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SUTURED FLOER HOMOLOGY AND HYPERGRAPHS

András Juhász, Tamás Kálmán and Jacob Rasmussen

Abstract. By applying Seifert’s algorithm to a special alternating diagram of a link L,
one obtains a Seifert surface F of L. We show that the set of Spinc structures that

support the sutured Floer homology of the sutured manifold complementary to F is
affine isomorphic to the set of hypertrees in a certain hypergraph that is naturally
associated to the diagram. This implies that the support in question is the set of integer

lattice points of a convex polytope. This property has an immediate extension to Seifert
surfaces arising from homogeneous link diagrams (including all alternating and positive
diagrams).

In another direction, our results and work in progress of the second author with Mura-
kami and Postnikov suggest a method for computing the “top” coefficients of the
HOMFLY polynomial of a special alternating link from the sutured Floer homology
of a Seifert surface complement for a certain dual link.

1. Introduction

In this paper, we report on an unexpected coincidence between two sets of inte-
ger lattice points that appear in the study of links and their Seifert surfaces. The
first set derives from the first author’s sutured Floer homology theory [9]. Given a
link L ⊂ S3 with Seifert surface F , we can associate to it the sutured Floer homology
group SFH(S3 − F, L), where (S3 − F, L) is the sutured manifold complementary to
F . This group decomposes as a direct sum,

SFH(S3 − F, L) =
⊕

s∈Spinc(S3−F,L)

SFH(S3 − F, L, s).

Here, the set Spinc(S3 − F, L) of relative Spinc structures can be thought of as an
affine copy of H1(S3 − F ;Z). The support

S(F ) = {s ∈ Spinc(S3 − F, L) | SFH(S3 − F, L, s) �= 0}
carries a lot of interesting geometric information about F , see [10–12].

A priori, SFH(S3 − F, L, s) is a Z/2Z graded group. However, if L is a non-
split alternating link and F is an arbitrary minimal genus Seifert surface of L, then
by [5, Corollary 6.11], each group SFH(S3 − F, L, s) is either trivial or isomorphic
to Z, and all nontrivial groups have the same Z/2Z grading. Thus, in this case,
SFH(S3−F, L) is determined by S(F ). Furthermore, we see that S(F ) may be viewed
as the Euler characteristic (function) χ(s) = χ(SFH(S3 − F, L, s)). Indeed, up to an
overall sign, χ agrees with the indicator function of S(F ).

The second set was introduced by Postnikov [17] and (independently, but later)
by Kálmán [13], who based on it a new theory of polynomial invariants of bipartite
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graphs and hypergraphs. Its elements are generalized spanning trees called hypertrees.
More precisely, if H = (V, E) is a hypergraph with vertex set V and hyperedge set E,
(i.e., V is a finite set and E is a finite multiset of subsets of V ), then an obvious two-
to-one correspondence associates to it the bipartite graph BipH with color classes E
and V . Now a hypertree in H is a vector f : E → N = {0, 1, 2, . . .} so that Bip H has
a spanning tree with valence f(e) + 1 at every e ∈ E. The set of all hypertrees in H

will be denoted by1 QH = Q(V,E).
To place the support S of SFH and the set of hypertrees Q in the same context,

recall that to any plane graph G we may associate an alternating link LG and a
surface FG. The latter is obtained by taking a regular neighborhood of G and inserting
a positive twist over each edge; LG is its boundary. This is also known as the median
construction on G. When G is bipartite, LG is naturally oriented so that FG is its
Seifert surface. The class of oriented links that arise as LG for some bipartite plane
graph G is called special alternating, and it is known that FG is of minimal genus
among Seifert surfaces of LG. (Here, we allow multiple edges in G.) Let now G be a
bipartite plane graph with color classes E and V and let R denote the set of connected
components (regions) of S2 −G. Let (E, R) be the hypergraph where r ∈ R contains
all elements of E that lie along ∂r. Define (V, R) similarly. (We will soon shift the
meaning of r from region to a point marking the region, and thus R will mean the
set of those points.) Note that S3 − FG is a handlebody of genus |R| − 1. Our main
result is the following.

Theorem 1.1. Let G be a plane bipartite graph with color classes E, V and regions R.
Then

S(FG) ∼= Q(E,R)
∼= −Q(V,R).

Here, the first isomorphism means that the (|R| − 1)-dimensional affine lattice
Spinc(S3 − FG, LG) ∼= H1(S3 − FG,Z) containing S(FG) has a Z-affine identification
with a certain hyperplane in ZR so that the image of S(FG) is Q(E,R). The second
isomorphism means that the two sets are translates of each other in ZR; this is quoted
from [13, Theorem 8.3] to show that it hardly matters whether we pick E or V to
play the role of vertices in our hypergraph.

Both sets that appear in Theorem 1.1 can be viewed as multi-variable Laurent
polynomials and have representations in determinant form. The theorem is proved
by showing that a suitable sequence of elimination steps transforms the “enhanced
adjacency matrix” of [13] (which is a large matrix with simple monomial entries) into
the Turaev torsion (a smaller matrix with entries obtained as Fox derivatives) that
S. Friedl investigated in joint work with the first and third authors [5]. It would be
very interesting to see if the relationship between the two matrices is a special case
of some more general phenomenon.

The statement of Theorem 1.1 may seem obscure, but in fact it has some far-
reaching consequences. Firstly, as Q(E,R) is easy to compute, and since the sup-
port S(FG) completely determines SFH(S3 − FG, LG), we obtain a simple method
to handle the SFH of complements of Seifert surfaces given by the median construc-
tion on a bipartite graph. According to Hirasawa and Sakuma [7] and Banks [2], every

1This slightly deviates from notation in [13], where QH stood for the convex hull of the set of
hypertrees.
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minimal genus Seifert surface of a non-split, prime, special alternating link arises in
this manner. The usefulness of this approach is illustrated by Proposition 4.3, where
we analyze the effect of extra twisting in the Seifert surface on the SFH of its comple-
ment. Note that, even though the Turaev torsion itself is not hard to compute either,
the formula of Proposition 4.3 is much more difficult to see from that context only.

