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Abstract

Tutte’s dichromate T (x, y) is a well known graph invariant. Using the original definition in terms
of internal and external activities as our point of departure, we generalize the valuations T (x, 1) and
T (1, y) to hypergraphs. Our generating functions are sums over hypertrees, i.e., instances of a certain
generalization of the indicator function of the edge set of a spanning tree. We prove that hypertrees are
the lattice points in a polytope which in turn is the set of bases in a polymatroid. In fact, we extend our
invariants to integer polymatroids as well. Several properties are established, including a generalization of
the deletion–contraction formulas. We also examine hypergraphs that can be represented by planar bipartite
graphs, write their hypertree polytopes in the form of a determinant, and prove a duality property that leads
to an extension of Tutte’s Tree Trinity Theorem.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we investigate how much of the theory of the Tutte polynomial, which is a
large and important branch of graph and matroid theory, can be generalized to hypergraphs and
polymatroids. We will see that some of the basic definitions carry over in a new and interesting
way. From among the many important properties of the Tutte polynomial, we find an elegant
generalization of the equation relating planar dual graphs. The deletion–contraction rule also has
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an extension to our context but, interestingly, such formulas play a lesser role here than in the
classical case.

The central object of our theory is the integer polytope QH , associated to a hypergraph H ,
which generalizes the well known spanning tree polytope of ordinary graphs. The lattice points in
QH are called hypertrees. A hypertree, see Definition 3.1, is essentially the valence distribution,
taken at one side of the bipartition, of a spanning tree in the bipartite graph naturally associated
to H . It is the use of this concept that sets apart the current paper from earlier work.

From QH , we will read off the one-variable polynomial invariants IH and XH of H
which generalize TG(x, 1) and TG(1, y), respectively. (Here TG is the Tutte polynomial of
the graph G and we think of H as a generalization of G.) They are called the interior and
exterior polynomials. Both have positive integer coefficients, the sum of which is the number of
hypertrees. Their definitions involve a direct, yet non-obvious generalization of Tutte’s idea of
ordering the (hyper)edges and using the order to define their internal and external active/inactive
status with respect to (hyper)trees.

The hypertree polytope is naturally embedded as the set of bases in a certain integer
polymatroid. The latter can be viewed as a generalization to hypergraphs of the cycle matroid
of a graph. The interior and exterior polynomials can in fact be defined for all integer (extended)
polymatroids, i.e., for all integer-valued submodular set functions regardless of whether they are
non-decreasing. In this paper we will merely mention this possibility as we intend to keep the
focus on bipartite graphs and hypergraphs.

As the counterpart of the planar duality relation TG∗(x, y) = TG(y, x) we obtain the formula
IH ∗ = XH . Here the dual H ∗ is naturally associated to H when the hypergraph H can be
represented with a plane bipartite graph.

Our invariants have another fundamental property which does not manifest itself in
the classical case. Namely, any hypergraph H has an abstract dual H that results from
interchanging the roles of its vertices and hyperedges. For such a pair, we conjecture the identity
IH = IH .

A weaker statement is that H and H have the same number of hypertrees. This was recently
proven by Alexander Postnikov. Indeed the discovery of QH (and its dual relationship with
QH ) should be attributed to him. In his beautiful paper [4] he puts these polytopes in several
important contexts. The polynomials IH and XH however seem to appear for the first time in
this article. I read Postnikov’s work after most results presented here have been obtained. Prior
to that I was only able to prove that QH and QH had the same number of lattice points when
H was planar. This brings us to the second half of the paper.

We will revisit a delicate picture that William Tutte [7] introduced before his discovery of
the dichromate. It consists of three plane bipartite graphs that together triangulate the sphere
S2. Their planar duals are canonically directed so that a so-called arborescence number can be
associated to each. Tutte’s Tree Trinity Theorem states that in such a triple, the three arborescence
numbers coincide. We will see that this value is also the number of hypertrees in any of the six
hypergraphs found in Tutte’s picture. The six hypertree polytopes, for which we will derive a
concise determinant formula based on work of Kenneth Berman, form three centrally symmetric
pairs. The total number of interior and exterior polynomials associated to the six hypergraphs is
reduced from 12 to 6 by our planar duality result, and the conjecture above on abstract duality
implies that the number is in fact only 3.

The notions that we are about to introduce also have a strong connection to low-dimensional
topology. Indeed, the results contained in this paper are by-products of the author’s investigations
in knot theory. There is a well known method, called the median construction, that one may apply
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to a plane graph to obtain an alternating link diagram. When the graph is bipartite, the link has a
natural orientation. The interior polynomial was originally developed to describe a pattern found
in the Homfly polynomials of these associated links. Then in joint work with András Juhász
and Jacob Rasmussen, we discovered a manifestation of the hypertree polytope in Heegaard
Floer theory. Therefore the results of this paper provide an unexpected link between the Homfly
polynomial and Floer homology. But since the result linking the Homfly and interior polynomials
remains a conjecture at the time of this writing, it feels prudent to save the exploration of
topological aspects to future papers.

