A new type of combinatorics in knot theory

Tamás Kálmán

Tokyo Institute of Technology

September 24, 2011

Outline

Motivating questions:

- What does the Homfly polynomial "measure"?
- What does Floer homology "look like"?

2 / 14

Outline

Motivating questions:

- What does the Homfly polynomial "measure"?
- What does Floer homology "look like"?

We will do a case study on special alternating links and their Seifert surfaces.

We will discuss:

- A combinatorial theory (W. Tutte, A. Postnikov, K)
- Its relation to the Homfly polynomial (joint with H. Murakami)
- Its relation to sutured Floer homology (joint with A. Juhász and J. Rasmussen).

They occur in sets of three, i.e., in *trinities*.

 G_R : red edges emerald and violet pts

They occur in sets of three, i.e., in *trinities*.

 G_R : red edges emerald and violet pts

They occur in sets of three, i.e., in *trinities*.

 G_R : red edges emerald and violet pts

They occur in sets of three, i.e., in *trinities*.

 G_R : red edges

emerald and violet pts

G_E : emerald edges violet and red pts

They occur in sets of three, i.e., in *trinities*.

 G_R : red edges

emerald and violet pts

- *G_E* : emerald edges violet and red pts
- G_V : violet edges red and emerald pts

Together they form a triangulation of S^2 with a black/white coloring. Red, emerald, and violet play symmetric roles.

G: plane bipartite graph

 G^* : balanced directed graph

G: plane bipartite graph

G*: balanced directed graph

Tutte showed:

- The number of spanning arborescences in such a graph is independent of root:
 - $G^* \mapsto$ arborescence number $\rho(G^*)$.
- In a trinity,

 $\rho(G_R^*) = \rho(G_E^*) = \rho(G_V^*).$

Root polytope

bipartite graph $G \mapsto$ root polytope $Q_G = \text{Conv}\{\mathbf{e} + \mathbf{v} \mid ev \text{ is an edge in } G\} \subset \mathbf{R}^E \oplus \mathbf{R}^V.$ edge in G = vertex in Q_G

spanning tree in G = maximal simplex in Q_G

Root polytope

bipartite graph $G \mapsto$ root polytope $Q_G = \operatorname{Conv} \{ \mathbf{e} + \mathbf{v} \mid ev \text{ is an edge in } G \} \subset \mathbf{R}^E \oplus \mathbf{R}^V.$ edge in G = vertex in Q_G

spanning tree in $G = \text{maximal simplex in } Q_G$

Example:

A new type of combinatorics in knot theory

Triangulating Q_G

Proposition

If we fix a root in G^* and consider all spanning arborescences, then the simplices corresponding to their dual trees triangulate Q_G .

6 / 14

Triangulating Q_G

Proposition

If we fix a root in G^* and consider all spanning arborescences, then the simplices corresponding to their dual trees triangulate Q_G .

To G, we associate

 L_G : positive special alternating link

To G, we associate

- L_G : positive special alternating link
- F_G : Seifert surface.
- G is the Seifert graph of L_G .

To G, we associate

 L_G : positive special alternating link F_G : Seifert surface.

G is the Seifert graph of L_G .

But G is also the black graph of L_G , with G^* as white graph.

Spanning arborescences of G^* are exactly those Kauffman states that contribute to the leading coefficient in the Alexander polynomial.

To G, we associate

 L_G : positive special alternating link F_G : Seifert surface.

G is the Seifert graph of L_G .

But G is also the black graph of L_G , with G^* as white graph.

Spanning arborescences of G^* are exactly those Kauffman states that contribute to the leading coefficient in the Alexander polynomial.

Thus, $\Delta_{L_{G_{R}}}$, $\Delta_{L_{G_{F}}}$, and $\Delta_{L_{G_{V}}}$ share the same leading coefficient ρ .

7 / 14

Defined by:
$$v^{-1}P_{\nearrow} - vP_{\swarrow} = zP_{\swarrow} (P_{\nearrow} = v^2P_{\swarrow} + vzP_{\curlyvee})$$

 $P_{\bigcirc} = 1.$

 $P(v,z) \xrightarrow{v=1}$ Conway polynomial $\nabla(z) \xrightarrow{z=t^{1/2}-t^{-1/2}} \Delta(t)$

イロト 不得下 イヨト イヨト

2

Defined by:
$$v^{-1}P_{\times} - vP_{\times} = zP_{\sim} \quad (P_{\times} = v^2P_{\times} + vzP_{\sim})$$

 $P_{\bigcirc} = 1.$
 $P(v, z) \xrightarrow{v=1} \qquad \underbrace{\text{Conway polynomial } \nabla(z) \xrightarrow{z=t^{1/2}-t^{-1/2}} \Delta(t)}_{\text{leading coefficient stays the same}}$

The part that projects onto the leading term is called the *top* of P(v, z).

Defined by:
$$v^{-1}P_{\times} - vP_{\times} = zP_{\times} \quad (P_{\times} = v^2P_{\times} + vzP_{\times})$$

 $P_{\bigcirc} = 1.$
 $P(v, z) \xrightarrow{v=1} \qquad \underbrace{\text{Conway polynomial } \nabla(z) \xrightarrow{z=t^{1/2}-t^{-1/2}} \Delta(t)}_{\text{leading coefficient stays the same}}$

The part that projects onto the leading term is called the *top* of P(v, z).