Together with the Spinc-refined Murasugi- and connected sum formulas obtained by
using [12, Proposition 5.4] in the proofs of [10, Corollary 8.8] and [9, Proposition 9.15],
we can also easily compute SFH for Seifert surface complements obtained by applying
Seifert’s algorithm to homogeneous link diagrams [4] (which include all alternating and
positive diagrams). We will call such surfaces standard. Indeed, all standard surfaces
are Murasugi sums and distant unions of standard Seifert surfaces of non-split, prime,
special alternating links. If we take the Murasugi sum or distant union F of the Seifert
surfaces F1 and F2 of the links L1 and L2, respectively, then, letting L = ∂F ,

Spinc(S3 − F, L) ∼= Spinc(S3 − F1, L1) × Spinc(S3 − F2, L2).

In the case of a Murasugi sum,

SFH(S3 − F, L, (s1, s2)) ∼= SFH(S3 − F1, L1, s1) ⊗ SFH(S3 − F2, L2, s2)

for every si ∈ Spinc(S3 − Fi, Li), i = 1, 2. In particular, notice that

(1.1) S(F ) ∼= S(F1) × S(F2).

On the other hand, if F is the distant union of F1 and F2, then using the connected
sum formula for sutured manifolds,

SFH(S3 − F, L, (s1, s2)) ∼= SFH(S3 − F1, L1, s1) ⊗ SFH(S3 − F2, L2, s2) ⊗ Z2.

We again have (1.1) for the supports, though (S3−F, L) is no longer a sutured L-space
as the generators of the Z2 factor lie in different Z/2Z-gradings.

As our second application, we derive some previously unknown properties of the
SFH of standard Seifert surfaces of homogeneous links. We say that P ⊂ Zd is convex
if P is the intersection of Zd with the convex hull (in Rd) of P . One of the first
non-trivial facts about QH is that it is convex, see [13, Theorem 3.4]. Combining this
with (1.1) and Theorem 1.1, we obtain the following.

Corollary 1.2. If F is a standard Seifert surface of a homogeneous link L, then S(F )
is convex.

In contrast, if F is a Seifert surface obtained by applying Seifert’s algorithm to
a non-homogeneous link L, the support S(F ) need not be convex, even if the su-
tured Floer homology is supported in a single Z/2Z grading. For examples, see the
computations for three-strand pretzel knots in the last section of [5].

An unpublished theorem of Richard Webb [19] claims that all standard Seifert sur-
faces F of an alternating link have isomorphic S(F ). Thus if L is a special alternating
link, SFH(S3 −F, L), together with the Spinc-grading, does not depend on the choice
of minimal genus Seifert surface F . On the other hand, Altman [1] gives an example
of a knot K with distinct minimal genus Seifert surfaces F1 and F2 for which S(F1) is
convex and S(F2) is not. It would be interesting to know whether an alternating link
can have non-standard minimal genus Seifert surfaces whose SFH differs from that of
the standard ones, or whether a homogeneous link can have a non-standard Seifert
surface F so that S(F ) is non-convex.
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Apart from convexity, there is another important context into which Theorem 1.1
fits. Hypertrees were defined as part of a project aimed at finding spanning tree
models of some orientation-sensitive link invariants, such as the HOMFLY polyno-
mial. Namely, by counting hypertrees appropriately, from QH we may read off a one-
variable polynomial invariant IH(ξ) of the hypergraph H [13]. This so-called interior
polynomial generalizes the partial evaluation T (x, 1) of the Tutte polynomial T (x, y)
of ordinary graphs. Then, extending a result of Jaeger [8], the second author proposed
the following.

Conjecture. With notation as above, let PLG
(v, z) denote the HOMFLY polynomial

of the link LG. Then the part of PLG
which becomes the leading term in the Alexander–

Conway polynomial ∇LG
(z) = PLG

(1, z) is equal to (vz)|R|−1I(V,E)(v2).

As E and V play symmetric roles for LG, this leads us to expect that I(V,E) =
I(E,V ). Postnikov and the second author conjecture that this is indeed the case for any
connected bipartite graph G; and furthermore, that the two polynomials also coincide
with the so-called h-vector of some (any) triangulation of another polytope (called
root polytope) derived from G. Then, in joint work with H. Murakami, it has already
been proved [14] that this h-vector is equivalent to the relevant part of the HOMFLY
polynomial. Thus, the only step missing to prove the Conjecture is purely discrete
mathematical.

Now, if the Conjecture holds true, then the part (hereafter called the top) of
PLG

(v, z) that realizes its maximum z-degree can be read off from either Q(V,E)

or Q(E,V ). According to Theorem 1.1, these are equivalent to S(FGE
) and S(FGV

),
respectively, where GE = Bip(V, R) = Bip(R, V ) and GV = Bip(E, R) = Bip(R, E)
are two plane bipartite graphs closely related to our original graph G = GR =
Bip(V, E) = Bip(E, V ). The three graphs together form a structure called a trin-
ity. See Figure 4 for an example.

In other words, the Conjecture implies that the top of PLG
can be computed from

Floer homology groups. The alert reader will notice though that neither FGE
nor

FGV
is a Seifert surface for LG = LGR

. It is also among our future goals to derive the
same HOMFLY coefficients from S(FGR

). There are plenty of indications that this is
possible, including the following consequence of Theorem 1.1 and results in [13].

Corollary 1.3. With the plane bipartite graphs GR, GE, GV and associated surfaces
defined as above, we have |S(FGR

)| = |S(FGE
)| = |S(FGV

)| for the corresponding
supports.

This is true despite the fact that the three sets are the lattice points in three
polytopes of different dimensions. Corollary 1.3 is inspired by, and can be viewed
as an extension of, Tutte’s Tree Trinity Theorem [18]. It is also closely related to
Postnikov’s duality result |Q(V,E)| = |Q(E,V )|, see [17].

Murasugi and Przytycki [16] showed that under “star product” of links, which is
essentially Murasugi sum, the top of the HOMFLY polynomial behaves multiplica-
tively. Thus, for any homogeneous link, the Conjecture implies that coefficients along
the top of the HOMFLY polynomial can be derived from Floer homology.

The paper is organized as follows. In Sections 2 and 3, we review the necessary
results about hypergraphs and Floer homology, respectively. Theorem 1.1, along with
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some corollaries, is established in Section 4. Section 5 contains a detailed sample
calculation.