In another forthcoming paper, joint with Alex Bene, we extend the theory of the hypertree
polytope and interior and exterior polynomials to topological bipartite graphs and hypergraphs,
in the same way that the Bollobás–Riordan polynomial generalizes the Tutte polynomial for
fatgraphs.

The paper is organized as follows. Section 2 fixes terminology and recalls Tutte’s definition of
the dichromate. In Section 3, we introduce (that is to say, recall from [4]) the hypertree polytope
and in Section 4 we examine its basic geometry. After all this preparation, in Section 5 we define
interior and exterior polynomials. The material on polymatroids is mainly found in Sections 4.1
and 5.2. Section 6 establishes a variety of properties of the new invariants. In Section 7 we
state the main unsolved problem of the paper, the abstract duality conjecture, along with some
supporting evidence. We discuss planar duality in Section 8. Finally, Section 9 introduces trinities
of plane bipartite graphs and some earlier work on them, and in Section 10 we lay out our new
results on that subject.

2. Preliminaries

We will use the standard notion of a graph as an ordered pair G = (V, E) with finite vertex set
V and finite edge (multi)set E . Loop edges and multiple edges are allowed. By G ′

= (V ′, E ′)

being a subgraph of G we will mean V ′
= V and E ′

⊂ E (thus subgraphs of a given graph
are equivalent to their edge sets). For example, if a subgraph contains no edge adjacent to some
vertex v, then {v} (more precisely, ({v}, ∅)) is a connected component of the subgraph.

We will write G \ {e} for the graph that results from removing (one copy of) the edge e from
E . The symbol G − {v} will stand for the graph that remains after removing the vertex v and all
its adjacent edges from G.

Graphs can be viewed as one-dimensional cell complexes and in that sense the nullity of a
graph, n(G), is the rank of its first homology group. (Thus we may also refer to the nullity as the
first Betti number.)

2.1. Review of the Tutte polynomial

Tutte’s original construction [8] of the two-variable polynomial TG(x, y), associated to the
graph G = (V, E), proceeds as follows. Order E arbitrarily. Consider the set T of spanning
trees, that is connected and cycle-free subgraphs, for G. (In order for T to be non-empty, G
needs to be connected. This will almost always be assumed.)

Definition 2.1. Given a spanning tree Γ ∈ T , call an edge e ∈ Γ internally active with respect
to Γ if, after removing e from Γ , connectedness of the subgraph cannot be restored by adding an
edge to Γ \ {e} that is smaller than e.

An edge e ∉ Γ is externally active if, after adding e to Γ , cycle-freeness cannot be restored
by removing an edge from Γ ∪ {e} that is smaller than e.
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In fact Tutte put ‘larger’ instead of ‘smaller’ in both cases above. But as we will see in
Theorem 2.3 below, reversing the order does not affect the following notion.

Definition 2.2. Let ι(Γ ) and ε(Γ ) denote the number of internally and externally active edges,
respectively, with respect to Γ (under the given order). Then, the Tutte polynomial or dichromate
of the graph G is the generating function

TG(x, y) =


Γ∈T

x ι(Γ )yε(Γ ).

Theorem 2.3 (Tutte [8]). The polynomial TG(x, y) is independent of the chosen edge order.

Many properties of TG(x, y) are known. A famous example is the deletion–contraction
relation

TG = xTG/e if e is a bridge
TG = yTG\{e} if e is a loop
TG = TG\{e} + TG/e if e is neither a bridge nor a loop.

(1)

(A bridge is an edge whose removal disconnects the graph. The contraction G/e will be formally
defined in Section 6.3.) For an excellent survey on why the Tutte polynomial is central in graph
theory, see [2].

Example 2.4. We show a graph and its Tutte polynomial.

✉
✉

✉
✉
✉

✉
✉

✟✟✟

✟✟✟

✟
✟✟❍❍❍

❍❍❍

❍❍❍

✲
y3

+3y2
+3xy2

+2y +7xy +6x2 y +3x3 y
+2x +6x2

+7x3
+6x4

+3x5
+x6.

2.2. Hypergraphs and bipartite graphs

For the purposes of this paper these structures are almost equivalent, as follows.

Definition 2.5. A bipartite graph is a triple G = (V0, V1, E), where V0 and V1 are disjoint finite
sets, called color classes, and E is a finite set of edges, each connecting an element of V0 to an
element of V1 (multiple edges are not allowed). We will treat (V0, V1, E), (V1, V0, E), and the
graph (V0 ∪ V1, E) as the same object.

