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Outline

Motivating questions:

What does the Homfly polynomial “measure”?

What does Floer homology “look like”?

We will do a case study on special alternating links and their Seifert
surfaces.

We will discuss:

A combinatorial theory (W. Tutte, A. Postnikov, K)

Its relation to the Homfly polynomial (joint with H. Murakami)

Its relation to sutured Floer homology (joint with A. Juhász and J.
Rasmussen).
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Plane bipartite graphs

They occur in sets of three,
i.e., in trinities.

GR : red edges
emerald and violet pts

GE : emerald edges
violet and red pts

GV : violet edges
red and emerald pts

Together they form a triangulation of S2 with a black/white coloring. Red,
emerald, and violet play symmetric roles.
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Arborescences

root

spanning
arborescence

G : plane bipartite graph

G ∗: balanced directed graph

Tutte showed:
...1 The number of spanning
arborescences in such a
graph is independent of
root:

G ∗ 7→ arborescence
number ρ(G ∗).

...2 In a trinity,

ρ(G ∗
R) = ρ(G ∗

E ) = ρ(G ∗
V ).
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Root polytope
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Example:

bipartite graph G 7→ root polytope

QG = Conv{ e+v | ev is an edge in G } ⊂ RE⊕RV .

edge in G = vertex in QG

spanning tree in G = maximal simplex in QG

v0

v1

e0 e1 e2

e0 + v0

e0 + v1

e1 + v0

e1 + v1e2 + v0

e2 + v1
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Triangulating QG

.
Proposition
..

.

. ..

.

.

If we fix a root in G ∗ and consider all spanning arborescences, then the
simplices corresponding to their dual trees triangulate QG .

Example:

root

v0

v1

e0 e1 e2

e0 + v0

e0 + v1

e1 + v0

e1 + v1e2 + v0

e2 + v1
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Special alternating links

To G , we associate

LG : positive special alternating link

FG : Seifert surface.

G is the Seifert graph of LG .

But G is also the black graph of LG ,
with G ∗ as white graph.

Spanning arborescences of G ∗ are
exactly those Kauffman states that
contribute to the leading coefficient
in the Alexander polynomial.

Thus, ∆LGR
, ∆LGE

, and ∆LGV
share the same leading coefficient ρ.
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Homfly polynomial

Defined by: v−1P − vP = zP (P = v2P + vzP )

P = 1.

P(v , z)
v=1−−→ Conway polynomial ∇(z)

z=t1/2−t−1/2

−−−−−−−−→ ∆(t)

The part that projects onto the leading term is called the top of P(v , z).

Example: the leading coefficient in ∇ and ∆ is ρ(G ∗) = 11,
and the top of the Homfly polynomial is

(1 + 3v2 + 4v4 + 3v6)v3z3.
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Computation tree

Question: how is the top of PLG derived from G?

Idea: build a computation tree T for PLG based on spanning arborescences
of G ∗.

We fix a root and keep “poking” G in a simple systematic manner so that
a backtrack algorithm finds all arborescences.

At the leaves of T, what remains of G is either

(a) a spanning tree or

(b) a graph with solid and dashed edges alternating along its outside
contour.

.
Lemma
..
.
. ..

.

.

The graphs under (b) do not contribute to the top of PLG .
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Computation tree example

vz vz

vz vz

vz

v2

v2

v2

v2 v2
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Homfly polynomial and root polytope

The trees from T contribute one monomial each to the top, namely

(vz)first Betti number of G · v2(number of dashed edges in the tree).

In the example, top of P = (vz)2(1 + 2v2).

Translating trees in G to simplices in QG , we get
.
Theorem (K–Murakami)
..

.

. ..

.

.

The computation tree T triangulates the root polytope QG . The
trees/simplices appear in such an order that

...1 each simplex intersects the union of the previous ones in a collection
of codimension one faces (facets)

...2 the number of such facets is the number of dashed edges in the tree.

In other words, T induces a shelling order for the triangulation and the top
of PLG is equivalent to the h-vector of the triangulation.
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Floer homology and root polytope

The root polytope QG contains certain SFH polytopes, as follows.

QG ⊂ RE ⊕ RV projects onto the unit simplices ∆E ⊂ RE and ∆V ⊂ RV .
Let the two barycenters have the pre-images SV and SE . Then we have

SV

SE

.
Theorem (Juhász–K–Rasmussen)
..

.

. ..

.

.

(|E |SV −∆V ) ∩ ZV ∼= χ
(
SFH(S3 \ FGV

, LGV
)
)
and

(|V |SE −∆E ) ∩ ZE ∼= χ
(
SFH(S3 \ FGE

, LGE
)
)
,

where the lhs’s involve Minkowski differences and the
rhs’s are Euler characteristics, with respect to the
Maslov grading, of sutured Floer homology groups.

In this case, Spinc -structures form a lattice and χ is a 0-1–valued function
so it can be identified with a set of lattice points.
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Triangulations and cross-sections

SV

SE

The Spinc -structures supporting
Floer homology are identified with
certain copies of 1

|E |∆V in SV and of
1
|V |∆E in SE . Call these the small
simplices.

.
Theorem (Postnikov)
..

.

. ..

.

.

Any triangulation of QG subdivides
SV and SE so that each piece
contains exactly one small simplex
(and is disjoint from all other small
simplices).

Tamás Kálmán (Titech) A new type of combinatorics in knot theory September 24, 2011 13 / 14



. . . . . .

Triangulations and cross-sections

SV

SE

The Spinc -structures supporting
Floer homology are identified with
certain copies of 1

|E |∆V in SV and of
1
|V |∆E in SE . Call these the small
simplices.
.
Theorem (Postnikov)
..

.

. ..

.

.

Any triangulation of QG subdivides
SV and SE so that each piece
contains exactly one small simplex
(and is disjoint from all other small
simplices).
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Homfly polynomial and Floer homology

So the number of small simplices of each color is ρ(G ∗). But can we read
off the h-vector from the cross-section, i.e., can we get information on the
Homfly polynomial from Floer homology?

.
Conjecture
..
.
. ..

.

.

Yes we can, by a construction called the interior polynomial.
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