2. Hypergraph invariants

In [13], the second author developed a theory of hypergraph invariants by generalizing
the spanning tree polytope and (partially) the Tutte polynomial to that context.
Presently, we will only require the first item, the so called hypertree polytope. This was
first defined by Postnikov [17], who called it a trimmed generalized permutohedron.
(In this paper, instead of polytopes, we will only deal with their integer lattice points.)
The relevant definitions and facts are as follows.

A hypergraph is a pair H = (V, E), where V is a finite set and E is a finite multiset
of non-empty subsets of V . Elements of V are called vertices and the elements of E
are the hyperedges. Bipartite graphs and hypergraphs can be represented by the same
type of picture. We formalize this idea in a two-to-one correspondence where each
hypergraph H has an associated bipartite graph Bip H in which V and E become the
two color classes and e ∈ E and v ∈ V are joined by an edge if and only if v ∈ e.
We will always assume that Bip H is connected. Conversely, a connected bipartite
graph G induces two hypergraphs which we call abstract duals. In other words, the
abstract dual H = (E, V ) of H is defined by interchanging the roles of its vertices
and hyperedges.

Definition 2.1. Let H = (V, E) be a hypergraph. By a hypertree in H we mean a
function (vector) f : E → N = {0, 1, . . .} so that a spanning tree of the associated
bipartite graph BipH can be found with valence f(e) + 1 at each e ∈ E. The set of
all hypertrees in H will be denoted with QH.

We will generally require all bipartite graphs to be connected and allow multiple
edges. Bipartite graphs with multiple edges induce the same two hypergraphs as if
all edge multiplicities were reduced to 1. Graphs of the form BipH have no multiple
edges – even if they did, it would not matter for QH.

An elementary observation is that all hypertrees lie on the hyperplane

Π =

{
f : E → N

∣∣∣∣
∑

e∈E

f(e) = |V | − 1

}
⊂ RE .

In Section 3 of [13], it is shown that hypertrees are exactly the integer lattice points
of a polytope that is cut out of Π by inequalities of the form

∑
e∈E′ f(e) ≤ μ(E′),

where ∅ �= E′
� E. Here, μ is defined as follows. Consider the bipartite graph with

color classes E′ ⊂ E and
⋃

E′ ⊂ V , and edges inherited from BipH. Let us denote
the number of its connected components by c(E′). Then set μ(E′) = |⋃ E′| − c(E′).

In this paper we are particularly interested in plane graphs, i.e., graphs that come
with an embedding in S2. Plane bipartite graphs always occur in sets of three, forming
a structure called a trinity. Trinities, first investigated by Tutte [18], have many equiva-
lent descriptions; we choose to define them as triangulations of S2 with a proper three-
coloring of the 0-cells (which we will generally call “points,” with the understanding
that some of them may become “vertices” in a graph or hypergraph). See Figure 1
for an example.
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Figure 1. A trinity of plane bipartite graphs. Labels r,e,v indicate
the three-coloring.

We will use the names red, emerald and violet for the colors, and denote the
respective sets of points by R, E, and V . Let us color each edge in the triangulation
with the color that does not occur among its endpoints. Then E and V together with
the red edges form a bipartite graph that we will call the red graph and denote by GR.
Each region, (i.e., connected component of the complement) of the red graph contains
a unique red point. Likewise, the emerald graph GE has red and violet points, emerald
edges, and regions marked with emerald points. Finally, the violet graph GV contains
R and E as vertices, violet edges, and a violet point in each of its regions.

The graphs GR, GE , and GV are connected and they can have multiple edges but
not loops. The trinity is uniquely determined by any one of these three graphs. For
example, given the connected (so that its regions are disks) plane bipartite graph GR,
we may recover the trinity by placing a red point in each region of GR and making the
appropriate emerald and violet connections between these points and the vertices of
GR. As to the six hypergraphs (and their hypertrees) induced by the three bipartite
graphs, [13, Theorem 8.3] implies that Q(V,E)

∼= −Q(R,E) ⊂ RE , Q(R,V )
∼= −Q(E,V ) ⊂

RV , and Q(E,R)
∼= −Q(V,R) ⊂ RR.

Notice that each triangle of a trinity is adjacent to exactly one edge and one point
of each color. Compared to the orientation of the sphere, the cyclic order of the colors
around each triangle may be positive or negative. If two triangles share an edge, these
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orientations are opposite. Hence, the triangles have a black and white checkerboard
coloring according to orientation; cf. Figure 1. This coloring can be used to orient the
dual graphs G∗

R, G∗
E , and G∗

V (dual in the classical, not in the hypergraph sense).
Namely, each edge in these graphs cuts through a black and a white triangle, and we
orient it so that its tail end is in black territory.

Next, note that the sets of red edges, emerald edges, violet edges, white triangles,
and black triangles all have the same cardinality n. In particular, adjacency defines
natural bijections between white triangles and edges of each color. Now, if we apply
Euler’s formula to the trinity, we get |R| + |E| + |V | − 3n + 2n = 2, i.e.,

(2.1) the total number of points exceeds that of the white triangles by 2.

Let us distinguish one white triangle as the outer one and label it with t0. We will
label the red, emerald, and violet points adjacent to t0 with r0, e0, and v0, respectively,
and call them the roots. According to (2.1), the non-outer white triangles and non-root
points are equal in number, so they form a square adjacency matrix M . We index the
rows of M by points and its columns by triangles. This matrix was first investigated
by Berman [3] who showed that when we compute the determinant det M , all non-zero
expansion terms appear with the same sign. We call these terms the Tutte matchings
of the trinity.

A Tutte matching is indeed a complete matching of non-root points to adjacent
non-outer white triangles. Equivalently, it can be thought of as a collection of edges
from G∗

R, G∗
E , and G∗

V . Namely, whenever a triangle and a point are matched, we
choose the dual edge that cuts through the triangle and ends at the point. It turns
out that such a collection is the union of three so called spanning arborescences of
G∗

R, G∗
E , and G∗

V , respectively, rooted at the respective points adjacent to t0. (Given
an arbitrary vertex q in a directed graph D, a spanning arborescence rooted at q is a
spanning tree of D which contains a directed path from q to any other vertex p �= q
of D. These are exactly the cycle-free subgraphs of D with a unique edge ending
at each p �= q.) Each spanning arborescence occurs in relation to exactly one Tutte
matching. This fact is the basis of the proof of Tutte’s Tree Trinity Theorem [18], i.e.,
of the claim that G∗

R, G∗
E , and G∗

V have the same number of spanning arborescences.
(These counts of arborescences do not depend on the position of the roots either, and
of course each count is equal to | det M | [3].)