Definition 2.6. A hypergraph is a pair H = (V, E), where V is a finite set and E is a finite
multiset of non-empty subsets of V . Elements of V are called vertices and the elements of E are
the hyperedges.

Thus, hyperedges with multiplicity (that is, several copies of the same subset of V ) are
allowed. On the other hand, obviously, each hyperedge contains each of its elements exactly
once.

A hypergraph is both a generalization and a special case of a graph. The first point is obvious.
Conversely, the sets V and E that constitute the hypergraph H may be viewed as the color
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classes of a bipartite graph Bip H : we connect v ∈ V to e ∈ E with an edge if v ∈ e. We will
refer to the result as the bipartite graph associated to the hypergraph H .

The construction of Bip H above is reversible if we specify one of the two color classes in
the bipartite graph G = (V0, V1, E). We will use the notation

G0 = (V1, V0) and G1 = (V0, V1) (2)

for the resulting pair of hypergraphs. (The index of the hypergraph is chosen to emphasize its
hyperedges.) Note that Bip G0 = Bip G1 = G.

Definition 2.7. The bipartite graph G above is said to induce the hypergraphs G0 and G1. Two
hypergraphs are called abstract duals if they can be obtained in the form (2). In other words, the
abstract dual H = (E, V ) of a hypergraph H = (V, E) is defined by interchanging the roles
of its vertices and hyperedges.

3. Hypertrees

To generalize Section 2.1 to hypergraphs, first we need a notion corresponding to spanning
trees. The rest of the paper is built around this concept, and almost all novelty contained herein
stems from its use.

Definition 3.1. Let H = (V, E) be a hypergraph so that its associated bipartite graph Bip H is
connected. By a hypertree in H we mean a function (vector) f: E → N = { 0, 1, . . . } so that a
spanning tree of Bip H can be found which has valence f(e)+ 1 at each e ∈ E . Such a spanning
tree is said to realize or to induce f.

If f is a hypertree, then 0 ≤ f(e) ≤ |e| − 1 for each e ∈ E . The condition that Bip H
be connected is not quite essential. We could talk about ‘hyperforests’ realized by spanning
forests but, partly to avoid such terminology, we will generally assume that the bipartite graphs
associated to our hypergraphs are connected. (It is in fact common (cf. [6, Section 3.3]) to call
H connected if and only if Bip H is connected.)

Remark 3.2. Hypertrees generalize spanning trees of graphs: there, an edge e is in the tree if
and only if f(e) = 1 and not in the tree if and only if f(e) = 0. In our case, we allow hyperedges
to be in hypertrees only “partially.”

The number of realizations may vary from hypertree to hypertree. However this phenomenon
will not be incorporated to our theory in any way. For example, if f is a hypertree and f(e) = 0,
then any edge of Bip H adjacent to the hyperedge e can be chosen to be part of a realization of
f, irrespective of the rest of the construction. The next lemma claims only slightly more.

Lemma 3.3. Let H = (V, E) be a hypergraph and f: E → N a hypertree. For any collection
of edges {αe} of Bip H so that αe is adjacent to e for all e ∈ E, there is a realization of f that
contains αe for all e.

Proof. Start with an arbitrary realization Γ of f. If e is such that αe ∉ Γ , then add αe to Γ . This
creates a unique cycle in the subgraph which goes through e. Now if we remove the edge of the
cycle that is adjacent to e but different from αe, the result is another realization of f. Carry this
process out at every hyperedge. �
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It turns out that hypertrees of a given hypergraph are exactly the integer lattice points in a
convex polytope. This fact was first realized by Postnikov [4]. But as the author discovered it
independently and our points of view and proofs are different, we shall give a full account here.
This will be followed by a sampling of Postnikov’s ideas, including a sketch of the proof of his
duality theorem.

3.1. The hypertree polytope

In a hypergraph H = (V, E), let E ′
⊂ E be a non-empty subset and let


E ′

⊂ V denote
the set of its neighboring points in Bip H . Let Bip H |E ′ , the bipartite graph induced by E ′, be
the graph with color classes E ′ and


E ′ and edges inherited from Bip H . Let us denote the

number of connected components in Bip H |E ′ by c(E ′).

Theorem 3.4. Let H = (V, E) be a hypergraph so that its associated bipartite graph Bip H
is connected. The hypertrees f: E → N of H are exactly the integer solutions of the following
system of linear inequalities in RE :

f(e) ≥ 0 for all e ∈ E (3a)
e∈E ′

f(e) ≤

 E ′

− c(E ′) for all non-empty E ′
⊂ E (3b)


e∈E

f(e) = |V | − 1. (3c)

Remark 3.5. We get an equivalent system of inequalities if we replace (3b) with


e∈E ′ f(e) ≤

|


E ′
|−1, still required for all non-empty E ′

⊂ E . This is because if Bip H |E ′ is not connected,
then its connected components are also of the form Bip H |E ′′ and we get the stronger version of
the inequality by summing the inequalities associated to these smaller subsets E ′′.

