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Tokyo Institute of Technology

September 24, 2011
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. . . . . .

From matroids to polymatroids

Generalizing

matroid 7→ base polytope 7→ Tutte polynomial T (x , y)

7→
{

T (x , 1) (h-vector)
T (1, y),

we define

integer polymatroid 7→ base polytope 7→
{

interior polynomial I (ξ)
exterior polynomial X (η).

All coefficients will be non-negative integers.
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. . . . . .

Polymatroids

S ∋ a

← a = µ(S)i{a}
S : finite ground set.

Pµ =

 x ∈ RS

∣∣∣∣∣
x ≥ 0;
x · iU ≤ µ(U)
for all U ⊂ S

 ,

where µ : P(S)→ Z is a submodular
and non-decreasing set function.

Base polytope:

Bµ = { x ∈ Pµ | x · iS = µ(S) }.
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. . . . . .

Activities

We say that the base x ∈ Bµ ∩ ZS is such that a transfer is possible from
s1 ∈ S to s2 ∈ S if by decreasing the s1-component of x by 1 and
increasing its s2-component by 1, we get another base.

Order S arbitrarily.

Call an element s ∈ S internally active with respect to the base
x ∈ Bµ ∩ ZS if x is such that no transfer is possible from s to a smaller
element of S .

We say that s is externally active with respect to x if it is such that no
transfer is possible to s from a smaller element of S .
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Interior and exterior polynomials

a < b < c

a b

c

ῑ = 0

ῑ = 1

ῑ = 1

ῑ = 2

ε̄ = 0
ε̄ = 1

ε̄ = 1

ε̄ = 2

For x ∈ Bµ ∩ ZS , let

ῑ(x) = #

 s ∈ S

∣∣∣∣∣
s is internally
inactive with
respect to x



and

ε̄(x) = #

 s ∈ S

∣∣∣∣∣
s is externally
inactive with
respect to x

 .

Define

Iµ(ξ) =
∑

x∈Bµ∩ZS

ξ ῑ(x)

and Xµ(η) =
∑

x∈Bµ∩ZS

ηε̄(x).
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ξ ῑ(x)

and Xµ(η) =
∑

x∈Bµ∩ZS

ηε̄(x).
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ῑ = 2

ε̄ = 0
ε̄ = 1

ε̄ = 1

ε̄ = 2

For x ∈ Bµ ∩ ZS , let
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. . . . . .

Order-independence

.
Theorem
..
.
. ..

.

.

Iµ and Xµ do not depend on the way S was ordered.

Iµ(ξ), in the basis 1, ξ, ξ2, . . ., has the same
coefficients as

#
(
(Bµ + k∇) ∩ ZS

)
in the basis(

k + |S | − 1

|S | − 1

)
, . . . ,

(
k + 2

2

)
, k + 1, 1.

Here ∇ = −∆S is the inverted unit simplex.

Xµ has a similar relation to the Minkowski
sum Bµ + k∆S .
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Special case

.
Theorem
..

.

. ..

.

.

Let M be a rank r matroid on the ground set S with base polytope BM

and Tutte polynomial TM(x , y). Then the lattice point count

#
(
(BM + k∇) ∩ ZS

)
is a polynomial function of k which, in the basis(

k + |S | − 1

|S | − 1

)
, . . . ,

(
k + 2

2

)
, k + 1, 1, (1)

has the same coefficients as TM(x , 1) in the basis x r , x r−1, . . . , x , 1.

Likewise #
(
(BM + k∆) ∩ ZS

)
, in the basis (1), has the same coefficients

as TM(1, y) in the basis y |S|−r , y |S|−r−1, . . . , y , 1.
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. . . . . .

From graphs to hypergraphs

Generalizing

graph 7→ cycle matroid 7→ Tutte polynomial T (x , y) 7→
{

T (x , 1)
T (1, y),

we define

hypergraph 7→ cycle polymatroid 7→
{

interior polynomial I (ξ)
exterior polynomial X (η).

The independent sets of the cycle matroid are the cycle-free subgraphs.
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. . . . . .

Abstract duality

Let H = (V ,E ) be a hypergraph. The two-to-one correspondence

H 7→ BipH

associates a bipartite graph to it. (We always assume BipH is connected.)

The other hypergraph with the same image is the abstract dual

H = (E ,V ).
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. . . . . .

Cycle polymatroid / Hypertree polytope

Given H, the lattice points in its cycle polymatroid are vectors

f : E → Z = { 0, 1, 2, . . . }

so that BipH has a cycle-free subgraph with valence f(e) + 1 at every
e ∈ E .

The integer bases are valence distributions on E (minus 1) of spanning
trees of BipH. We call these hypertrees and refer to the base polytope as
the hypertree polytope BH of H.

Example: for H = ur rr
u

ur��
��

��HH
HH

HH
(three hyperedges)

and H = ru uu
r

ru��
��

��HH
HH

HH
(four hyperedges), we get

BH BH
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. . . . . .

Hypergraph polynomials

IH and XH are defined as the interior and exterior polynomial of the cycle
polymatroid of H.

Example:

x
s

s
s
x

x
s

���

���

���HHH

HHH

HHH
-

I = 1 + 3ξ + 3ξ2

X = 1 + 3η + 3η2

s
x

x
x
s

s
x

���

���

���HHH

HHH

HHH
-

I = 1 + 3ξ + 3ξ2

X = 1 + 2η + 3η2 + η3
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. . . . . .

Properties

Both I and X have constant term 1.

The linear coefficient in I is the fist Betti number (nullity) of BipH.

Deletion/contraction formulas: if e ∈ E is a size 2 hyperedge, then
...1 IH(ξ) = IH−e(ξ) + ξIH/e(ξ) and XH(η) = ηXH−e(η) + XH/e(η)

...2 IH(ξ) = IH−e(ξ) + ξI
H/e(ξ).

.
Conjecture
..

.

. ..

.

.

IH = IH (so that I is an invariant of bipartite graphs).

.
Theorem (A. Postnikov)
..

.

. ..

.

.

BH and BH have the same number of lattice points. (⇒ IH(1) = IH(1).)
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Tamás Kálmán (Titech) Tutte’s polynomial for hypergraphs and polymatroids September 24, 2011 12 / 14



. . . . . .

Properties

Both I and X have constant term 1.

The linear coefficient in I is the fist Betti number (nullity) of BipH.

Deletion/contraction formulas: if e ∈ E is a size 2 hyperedge, then
...1 IH(ξ) = IH−e(ξ) + ξIH/e(ξ) and XH(η) = ηXH−e(η) + XH/e(η)

...2 IH(ξ) = IH−e(ξ) + ξI
H/e(ξ).

.
Conjecture
..

.

. ..

.

.

IH = IH (so that I is an invariant of bipartite graphs).

.
Theorem (A. Postnikov)
..

.

. ..

.

.

BH and BH have the same number of lattice points. (⇒ IH(1) = IH(1).)
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. . . . . .

Planar hypergraphs

We call H planar if BipH is planar.

Plane hypergraphs form dual pairs.

For such a pair H,H∗, we have

BH∗ ∼= −BH

and consequently,

IH∗ = XH and XH∗ = IH.

This generalizes
TG∗(x , y) = TG (y , x).
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. . . . . .

Trinities

Applying both planar and abstract
duality generates trinities. These are
triangulations of the sphere.

Trinities contain three bipartite
graphs and six hypergraphs with
altogether three polynomials.

Tutte’s Tree Trinity Theorem: The
(classical) planar dual graphs of the
three bipartite graphs are directed
and have the same arborescence
number.

This number is also the sum of the
coefficients in all three polynomials.
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