Definition 2.2. If a non-outer white triangle ti is adjacent to the red point rj and
the non-root emerald point ek, then in M , at the intersection of row ek and column ti,
let us change the entry 1 to rj . After it becomes a matrix entry, we will think of rj

as an indeterminate associated with the original point. Call the resulting matrix the
enhanced adjacency matrix and denote it with Mr→e.

By fixing t0 but varying the colors, altogether six such matrices can be associated to
a trinity. By [13, Theorem 10.5], we may use enhanced adjacency matrices to compute
the set of hypertrees in any hypergraph H as long as BipH is planar.

Proposition 2.3. In any trinity, for the set of hypertrees in the hypergraph (E, R)
induced by GV , we have

Q(E,R) = det Mr→e
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in the following sense. The determinant on the right hand side is a sum of monomials
in the indeterminates r ∈ R. Either each monomial has coefficient +1, or each has
coefficient −1. If we write the exponents in the monomials as vectors, the set we obtain
is exactly the left hand side.

Example 2.4. The adjacency matrix associated with the trinity (and outer white
triangle t0) of Figure 1 is

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

r1 0 1 1 1 0 0 0 0 0 0
r2 0 0 0 0 0 1 1 1 0 1
r3 1 0 0 0 0 0 0 0 1 0
e1 1 1 0 0 0 0 0 1 0 0
e2 0 0 0 1 0 0 1 0 0 0
e3 0 0 1 0 1 1 0 0 0 0
v1 0 1 0 0 0 0 1 0 0 0
v2 0 0 0 1 0 1 0 0 0 0
v3 0 0 0 0 1 0 0 0 0 1
v4 0 0 0 0 0 0 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its determinant is 11. (It is purely coincidental that the number of white triangles in
the example is also n = 11.) One of its enhancements is

(2.2) Mr→e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

r1 0 1 1 1 0 0 0 0 0 0
r2 0 0 0 0 0 1 1 1 0 1
r3 1 0 0 0 0 0 0 0 1 0
e1 r3 r1 0 0 0 0 0 r2 0 0
e2 0 0 0 r1 0 0 r2 0 0 0
e3 0 0 r1 0 r0 r2 0 0 0 0
v1 0 1 0 0 0 0 1 0 0 0
v2 0 0 0 1 0 1 0 0 0 0
v3 0 0 0 0 1 0 0 0 0 1
v4 0 0 0 0 0 0 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant of the latter is r0r
2
1 + r0r1r2 + r2

1r2 + r0r
2
2 + r1r

2
2 + r3

2 + r0r1r3 +
r2
1r3 + r0r2r3 + r1r2r3 + r2

2r3. If we interpret this formula as in Proposition 2.3, we
obtain the picture in Figure 2 for the set Q(E,R) of hypertrees. The interested reader
can compare this result and Definition 2.1. For example, the monomial r3

2 (i.e., the
vector f(r2) = 3, f(ri) = 0 for i �= 2) is a hypertree because r2 is adjacent to all four
emerald points.

3. Decategorified sutured Floer homology

Sutured Floer homology [9] is an invariant of balanced sutured manifolds. A sutured
manifold (M, γ) is an oriented three-manifold M , together with an oriented, null-
homologous multicurve γ (the sutures) on ∂M ; see [6]. Since γ is null-homologous, it
divides ∂M−γ into two pieces R+ and R−, with the property that R+ lies on one side
of each curve in γ, and R− lies on the other. (Note that R± need not be connected.)
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Figure 2. The hypertrees in a hypergraph and their convex hull.

The condition that (M, γ) is balanced means that
(i) χ(R+) = χ(R−),
(ii) every component of ∂M contains at least one suture, and
(iii) M has no closed components.

The sutured manifolds we consider in this paper all arise from the following con-
struction. Suppose that L ⊂ S3 is an oriented link, and that F is a Seifert surface
for L. Let us thicken F slightly to F × [−ε, ε ] ⊂ S3, and let MF be the closure
of its complement. The link L is a subset of ∂MF , and the pair (MF , L) is a bal-
anced sutured manifold. Note that both subsurfaces R± are homeomorphic to intF .
Thus in this context, we will prefer to use the notation R+ = F+ = F × {ε} and
R− = F− = F × {−ε}.

When L is an alternating link and F is a minimal genus Seifert surface of L,
the sutured Floer homology groups SFH(MF , L) are completely determined by their
Euler characteristic according to [5, Corollary 6.6]. The main result of [5] identifies
this Euler characteristic with a certain Turaev torsion τ(MF , L). For our purposes,
τ(MF , L) is best viewed as an element of the group ring Z[H1(MF ;Z)] which is well
defined up to multiplication by a unit.

Let now G = GR be the red graph of a trinity. As we saw in the previous section,
any connected plane bipartite graph uniquely arises in this way. We use the so called
median construction to associate the alternating link LG to G. I.e., along the boundary
of each region of G, we connect the midpoints of consecutive edges by disjoint simple
curves. There are exactly two ways to specify over- and undercrossing information at
the midpoints themselves so that the union of these curves becomes an alternating
link. We use the convention of Figure 3. We also place a positive spin (as in a small
counterclockwise spinning top) at each violet point and a negative spin at each emerald
point. The link LG inherits an orientation from the spins as shown in Figure 3 so that
its diagram becomes positive. Seifert circles of the diagram correspond to the emerald
and violet points so that they are not nested in one another. Hence LG is a special
alternating link, and in fact, any positive special alternating link diagram arises as
the result of this construction.
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Figure 3. The two strands of LG crossing an edge of G.

Figure 4. The bipartite graphs of a trinity and the associated
special alternating links.

By repeating our construction for the other two colors, we end up associating three
distinct special alternating links to our trinity. See Figure 4 for an example. These
links are of course closely related; see, for instance, Corollary 4.2.

Our construction is such that G is recovered as the Seifert graph of LG. Hence, if
we apply Seifert’s construction to the diagram of LG, we obtain a Seifert surface FG

which deformation retracts onto G. Let MG = MFG
be the complement of this surface.

It is easy to see that MG is a handlebody of genus |R| − 1. We are interested in
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understanding the group SFH(MG, LG). Since LG is alternating, it suffices to study
the torsion τ(MG, LG). We now recall from [5] how to compute τ(M, γ) in the case
when (M, γ) is balanced, R− is connected, and M is a handlebody of genus g.