Remark 3.6. The conditions (3a) follow from (3b) and (3c): this is obvious if E = {e} and
otherwise, with E ′

= E \ {e}, we have

f(e) = |V | − 1 −


e′∈E ′

f(e′) ≥


|V | −

 E ′

+ (c(E ′) − 1),

where the right hand side is the sum of two non-negative quantities.

Proof of Theorem 3.4. If f is a hypertree, the conditions (3) hold because of the well known
facts that

(i) the number of edges in a spanning forest (maximal cycle-free subgraph) of a graph is the
number of vertices minus the number of connected components of the graph and

(ii) any cycle-free subgraph is part of a spanning forest.

Indeed, for a given hypertree f and non-empty subset E ′
⊂ E , any spanning tree of Bip H that

realizes f has an intersection with Bip H |E ′ which is a cycle-free subgraph of the latter. As such,
it may have at most |E ′

| + |


E ′
| − c(E ′) edges. Since each of those has exactly one of its ends

at an element of E ′, we have
e∈E ′

(f(e) + 1) ≤ |E ′
| +

 E ′

− c(E ′),

which is just another form of (3b). The claim (3a) is obvious and (3c) is immediate from (i).
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To see why (3) is also sufficient for f to be a hypertree, let us formulate a lemma that is
marginally stronger than what we currently need, but the form in which we state it will be useful
later. Recall that a graph has nullity zero if and only if it is cycle-free.

Lemma 3.7. Suppose that the integer vector f: E → N satisfies conditions (3a) and (3b)
(including for E ′

= E) but not necessarily (3c). Then there exists a cycle-free subgraph in
Bip H that has valence f(e) + 1 at all elements e ∈ E.

Let the vector f satisfy the conditions and choose an arbitrary subgraph P of Bip H whose
valence at each e ∈ E is f(e) + 1. This is possible because (3b) applied to E ′

= {e} says
f(e) ≤ |e| − 1. If P is cycle-free, we are done. Assume it is not.

It suffices to show that there is another subgraph of Bip H that has the same valences at
elements of E as P (prescribed by f) but whose nullity is one less than that of P . The subgraph
P has a connected component C containing a cycle. Let C intersect E in the set E ′. Applying
(3b) to E ′, we see that there is a hyperedge e ∈ E ′ which is connected by an edge α of Bip H
to a vertex which is not in C . (Else, P and Bip H |E ′ would form a connected and not cycle-free
intersection; since such a subgraph contains a spanning tree of Bip H |E ′ as a proper subgraph,
we would get a contradiction between (3b) and (i).)

Now if e is part of a cycle in C , we are done because we may remove from P an edge of that
cycle (adjacent to e) and replace it with α; as a result, valences at hyperedges remain the same but
the nullity reduces by one. Otherwise, each edge of C adjacent to e leads to a different connected
component of C − {e}. At least one of these (call it C ′) still contains a cycle. Replace the edge
of P from e to C ′ with α. This results in a subgraph P ′ that has the right valences and the same
nullity as P , but which has a non-tree component C ′ containing fewer elements of E than C
did. Repeat the procedure of this paragraph to P ′ and C ′. After a finite number of iterations, the
desired reduction in the nullity will occur. This finishes the proof of the lemma.

If we apply Lemma 3.7 to a vector f that satisfies (3), the resulting subgraph is not just cycle-
free but, because of (3c), it is actually a spanning tree. �

Definition 3.8. Let H be a hypergraph. The hypertree polytope of H , denoted with QH , is the
set of solutions in RE of the inequalities (3).

The set QH is indeed a polytope: convexity and closedness are obvious and (3a) and (3c)
ensure boundedness. Theorem 3.4 also implies that the set of hypertrees in H can be written
as QH ∩ ZE . Furthermore, in Section 4.1 we will see that QH is an integer polytope, that is
QH = Conv(QH ∩ ZE ), where Conv denotes the usual convex hull.

The hypertree polytope generalizes the usual spanning tree polytope of a graph
(cf. Remarks 3.2 and 3.5). Equation (3c) means that QH is part of an affine hyperplane in
RE . Thus, QH is situated in the lattice cut out from ZE by the hyperplane.

