the same argument as in the proof of Lemma 2 of [58] shows that
limz→∞ ĝ(z)/f̂(z) <∞. Thus

lim
r→∞

g(r)

f(r)
<∞.

We see that the Martin boundary for (L1+αW1, D1) is {1,∞} and the Martin
kernel k0(x1,∞) is a constant multiple of f (cf. Appendix of [53]). Thus, by
Theorem 6.3 of [64], W1χ(2,∞) is a small perturbation of L1 + αW1 on D1.
Since W1χ(1,2] is a small perturbation of L1 + αW1 on D1, this implies that
W1 is a small perturbation of L1 + αW1 on D1, i.e., the claim holds. Thus
the Green functions of L1 +αW1 on D1 and L1 on D1 are comparable. Hence
W1 is a small perturbation of L1 on D1. Hence Theorem 7.1 (or Theorem
1.2) shows the assertion (ii).

Example 8.3 LetD1 be a bounded Lipschitz domain in Rn, and put δ1(x1) =
dist(x1, ∂D1). Let L1 = −δ1(x1)

γ∆1, where γ is a real number and ∆1 is the
Laplacian on Rn. Let D2 = M2 be a compact manifold. Let L2 = −∆2,
where ∆2 is the Laplacian on M2. Let L = L1 + L2 and D = D1 ×D2. Let
∂MD and ∂mD be the Martin boundary and minimal Martin boundary for
(L,D). Then we have the following:

(i) For γ ≥ 2, ∂mD = ∂MD = ∂D1 × {d2}.
(ii) For γ < 2, ∂mD = ∂MD = ∂D1 ×D2.

35



Let us show the assertions. We see that the Martin compactification D∗
1 of

D1 with respect to L1 is homeomorphic to D1, and ∂mD1 = ∂MD1 = ∂D1.
Suppose that γ ≥ 2. Then, by Theorem 7.8 of [44], any nonnegative solution
of the Cauchy problem

(∂t + L1)u = 0 in D1 × (0,∞), u(x, 0) = 0 on D1

must be identically zero. Thus the assumption (U1) of Theorem 1.1 is satis-
fied with D1 = M1. Hence the assertion (i) follows from Theorem 1.1. Next,
suppose that γ < 2. Then, by Theorem 9.1 of [8], 1 is a small perturbation
of L1 on D1. Thus the assumption (S1) of Theorem 1.2 is satisfied. Hence
the assertion (ii) follows from Theorem 1.2.

Example 8.4 Let D1 = Rn and L1 = −∆1 + V1, where ∆1 is the Laplacian
on Rn and V1 is the function on Rn such that V1(z) = 1 for zn > 0 and
V1(z) = 2 for zn ≤ 0. Let W1(x1) = 〈x1〉γ, where γ is a real number and
〈x〉 = (1 + |x|2)1/2. Let D2 = Rm and L2 = 〈x2〉α(−∆2 + 1) − β, where
α > 2, ∆2 is the Laplacian on Rm, and β is a positive constant such that
λ0 = 0, i.e., 0 is the first eigenvalue of the selfadjoint operator L2 associated
with L2 on D2. Let L = L1 +W1L2 and D = D1 ×D2. It is known (cf. [54])
that the Martin boundary ∂MD1 and the minimal Martin boundary ∂mD1

for (L1, D1) are homeomorphic to the set Σ and σ defined by

σ = {ω ∈ Rn; |ω| = 1, ωn ≥ 0} ∪ {ω ∈ Rn; |ω| =
√

2, ωn ≤ −1},
Σ = σ ∪ {(ω′,−θ) ∈ Rn; |ω′| = 1, 0 < θ < 1},

i.e., ∂MD1
∼= Σ and ∂mD1

∼= σ. Furthermore, 1 is a small perturbation of
〈x2〉α(−∆2 +1) on Rm (cf. Theorem 5.1 of [64]); the Martin boundary ∂MD2

for (〈x2〉α(−∆2+1),Rm) is homeomorphic to the unit sphere Sm−1 at infinity
(cf. [53]), i.e., ∂MD2 = Sm−1∞; D∗

2 = Rm t Sm−1∞; the hypothesis (SMI2)
for (L2, D2) is satisfied (cf. Example 9.4 of [64]); and D1 × ∂MD2 ⊂ ∂mD.
Put

Γ = ∂MD \D1 × ∂MD2.

Then we have the following:
(i) For γ ≥ −1, Γ ∼= Σ and Γ ∩ ∂mD ∼= σ.
(ii) For γ < −1, Γ ∼= Σ×D∗

2 and Γ ∩ ∂mD ∼= σ ×D∗
2.

Let us show the assertions. Suppose that γ < −1. Then W1(x1) = 〈x1〉γ is a
small perturbation of L1 on Rn (cf. Theorem 5.1 of [64]). Thus Theorem 1.2
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shows the assertion (ii). Next, suppose that γ ≥ −1. Consider the Cauchy
problem

(∂t + 〈z〉−γL1)v = 0 in Rn × (0,∞), v(z, 0) = 0 on Rn. (8.6)

In order to show that the Cauchy problem (8.5) allows no positive solution,
we introduce a Riemannian metric g = (gij) on Rn by gii = 〈z〉γ and gij = 0
for i 6= j. Then M1 = Rn becomes a complete Riemannian manifold with
this metric g. The associated gradient ∇ and divergence div are written as

∇ = 〈z〉−γ∇0, div = 〈z〉−nγ/2div0〈z〉nγ/2,

where ∇0 and div0 are the standard gradient and divergence on Rn. Put
m1(z) = 〈z〉(1−n/2)γ. Then

〈z〉−γL1v = −m−1
1 div(m1∇v) + 〈z〉−γV1(z)v (8.7)

For z with |z| > 1, denote by d(z) the Riemannian distance from 0 to z.
Then d(z) is comparable with |z|(γ/2+1). Thus

|〈z〉−γV1(z)| ≤ Cd(z)−γ/(γ/2+1) ≤ Cd(z)2, |z| > 1,

for some constant C > 0. We see from this that the assumption [PHP-ρ] of
Theorem 2.1 is satisfied with ρ(R) = C(R+1) for a sufficiently large positive
constant C (cf. the proof of Theorem 6.2 of [44]). By Theorem 2.1, any
nonnegative solution of (8.5) must be identically zero. Thus the assumption
(U1) of Theorem 1.1 is satisfied. Hence Theorem 1.1 shows the assertion (i).
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