First, we choose a system of co-oriented compressing disks A1, . . . , Ag ⊂ M so that
when we cut M along the Ai, the result is a ball. We also fix a basepoint p ∈ R− away
from the Ai. These data determine a specific isomorphism between π1(M, p) and the
free group on the letters a1, . . . , ag. Namely, if c is a loop based at p, we can isotope c
so it is transverse to the Ai. Then the word associated to c is obtained by traversing
c and recording either an ai or an a−1

i (depending on the sign of intersection) each
time we pass through Ai.

Since (M, γ) is balanced, χ(R−) = 1
2χ(∂M) = 1 − g. It follows that π1(R−, p) is

a free group on g generators. Choose a set of generators for π1(R−, p) and consider
their images W1, . . . , Wg ∈ π1(M, p) ∼= 〈a1, . . . , ag〉.
Proposition 3.1. [5, Prop. 5.1] If (M, γ) is balanced, M is a handlebody, and R−
is connected, then, up to multiplication by a unit, we have

τ(M, γ) ∼ det(|daiWj |),
where dai denotes the Fox free derivative with respect to ai and | · | : Z[π1(M)] →
Z[H1(M)] is the abelianization.

Example 3.2. Let us choose G to be the red bipartite graph GR at the lower right of
Figure 4. One way to compute the corresponding Turaev torsion is as follows. Please
refer to Figure 6. Our basepoint p will be the push-off of v0 on the side of F facing
the viewer. We fix loops on that side F− of the surface that go counterclockwise once
around the boundary of the region marked with r1, clockwise around r0, and coun-
terclockwise around r3. (The second loop appears in the figure as a counterclockwise
path around the outside contour of GR.)

Our compressing disks correspond to the regions r1, r2, and r3. We co-orient each
toward the center of the sphere containing the diagram. (Our figures are drawn from a
viewpoint which is outside of the sphere.) For the corresponding free group generators
we will use the same symbols rj .

With these conventions, the three loops that we described above yield the words

W1 = r1r
−1
2 r1r

−1
2 r1r

−1
3 , W2 = r1r

−1
0 r2r

−1
0 , and W3 = r3r

−1
2 r3r

−1
0 ,

respectively. Note that we also counted intersections with the region r0, which did not
contribute a compressing disk. In other words, r0 = 1 but we will keep the symbol r0

around as its presence helps the formalism in the proof of Theorem 1.1. Finally, the
Turaev torsion is

(3.1)

∣∣∣∣∣∣

1 + r1r
−1
2 + r2

1r
−2
2 1 0

−r1r
−1
2 − r2

1r
−2
2 r1r

−1
0 −r3r

−1
2

−r3
1r

−2
2 r−1

3 0 1 + r3r
−1
2

∣∣∣∣∣∣
= r−1

0 r1 + r−1
0 r2

1r
−1
2 + r−1

0 r3
1r

−2
2

+r−1
0 r1r

−1
2 r3+r−1

0 r2
1r

−2
2 r3+r−1

0 r3
1r

−3
2 r3+r3

1r
−3
2 +r1r

−1
2 +r2

1r
−2
2 +r1r

−2
2 r3+r2

1r
−3
2 r3.

The reader may check that (3.1) equals a monomial (r−1
0 r1r

−3
2 ) times the second

determinant of Example 2.4. Our main result says that this is not a coincidence.
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4. The main result

Due to Propositions 2.3 and 3.1, we may re-state Theorem 1.1 in the following equiv-
alent form.

Theorem 4.1. Let G be a connected plane bipartite graph with color classes E and
V , and let us realize it as the red graph G = GR of a trinity. Let the positive special
alternating link LG, Seifert surface FG and handlebody MG be associated to G as
above. Then, the Turaev torsion τ(MG, LG) is, up to multiplication by a monomial,
equal to the determinant of the enhanced adjacency matrix Mr→e.

By writing “equal” above, we assume various identifications through which both
determinants become polynomials in indeterminates corresponding to the red points
of the trinity. For detMr→e this occurs naturally; for τ(MG, LG) it is made explicit
below. The proof is not deep but complicated. In the next section, we carry out a
concrete computation based on the same method. The reader may wish to study that
first or to read it parallel to the proof.

Proof. We are going to describe a very specific way of computing the Turaev tor-
sion, along with an equally specific way of manipulating the enhanced adjacency
matrix so that eventually the two determinants are shown to coincide up to a mono-
mial factor. Let us fix an outer white triangle t0, with adjacent points (roots) r0,
e0, and v0 as before. Other points will be labeled with r1, . . . , r|R|−1, e1, . . . , e|E|−1,
and v1, . . . , v|V |−1. All additional choices will be dictated by an arbitrarily fixed
Tutte matching. I.e., we break the symmetry by singling out one expansion term
in detMr→e.

The Turaev torsion: We compute τ(MG, LG) using the following procedure. First,
let us choose compressing disks for MG the same way as in Example 3.2: Let S2

denote the sphere containing G, and let us fix an “outside viewpoint” (which is used
to draw our diagrams) and a “center.” Connect these two points by a path through
r0 and thicken it slightly into a 3-ball. We may think of MG as this 3-ball with |R|−1
one-handles attached so that each handle passes through a non-root red point. For
each j = 1, 2, . . . , |R| − 1, there is an obvious disk contained in S2, centered at rj ,
which is the co-core to one of these handles. We co-orient each disk toward the center
of S2. When the j’th compressing disk is identified with a free group generator, we
will write rj for the latter as well.

Our loops in F− will be based at (v0,−ε). Here, we assume that the thickening of
F = FG has been parameterized so that near the midpoint of the edge κ of t0 that
connects e0 and v0, it is F− that faces the region r0.