Example 3.9. The graph used in Example 2.4 is in fact bipartite. Let us denote it with G and
label its color classes with V0 = { a, b, c } and V1 = { p, q, r, s }, as in Fig. 1. There are
TG(1, 1) = 50 spanning trees in G. They give rise to seven hypertrees in G0, and the same
number in G1, cf. Theorem 3.11. These are shown, with a concrete spanning tree realizing each, in
Fig. 6. Because of (3c), it is natural to view the polytopes QG0 and QG1 in barycentric coordinate
systems with basepoints labeled with

a(3, 0, 0), b(0, 3, 0), c(0, 0, 3)



830 T. Kálmán / Advances in Mathematics 244 (2013) 823–873

Fig. 1. A bipartite graph.

Fig. 2. Hypertree polytopes of a pair of abstract dual hypergraphs.

and

p(2, 0, 0, 0), q(0, 2, 0, 0), r(0, 0, 2, 0), s(0, 0, 0, 2),

respectively. In Fig. 2, we indicated individual hypertrees by dots and the two hypertree polytopes
by thickened edges.

The hypertree polytope is of course closed under convex linear combinations. For its integer
lattice points, that is the hypertrees themselves, convexity translates to the following obvious
(from Theorem 3.4) but useful property.

Lemma 3.10. Let {fi } be some set of hypertrees in the hypergraph H = (V, E) and let
g: E → N be a function so that g(e) ≥ 0 for all e ∈ E and


e∈E g(e) = |V | − 1. If it is

also true that for all non-empty E ′
⊂ E, there is an index i so that


e∈E ′ g(e) ≤


e∈E ′ fi (e),

then g is a hypertree.

3.2. Postnikov’s approach

In the terminology of [4], a hypertree is a draconian sequence [4, Definition 9.2] and the
hypertree polytope is a trimmed generalized permutohedron [4, Definition 11.2]. Let us now
summarize Corollary 11.8, Theorem 12.9, and some other surrounding material from [4].

Theorem 3.11 (Postnikov). Let G = (V0, V1, E) be a connected bipartite graph with associated
hypergraphs G0 and G1 as in (2). Then |QG0 ∩ZV0 | = |QG1 ∩ZV1 |. In other words, abstract dual
hypergraphs have the same number of hypertrees.

It turns out that QG0 and QG1 have even more in common. Conjecture 7.1 below proposes a
generalization of Postnikov’s theorem.
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Without going too deep into the details of an elegant but complicated proof, we will quote
some of Postnikov’s observations. Of course, an equivalent statement is

|QH ∩ ZE
| = |QH ∩ ZV

|,

where H = (V, E) is an arbitrary hypergraph and H = (E, V ) is its abstract dual. We will
use this latter formulation. Denote the standard generators of RE with i{e}, e ∈ E . Recall that
the Minkowski sum of two subsets A, B of a vector space is the set of vectors one can obtain as
a + b with a ∈ A and b ∈ B. The Minkowski difference A − B is defined as the set of vectors x
so that x + B ⊂ A. It can also be thought of as the set of all translates of B that are contained in
A. See [5, Chapter 3] for a thorough introduction to these operations.

Next, let us quote [4, Lemma 11.7].

Proposition 3.12 (Postnikov). The hypertree polytope QH ⊂ RE of the hypergraph H =

(V, E) can be written as

QH =


v∈V

∆v


− ∆E ,

where Σ denotes the Minkowski sum of the simplices ∆v = Conv{ i{e} | v ∈ e }, ∆E =

Conv{ i{e} | e ∈ E } is the unit simplex, and the right hand side is a Minkowski difference.

Of course, if we denote the standard basis for RV with i{v}, v ∈ V and define the simplices
∆e = Conv{ i{v} | v ∈ e } ⊂ RV for all e ∈ E , as well as ∆V = Conv{ i{v} | v ∈ V }, then

QH =


e∈E

∆e


− ∆V .

The Minkowski sums (in Postnikov’s terminology, the (untrimmed) generalized permutohe-
dra)

Q+

H =


v∈V

∆v and Q+

H
=


e∈E

∆e

are related through the so-called root polytope

Q = Conv{ i{e} + i{v} | v ∈ e } ⊂ RE
⊕ RV

(an (|E | + |V | − 2)-dimensional polytope whose vertices are indexed by the edges of Bip H ) as
described below.

Proposition 3.13. If we define two affine subspaces of RE
⊕ RV with

SE = π−1
V


1

|V |


v∈V

i{v}


and SV = π−1

E


1

|E |


e∈E

i{e}


,

where πV : RE
⊕ RV

→ RV and πE : RE
⊕ RV

→ RE are the standard projections, then, up to
translation,

Q+

H = |V | (Q ∩ SE ) and Q+

H
= |E | (Q ∩ SV ) .

Then, the key idea is to study triangulations of Q. Postnikov observes that a set of vertices
of Q is affinely independent if and only if the corresponding edges form a forest in Bip H .
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The maximal simplices TΓ that arise this way from spanning trees Γ of Bip H have the same
volume.