Example: the leading coefficient in ∇ and Δ is $\rho(G^*) = 11$, and the top of the Homfly polynomial is

$$(1+3v^2+4v^4+3v^6)v^3z^3$$
.

Computation tree

Question: how is the top of P_{L_G} derived from G?

- 一司

э

Question: how is the top of P_{L_G} derived from G?

Idea: build a computation tree ${\mathcal T}$ for P_{L_G} based on spanning arborescences of $G^*.$

We fix a root and keep "poking" G in a simple systematic manner so that a backtrack algorithm finds all arborescences.

Question: how is the top of P_{L_G} derived from G?

Idea: build a computation tree ${\mathcal T}$ for P_{L_G} based on spanning arborescences of $G^*.$

We fix a root and keep "poking" G in a simple systematic manner so that a backtrack algorithm finds all arborescences.

At the leaves of \mathcal{T} , what remains of G is either

- (a) a spanning tree or
- (b) a graph with solid and dashed edges alternating along its outside contour.

Lemma

The graphs under (b) do not contribute to the top of P_{L_G} .

Tamás Kálmán (Titech)

▲ 同 ▶ → ● ▶

Computation tree example

э

Homfly polynomial and root polytope

The trees from $\mathcal T$ contribute one monomial each to the top, namely

 $(vz)^{\text{first Betti number of }G} \cdot v^{2(\text{number of dashed edges in the tree})}$.

In the example, top of $P = (vz)^2(1 + 2v^2)$.

Homfly polynomial and root polytope

The trees from $\ensuremath{\mathbb{T}}$ contribute one monomial each to the top, namely

 $(vz)^{\text{first Betti number of }G} \cdot v^{2(\text{number of dashed edges in the tree})}$.

In the example, top of $P = (vz)^2(1 + 2v^2)$.

Translating trees in G to simplices in Q_G , we get

Theorem (K–Murakami)

The computation tree \mathfrak{T} triangulates the root polytope Q_G . The trees/simplices appear in such an order that

 each simplex intersects the union of the previous ones in a collection of codimension one faces (facets)

2 the number of such facets is the number of dashed edges in the tree. In other words, T induces a shelling order for the triangulation and the top of P_{L_G} is equivalent to the h-vector of the triangulation.

Floer homology and root polytope

The root polytope Q_G contains certain SFH polytopes, as follows.

 $Q_G \subset \mathbf{R}^E \oplus \mathbf{R}^V$ projects onto the unit simplices $\Delta_E \subset \mathbf{R}^E$ and $\Delta_V \subset \mathbf{R}^V$. Let the two barycenters have the pre-images S_V and S_E . Then we have

12 / 14

Floer homology and root polytope

The root polytope Q_G contains certain SFH polytopes, as follows.

 $Q_G \subset \mathbf{R}^E \oplus \mathbf{R}^V$ projects onto the unit simplices $\Delta_E \subset \mathbf{R}^E$ and $\Delta_V \subset \mathbf{R}^V$. Let the two barycenters have the pre-images S_V and S_E . Then we have

Theorem (Juhász–K–Rasmussen)

$$(|E|S_V - \Delta_V) \cap \mathbf{Z}^V \cong \chi (SFH(S^3 \setminus F_{G_V}, L_{G_V})) \text{ and } (|V|S_E - \Delta_E) \cap \mathbf{Z}^E \cong \chi (SFH(S^3 \setminus F_{G_E}, L_{G_E})),$$

where the lhs's involve Minkowski differences and the rhs's are Euler characteristics, with respect to the Maslov grading, of sutured Floer homology groups.

In this case, Spin^c-structures form a lattice and χ is a 0-1–valued function so it can be identified with a set of lattice points.

12 / 14

The Spin^{*c*}-structures supporting Floer homology are identified with certain copies of $\frac{1}{|E|}\Delta_V$ in S_V and of $\frac{1}{|V|}\Delta_E$ in S_E . Call these the small simplices.

The Spin^{*c*}-structures supporting Floer homology are identified with certain copies of $\frac{1}{|E|}\Delta_V$ in S_V and of $\frac{1}{|V|}\Delta_E$ in S_E . Call these the small simplices.

Theorem (Postnikov)

Any triangulation of Q_G subdivides S_V and S_E so that each piece contains exactly one small simplex (and is disjoint from all other small simplices).

Triangulations and cross-sections

The Spin^{*c*}-structures supporting Floer homology are identified with certain copies of $\frac{1}{|E|}\Delta_V$ in S_V and of $\frac{1}{|V|}\Delta_E$ in S_E . Call these the small simplices.

Theorem (Postnikov)

Any triangulation of Q_G subdivides S_V and S_E so that each piece contains exactly one small simplex (and is disjoint from all other small simplices).

September 24, 2011

So the number of small simplices of each color is $\rho(G^*)$. But can we read off the *h*-vector from the cross-section, i.e., can we get information on the Homfly polynomial from Floer homology?

Conjecture

Yes we can, by a construction called the interior polynomial.