Next, fix a spanning arborescence A in G∗ rooted at r0. As we explained in
Section 2, A assigns an adjacent non-outer white triangle to every non-root red
point. We choose the labels of these triangles so that tj is assigned to rj for all
j = 1, 2, . . . , |R| − 1, i.e., that the unique edge of A pointing toward rj reaches rj

through tj .
Let now Γ ⊂ G be the dual tree of A. Note that Γ contains the edge κ because t0

is not matched to any point. For all j, if we add the dual of the edge of A pointing
toward rj (suppose it has endpoints e∗ and v∗) to Γ, a unique cycle is created. We
describe it as a sequence λj of edges of G that starts at v0, follows the unique path in
Γ to v∗, contains the edge v∗e∗ as the next entry, finally returns from e∗ to v0 along
the unique path that exists in Γ. Figure 5 shows the two sequences of edges that,
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Figure 5. Schematic image of the loop λj corresponding to the
non-root red point rj .

along with v∗e∗, make up the loop. Note that, in addition to the point v0 appearing
twice, it is possible for the first (leftmost) several edges to agree, in reverse order,
with the last (rightmost) several edges. Other than these coincidences, the edges in
λj , and hence the white triangles adjacent to them, are all different (in fact, it will
sometimes be more useful to think of λj as a sequence of triangles rather than of
edges) but there may be further repetitions among the red points adjacent to those
white triangles. In particular, both rj and r0 may occur several times.

It is easy to see that the loops λj serve as free generators for π1(G, v0) and
hence their push-offs to F− freely generate π1(F−). Let us proceed to the word
Wj , j = 1, 2, . . . , |R| − 1, in the letters r0, r1, . . . , r|R| − 1, that is derived from λj as
in Section 3. (Here the letter r0 will be used to keep track of intersections with the
region r0. We do this just to preserve symmetry. In the free group, r0 = 1.) As LG

is alternating, the exponents +1 and −1 alternate in Wj . Our conventions regarding
the thickened surface have been set so that F− faces the observer near violet points,
while near emerald points we see F+. Hence in Wj the first letter has exponent +1,
the last has −1, and the edge v∗e∗ contributes r+1

j . Highlighting that contribution,
let us write Wj = UjrjZj .

When we consider the Fox derivatives of Wj with respect to r1, . . . , r|R|−1, we see
that each appearance of a letter in Wj different from r±1

0 contributes exactly one
monomial to exactly one Fox derivative. Namely, if the red point x appears on the
right side of the path (cf. Figure 5) then the contribution is

−W xx−1 to ∂Wj/∂x,

and a red point y on the left side contributes

W y to ∂Wj/∂y.

Here, W z denotes the part of Wj that precedes the letter z. (This notation is sloppy
because z may appear several times in Wj and thus there can be several different
W z’s; yet we hope that no confusion will arise.) Our task in the next part of the proof
is to arrive at the same monomials in an entirely different way.

Manipulating the enhanced adjacency matrix: We will carry out a sequence of elim-
ination steps on Mr→e inspired by the proof of the Tree Trinity Theorem. We choose a
deconstruction order < of the points e1, . . . , e|E|−1, v1, . . . , v|V |−1, by which we mean
an order so that the largest point is a vertex of valence 1 in Γ, then the second largest
is a vertex of valence 1 in the tree that remains if we erase the first vertex and its
adjacent edge from Γ, and so on. After removing all non-root vertices in this manner,
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only the edge κ remains of Γ. For ease of exposition, we will assign a second label to
non-root emerald and violet points so that

{e1, . . . , e|E|−1, v1, . . . , v|V |−1} = {p|R| < p|R|+1 < · · · < pn−2 < pn−1}.
Here, n − 1 = |R| + |E| + |V | − 3 is the number of non-root points in the trinity.

The deconstruction order can be used to match non-outer white triangles to the
non-root emerald and violet points in a one-to-one fashion. The non-root red points
have already been matched to triangles by the arborescence A and we will not use
those triangles again, so that our construction will result in a Tutte matching. The
tree Γ contains an edge if and only if the white triangle adjacent to the edge has not
been matched to a red point. For the emerald or violet point pn−1 having valence 1
in Γ means that all but one of the adjacent white triangles have been matched to red
points, so that there is only one choice left. We match that triangle to pn−1. A similar
unique choice of a triangle exists for pn−2 and so on. We complete the labeling of the
white triangles so that the process matches the point pi with the triangle ti for each
i = |R|, . . . , n − 1.

The same matching can be described without reference to the deconstruction order
as follows: given a non-root point pi in Γ, the tree has a unique edge adjacent to it
which is such that its other endpoint is closer to κ than pi is. The white triangle
adjacent to this edge is ti.

From our assumptions on the labeling it follows that if we list the rows and columns
of Mr→e in the orders r1, . . . , r|R|−1, p|R|, . . . , pn−1 and t1, . . . , tn−1, respectively, then
no zeros appear along the main diagonal and the bottom right (n − |R|) × (n − |R|)
block is upper triangular. Indeed, if i ≥ |R|, then the red edge of the triangle ti is in
Γ and pi is the farther endpoint (from κ, in the tree Γ) of this edge. Hence the other
emerald or violet point adjacent to ti is smaller than pi in the deconstruction order.

We will use the n− |R| diagonal entries of this block one by one, from the bottom
up, as pivots and at each stage we will perform elementary column operations to elim-
inate non-zero entries to the left of the pivot. By our remark on upper triangularness,
these operations only affect the first |R| − 1 columns. After elimination, the upper
left (|R| − 1) × (|R| − 1) block B is such that its determinant differs from detMr→e

only by a monomial factor, namely the product of the pivots. (In fact the factor is the
hypertree in (E, R), written as a monomial, which is associated to the chosen arbores-
cence/Tutte matching.) Therefore it suffices to show that for each j = 1, . . . , |R| − 1,
the j’th column of B (indexed by the triangle tj) coincides with U−1

j times the j’th
column (indexed by the word Wj) of the Turaev torsion.

Why the two determinants are equal: We will start with a rough description of the
effect of our elimination steps and fill in some details later. It suffices to concentrate
on just one arbitrary column, say the j’th (1 ≤ j ≤ |R| − 1). In the original enhanced
adjacency matrix, the j’th column contains three non-zero entries: 1 in the j’th row
which corresponds to the summand Uj in ∂Wj/∂rj ; another 1 in the row indexed by
v∗; and rj in the row indexed by e∗. If e∗ or v∗ is a root, then one of the latter two is
missing. During the elimination process, the number of non-zero entries in the bottom
n− |R| positions never increases: it stays two for a while, then goes down to one and
eventually to zero. (Or else, it stays one for a while and then becomes zero.)