Most importantly, if we form the intersections TΓ ∩ SE and TΓ ∩ SV and identify them
with subsets of Q+

H and Q+

H
, respectively, as described in Proposition 3.13, then those subsets

contain unique translates of ∆E and ∆V , respectively, by integer vectors. (Also, TΓ ∩ SE and
TΓ ∩ SV are essentially disjoint from other integer translates of those unit simplices.) In fact,
those two integer vectors are the two hypertrees induced by Γ .

Thus Postnikov finds that any triangulation of Q gives a bijection between the integer lattice
points of the Minkowski differences which are the hypertree polytopes. We also see that the
volume of the root polytope associated to a bipartite graph is proportional to the number of
hypertrees in each of its induced hypergraphs.

4. The geometry of the hypertree polytope

4.1. Polymatroids

It turns out that for our central concepts, namely the interior and exterior polynomials which
will be introduced in the next section, the right level of generality is that of a polymatroid.
Moreover, basic submodular function techniques will be useful to simplify our arguments, most
notably the proof that our polynomials are well defined, even in the hypergraph case. We will
recall some elements of this theory here, using [6, Volume B, Chapter 44] as basic reference.

Definition 4.1. Let S be a finite ground set and µ: P(S) → R a set function, i.e., a function
defined on all subsets of S. We say that µ is submodular if

µ(U ) + µ(V ) ≥ µ(U ∩ V ) + µ(U ∪ V )

holds for all subsets U, V of S. The set function µ is called non-decreasing if U ⊂ V ⊂ S
implies µ(U ) ≤ µ(V ).

For an arbitrary set function ν: P(S) → R, we define the polyhedra

Pν = {x ∈ RS
| x ≥ 0, x · iU ≤ ν(U ) for all U ⊂ S }

and E Pν = { x ∈ RS
| x · iU ≤ ν(U ) for all U ⊂ S }.

Here x ≥ 0 means that all entries in x are non-negative and iU is the indicator function of the
subset U so that the dot product x · iU becomes the sum of entries in x corresponding to elements
of U . We also define

Bν = { x ∈ E Pν | x · iS = ν(S) }

and note

Lemma 4.2. For any set function ν: S → R, the set Bν is a polytope. If ν is non-decreasing,
then we have Bν ⊂ Pν .

Proof. It is obvious that Bν is convex. For boundedness, it suffices to show that for any
s ∈ S, the s-components of elements of Bν are bounded below. (From that, the condition
x · iS = ν(S) implies upper bounds.) Let x ∈ Bν , s ∈ S, and U = S \ {s}. Then indeed,
x(s) = ν(S) − x · iU ≥ ν(S) − ν(U ).

If ν is non-decreasing, then the previous lower bound satisfies ν(S)−ν(U ) ≥ ν(S)−ν(S) = 0
as well. �



T. Kálmán / Advances in Mathematics 244 (2013) 823–873 833

Definition 4.3. If µ: P(S) → R is a submodular set function, then Pµ and E Pµ are called the
polymatroid and extended polymatroid, respectively, of µ. A vector x ∈ Bµ is called a base and
Bµ itself is referred to as the base polytope.

The notions of submodular set function and extended polymatroid are essentially equivalent
as described in [6, Section 44.4]. By the same token, non-decreasing submodular set functions
are equivalent to polymatroids. Integer-valued submodular functions correspond to (extended)
polymatroids that are integer, meaning that they are the convex hulls of their integer lattice points.

The following proposition expresses a basic property of polymatroids that will have an
important role in our treatment.

Definition 4.4. Let ν: P(S) → R be a set function and x ∈ E Pν . We say that the subset U ⊂ S
is tight at x if x · iU = ν(U ).

The set function ν is called tight if for all x ∈ E Pν , the set of subsets of S that are tight at x is
closed under taking unions and intersections.

Proposition 4.5 ([6], Theorem 44.2). Submodular set functions are tight.

Our next claim is probably well known to experts on polymatroids. It concerns certain 3-
dimensional cross-sections of the base polytope.

Lemma 4.6. Let µ: P(S) → R be a submodular set function and let S′
= S \ { p, q, r, s },

where p, q, r , and s are distinct elements of S. Fix the value of x ∈ Bµ at ν(t) for all elements
t ∈ S′ and denote the resulting subset of Bµ with B ′. Then, assuming B ′

≠ ∅, the face of B ′

along which the sum of the p and q components takes its maximum is a (possibly degenerate)
rectangle with sides parallel to the vectors i{p} − i{q} and i{r} − i{s}.

Proof. Let σ = µ(S)−


t∈S′ ν(t) and let the 3-dimensional affine subspace A ⊂ RS be defined
by A = { x ∈ RS

| x · iS = µ(S) and x(t) = ν(t) for all t ∈ S′
}.

The set B ′ is cut out of A as the intersection of fourteen half-spaces corresponding to the
non-trivial subsets of { p, q, r, s }. Six of these have the normal vectors i{p} + i{q} − i{r} − i{s} and
so on so that their intersection is a (possibly degenerate) cuboid C ; see Fig. 3. The other eight
half-spaces have normal vectors such as ±(i{p} + i{q} + i{r} − 3i{s}), and they cut off pieces of
C near its vertices so that eventually B ′ is obtained. Our task is to show that in B ′ there cannot
remain a segment of positive length from any edge of C .

If the opposite was the case and an interior point x remained on, say, the edge L of C that is
thickened in Fig. 3, then x would be a base in Bµ at which

• the sets { p, q } and { p, r } are tight (this is because x lies along both the top face and the
right-side face of C , cf. the two upper panels of Fig. 3) but

• neither their union { p, q, r } nor their intersection {p} is tight (this is apparent from the fact
that if we move along L away from the vertex p′ of C , the sum of the p, q, and r -coordinates
increases, whereas if we move toward p′, the p-coordinate increases).

As this is impossible, we see that the correct form of B ′ is as shown in the lower panel of
Fig. 3. �

Submodular functions are relevant in this paper due to the following fact, pointed out to the
author by László Lovász.
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Fig. 3. Upper left: the portion of the simplex µ(S)∆S that lies in the affine subspace A. It is a superset of B′ and it is
pictured here to establish the coordinate directions. Writing them in the order p, q, r, s, the four non-fixed components
of the vertices shown are p(σ, 0, 0, 0) and so on. Upper right: the cuboid C , the normal vectors of its faces, as well
as an edge L of C and two more supporting planes of B′ in an arrangement that we wish to rule out. Bottom: the
polytope B′

= Bµ ∩ A and the direction vectors of two of its edges.

Proposition 4.7. Let H = (V, E) be a hypergraph. The function

µ(E ′) =

 E ′

− c(E ′) (4)

of Theorem 3.4, extended to the empty set as µ(∅) = 0, is non-decreasing and submodular on
the set E of hyperedges.

Proof. Let E ′
⊂ E and let e ∉ E ′ be a hyperedge. If in Bip H , the vertex e is connected to m

components of Bip H |E ′ and also to n elements of V that are not in


E ′, then we have(E ′
∪ {e})

−  E ′

 = n and c(E ′
∪ {e}) − c(E ′) = −(m − 1),

i.e., µ(E ′
∪ {e}) − µ(E ′) = n + m − 1. Here n, m ≥ 0 and since e is non-empty, at least one of

the two is actually positive. This implies that µ is non-decreasing.
As to the submodularity of µ, according to [6, Theorem 44.1], it suffices to prove

µ(E ′
∪ {e1}) − µ(E ′)


+

µ(E ′

∪ {e2}) − µ(E ′)


≥ µ(E ′
∪ { e1, e2 }) − µ(E ′) (5)

for all E ′
⊂ E and distinct e1, e2 ∈ E \ E ′. Assume that from the connected components of

Bip H |E ′ , the number of those that are connected in Bip H to both e1 and e2 is m12. Aside
from these, let ei , i = 1, 2 be connected to another mi components of Bip H |E ′ . Furthermore,
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let us denote the number of such common elements of e1 and e2 that are not in


E ′ with n12
and assume that other than these, ei contains ni non-elements of


E ′. Then we have

µ(E ′
∪ {e1}) − µ(E ′) = n1 + n12 + m1 + m12 − 1 and

µ(E ′
∪ {e2}) − µ(E ′) = n2 + n12 + m2 + m12 − 1,

whereas the right hand side of (5) is

µ(E ′
∪ { e1, e2 }) − µ(E ′) =


n1 + n2 + m1 + m2 − 2 if n12 = m12 = 0
n1 + n2 + n12 + m1 + m2 + m12 − 1 otherwise.

The required inequality holds in all cases (with equality if and only if n12 = m12 = 0 or one of
the two is 1 and the other 0). �

Definition 4.8. The polymatroid PH = Pµ associated to the non-decreasing submodular set
function µ of equation (4) is called the polymatroid of the hypergraph H .

Each graph has a so-called cycle matroid. This is a classical construction that goes back to the
very beginning of matroid theory. The rank function of any matroid is submodular and therefore
defines a polymatroid. (In fact, one way to define a matroid is as a polymatroid associated
to a non-negative integer-valued, non-decreasing submodular set function that assigns 0 to ∅
and 0 or 1 to singleton sets.) Thus every graph has a natural polymatroid associated to it, and
Definition 4.8 generalizes this association to hypergraphs.

The next proposition is a reformulation of Theorem 3.4 (and Lemma 3.7, which was used in
its proof).