It is best to think of what is happening in the j’th column as two superimposed, left
and right processes LP and RP , one for each section of λj before and after the edge
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v∗e∗. (If e∗ or v∗ is a root, then the corresponding process is empty.) Each process has
a non-zero monomial entry, called the can, in one of the bottom n−|R| positions which
it moves gradually upward until it disappears (as in “kicking the can down the road”).
The can is not constant in the process. In each elimination step, if it affects the j’th
column, then one of the two processes takes a step. In that step, the presence of the
two (or one) other non-zero entries in the column of the pivot results in the following:

(i) A new non-zero monomial entry (can) is created in one of the lower n − |R|
positions of the j’th column. It is higher up than the entry which is eliminated in
the step. If the column of the pivot belongs to a white triangle which is adjacent
to e0 or v0, then this development does not occur and the process terminates.

(ii) A new summand (contribution) is added to one of the entries in the upper
|R| − 1 positions of the j’th column. If the column of the pivot belongs to a
white triangle adjacent to r0, then no contribution occurs.

It is also not hard to see that the sequence of pivots for LP and RP starts in the rows
indexed by v∗ and e∗, respectively, and that the rows of other pivots are indexed by
the emerald and violet points along λj that occur as we move toward v0 along the
respective paths. In particular, emerald pivots (equal to some ri) and violet pivots
(equal to 1) alternate in LP as well as in RP . If at either end of λj the point adjacent
to v0 is e0, then the corresponding process ends after the pivot which is in the row
of the other violet neighbor of e0 along λj . It is also possible for the two processes
to merge after a while as edges and white triangles at the beginning and end of λj

coincide. After this happens, the cans of LP and RP occur in the same position as a
sum of two monomials.

Finally, we need to examine the monomials (cans and contributions) in (i) and (ii)
in more concrete terms. We refer to Figure 5 for notation. Let us first consider the
left process LP and the stage when the pivot is the (k, k)-entry y, eliminating the can
Cy in the position (k, j). The new can is −y−1Cy and it is in the row indexed by pk′ .
A contribution of −y−1Cy is added to the j’th entry in the row indexed by y. Let
now the pivot be the (l, l)-entry 1 and denote the corresponding can by Cx. In this
case the new can is −xCx and it is in the row indexed by pl′ . A contribution of −Cx

is added to the j’th entry in the row indexed by x.
From this it is clear that the sequence of cans for LP is 1, −a, b−1a, and so on so

that Cy is −1 times the product (with alternating exponents) of red points (labels)
along λj between pk and v∗ and Cx is described similarly but without the negative
sign. Then if we look at the contributions −y−1Cy and −Cx of the previous para-
graph, we see that if we multiply them by Uj , we get W y and −W xx−1, respectively,
just as we expected and exactly where we expected them.

A similar analysis applies to the right process RP . There, the first can is rj in the
row of e∗, the next one is −c−1rj (note that the first pivot is c) in the row indexed
by w and so on. The entry 1 in the (j, j)-position plays the role of first contribution,
then the second one is −c−1rj in the row indexed by c and so on. After multiplying
with Uj , these also conform to our expected values. �

Having established Theorem 1.1, Corollary 1.3 is now immediate: |S(FG)| is the
number of hypertrees in (E, R), but that is the same (by Proposition 2.3) as | detM |
of the “un-enhanced” adjacency matrix M of the trinity. That number (the number
of Tutte matchings) is clearly color-independent.
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Let us recall that if F is a minimal genus Seifert surface for the link L, then∑
s χ(SFH(MF , L, s)) is the leading coefficient of the Alexander polynomial ΔL, cf.

[5, Lemma 6.4] and [10, Theorem 1.5]. (Note that Δ and Conway’s version ∇ have
the same leading coefficient.) Thus, in our class of examples, |S(FG)| is the leading
coefficient of ΔLG

, and we also obtain the following result.

Corollary 4.2. The absolute value of the determinant of the adjacency matrix, i.e.,
the number of Tutte matchings, is the leading coefficient in the Alexander polynomial
of any of the three alternating links associated to the trinity.

This last fact has a more direct proof using the Tree Trinity Theorem [18] and
Kauffman’s state model [15] for the Alexander polynomial. We now prove Corol-
lary 1.2.

Proof. First, suppose FG is a standard Seifert surface of a special alternating link LG,
so that S(FG) ∼= Q(E,R). By [13, Theorem 3.4], Q(E,R) is cut out by a system of linear
inequalities in ZR, so it is clearly convex.

Next, suppose F is a standard Seifert surface of a homogeneous link. It is well
known that any such F is a Murasugi sum of standard Seifert surfaces for special
alternating links. Now (1.1), along with the fact that the product of convex sets is
convex, proves the desired result. �

As another application of Theorem 1.1, we analyze how adding a full positive twist
to a band in one of our Seifert surfaces (and thereby changing the knot as well) affects
the sutured Floer polytope. Let the edge ε of the connected plane bipartite graph G
be adjacent to the regions r1 and r2. Let G′ be the graph in which ε is replaced with a
path of three edges. Then the handlebodies MG and MG′ have a natural identification
so that we can think of the supports S(FG) and S(FG′) as subsets of the same affine
space over H1(MG;Z). In that group, let mε denote the homology class of a meridian
(in S3) of ε. (If r1 = r2 then mε = 0 and the statement below is vacuously true.)

Proposition 4.3. With the above conventions, S(FG′) ∼= S(FG) ∪ (S(FG) + mε),
meaning that the two sides differ by a translation.

For the convex hulls of the supports, the statement is that Conv(S(FG′)) is the
Minkowski sum of Conv(S(FG)) and a certain line segment. Note that our main
example is an instance of G′, which explains the “elongated” shape of the polytope
in Figure 2 in the direction from r3

1 to r3
2.

Proof. We will prove the relevant claim on sets of hypertrees and leave it to the reader
to work out the various identifications. Let E and V denote the color classes of G,
and let E′ = E ∪ {e∗} and V ′ = V ∪ {v∗} be the corresponding color classes in G′.
Both G and G′ have the same set R of regions. Then, we claim that

Q(E′,R) = (Q(E,R) + i{r1}) ∪ (Q(E,R) + i{r2}),

where the i{ri} are standard generators in ZR (indicator functions of singleton sets).
To see this, note that any hypertree f in (E, R) induces two hypertrees in (E′, R)

via increasing by 1 the value of f either at r1 or at r2. Indeed, these have obvious
spanning trees (in Bip(E′, R)) realizing them which are built from a realization (in
Bip(E, R)) of f by adding either the edge r1e

∗ or the edge r2e
∗.
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Figure 6. The spanning arborescence A ⊂ G∗
R indicated by arrows,

its dual tree Γ ⊂ GR shown with thick edges, and a deconstruction
order I = v3 > II = v2 > III = e3 > · · · for the latter.

To establish the converse, it suffices to show that any hypertree g in (E′, R) has a
realization (i.e., a spanning tree in Bip(E′, R) with valence g(e) + 1 at each e ∈ E′)
that is of valence one at e∗. If the realization Γ of g is not such, then e∗ is a valence
two point in it. Let e denote the emerald endpoint of ε. Then r1e and r2e are edges in
Bip(E′, R), but at most one of them can be an edge in Γ. If one, say r1e, is in Γ, then
remove r2e

∗ from Γ and replace it with r2e to get the realization of g with the desired
property. If neither r1e nor r2e is in Γ, then add r1e to Γ and kill the resulting cycle
by removing its other edge adjacent to r1. If this was r1e

∗, we are done; otherwise,
apply the previous step. �

5. A sample calculation

We will show explicit reduction steps on the enhanced adjacency matrix in our main
running example. The computation will use the spanning arborescence (of G∗

R) indi-
cated in Figure 6. We also fix the deconstruction order v3 > v2 > e3 > e2 > v1 >
v4 > e1 as shown in the figure (where Roman numerals refer to the order in which
pivots are activated). For better visibility, we have rearranged the rows and columns
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of the matrix (2.2) to reflect this order and the Tutte matching determined by the
arborescence: it now appears as the main diagonal. (Thus we see that the chosen ar-
borescence corresponds to the hypertree/monomial r1r2r3 of Example 2.4.) We briefly
indicate the p-labels that appear in the proof of Theorem 4.1, but we did not re-label
the white triangles. The signs of all expansion terms in the determinant are still pos-
itive, but this is not just by coincidence any more, rather by design. Note how the
bottom right 7 × 7 submatrix is already upper triangular at the start.

In each step below, we use the encircled pivot to eliminate non-zero entries to
its left. When consecutive elementary column operations commute, we show them
simultaneously to save space. Each column of the top left 3 × 3 block that remains
at the end is equal to a monomial times the corresponding column of the determi-
nant (3.1). Since the computation in Example 3.2 uses the procedure in the first part
of the proof of Theorem 4.1, this indeed illustrates the correctness of our method.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t4 t10 t9 t1 t8 t2 t7 t3 t6 t5

r1 1 0 0 0 0 1 0 1 0 0
r2 0 1 0 0 1 0 1 0 1 0
r3 0 0 1 1 0 0 0 0 0 0

p4 = e1 0 0 0 r3 r2 r1 0 0 0 0
p5 = v4 0 0 1 0 1 0 0 0 0 0
p6 = v1 0 0 0 0 0 1 1 0 0 0
p7 = e2 r1 0 0 0 0 0 r2 0 0 0
p8 = e3 0 0 0 0 0 0 0 r1 r2 r0

p9 = v2 1 0 0 0 0 0 0 0 1� 0
p10 = v3 0 1 0 0 0 0 0 0 0 1�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t4 t10 t9 t1 t8 t2 t7 t3 t6 t5

r1 1 0 0 0 0 1 0 1 0 0
r2 −1 1 0 0 1 0 1 0 1 0
r3 0 0 1 1 0 0 0 0 0 0
e1 0 0 0 r3 r2 r1 0 0 0 0
v4 0 0 1 0 1 0 0 0 0 0
v1 0 0 0 0 0 1 1 0 0 0
e2 r1 0 0 0 0 0 r2� 0 0 0
e3 −r2 −r0 0 0 0 0 0 r1�r2 r0

v2 0 0 0 0 0 0 0 0 1� 0
v3 0 0 0 0 0 0 0 0 0 1�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t4 t10 t9 t1 t8 t2 t7 t3 t6 t5

r1 1 + r−1
1 r2 r−1

1 r0 0 0 0 1 0 1 0 0
r2 −1 − r−1

2 r1 1 0 0 1 0 1 0 1 0
r3 0 0 1 1 0 0 0 0 0 0
e1 0 0 0 r3 r2 r1 0 0 0 0
v4 0 0 1 0 1� 0 0 0 0 0
v1 −r−1

2 r1 0 0 0 0 1� 1 0 0 0
e2 0 0 0 0 0 0 r2� 0 0 0
e3 0 0 0 0 0 0 0 r1�r2 r0

v2 0 0 0 0 0 0 0 0 1� 0
v3 0 0 0 0 0 0 0 0 0 1�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t4 t10 t9 t1 t8 t2 t7 t3 t6 t5

r1 1 + r−1
1 r2 + r−1

2 r1 r−1
1 r0 0 0 0 1 0 1 0 0

r2 −1 − r−1
2 r1 1 −1 0 1 0 1 0 1 0

r3 0 0 1 1 0 0 0 0 0 0
e1 r−1

2 r2
1 0 −r2 r3�r2 r1 0 0 0 0

v4 0 0 0 0 1� 0 0 0 0 0
v1 0 0 0 0 0 1� 1 0 0 0
e2 0 0 0 0 0 0 r2� 0 0 0
e3 0 0 0 0 0 0 0 r1�r2 r0

v2 0 0 0 0 0 0 0 0 1� 0
v3 0 0 0 0 0 0 0 0 0 1�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t4 t10 t9 t1 t8 t2 t7 t3 t6 t5

r1 1 + r−1
1 r2 + r−1

2 r1 r−1
1 r0 0 0 0 1 0 1 0 0

r2 −1 − r−1
2 r1 1 −1 0 1 0 1 0 1 0

r3 −r−1
3 r−1

2 r2
1 0 1 + r−1

3 r2 1 0 0 0 0 0 0
e1 0 0 0 r3�r2 r1 0 0 0 0
v4 0 0 0 0 1� 0 0 0 0 0
v1 0 0 0 0 0 1� 1 0 0 0
e2 0 0 0 0 0 0 r2� 0 0 0
e3 0 0 0 0 0 0 0 r1�r2 r0

v2 0 0 0 0 0 0 0 0 1� 0
v3 0 0 0 0 0 0 0 0 0 1�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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