Proposition 4.9. The integer lattice points in the polymatroid PH of the hypergraph H are
exactly the functions f: E → N so that Bip H has a cycle-free subgraph with valence f(e) + 1
at each e ∈ E. The hypertree polytope QH coincides with the base polytope of PH .

It is well known [6, Section 44.6c] that polymatroids defined by integer-valued non-decreasing
submodular functions are integer polytopes, that is to say, convex hulls of finitely many integer
lattice points. In particular, their base polytopes are integer as well. Hence we have

Corollary 4.10. For any hypergraph H , the hypertree polytope QH is integer.

The next subsection, among other things, contains a description of the vertices of the hypertree
polytope.

4.2. Hyperedges in sequence

We are going to need the following elementary observations later.

Lemma 4.11. Let the spanning tree Γ ⊂ Bip H induce the hypertree f: E → N. The
inequality (3b) is sharp for E ′

⊂ E and f (in other words, E ′ is tight at f) if and only if
Γ ∩ (Bip H |E ′) is a spanning forest in Bip H |E ′ . Given such a Γ and E ′, if we remove
Γ ∩ (Bip H |E ′) from Γ and replace it with another spanning forest F of Bip H |E ′ , then the
result Γ̃ is another spanning tree of Bip H . It realizes a hypertree which agrees with f on the
set E \ E ′.

Proof. The first assertion is trivial from the proof of Theorem 3.4. For the second, notice that
paths in Γ and Γ̃ are in a one-to-one correspondence, as follows. Any path ϕ ⊂ Γ has maximal



836 T. Kálmán / Advances in Mathematics 244 (2013) 823–873

segments that fall within Bip H |E ′ and obviously each such segment is in one connected
component of Bip H |E ′ . Hence, we get a new path ϕ̃ ⊂ Γ̃ by replacing each segment with the
unique connection that exists between its endpoints in F . This correspondence of paths has an
inverse constructed in the analogous way. As ϕ and ϕ̃ share the same endpoints, we see that Γ̃ is
connected and cycle-free. The final claim of the lemma is of course just stating the obvious. �

Now suppose that the set E of hyperedges in H = (E, V ) has been ordered and labeled so
that

e1 < e2 < · · · < e|E |.

Think of H (and of Bip H ) as being built step-by-step by adding one hyperedge at a time in the
prescribed order. We will use the notation

Gk = Bip H |{e1,...,ek }

for the bipartite graphs of the intermediate stages. In each step, the nullity of the graph may
increase. We record this by introducing the nullity-jump function of the chosen order,

nj (ek) = n(Gk) − n(Gk−1),

where k = 1, 2, . . . , |E |. Obviously, nj (e) ≥ 0 for all e and


e∈E nj (e) = n(Bip H ).

Lemma 4.12. For any order of the hyperedges, the vector g(e) = |e| − 1 − nj (e) is a hypertree.
It is the unique hypertree that makes the inequality (3b) true with an equality sign for all subsets
{ e1, . . . , ek }, k = 1, 2, . . . , |E |.

Proof. Using the order, it is easy to construct a spanning tree that realizes g. The k’th stage of
the construction will be a spanning forest Fk of the bipartite graph Gk . All edges of Bip H that
are adjacent to e1 will be part of F1 (note that nj (e1) = 0). Suppose that a forest Fk−1 ⊂ Gk−1,
with the valences g(ei ) + 1 at e1, . . . , ek−1, respectively, has been defined.

The graph Gk − {ek} consists of Gk−1 and some isolated points. Suppose that ek is joined by
an edge to c connected components of Gk − {ek}. It is easy to see that nj (ek) = |ek | − c, since
the ‘first edge’ of Gk to connect ek to one of the c components does not increase the nullity,
whereas all others after the first increase it by 1. We define Fk by adding to Fk−1 a collection
of c = |ek | − nj (ek) = g(ek) + 1 edges, all adjacent to ek and leading to different components
of Gk − {ek}. This is a spanning forest of Gk . After the last stage, F|E | is a spanning tree of
G|E | = Bip H which realizes g.

From the fact that Fk is a spanning forest of Gk and the first claim in Lemma 4.11, it is
immediate that

the inequality (3b) is sharp for g and each set E ′
= { e1, . . . , ek }. (6)

No other hypertree can have that property simply because

g(ek) = µ({ e1, . . . , ek }) − µ({ e1, . . . , ek−1 }) (7)

is uniquely determined as the difference of two consecutive right-hand sides. �

Remark 4.13. From (6), we see that he greedy algorithm offers another way of defining the
hypertree g of the previous lemma: if for all k = 1, . . . , |E |, we choose f(ek) to be the maximal
value so that the valences f(ei )+1, i = 1, . . . , k, can be realized by a cycle-free subgraph of Gk ,
then f = g.
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We will also refer to the hypertree g of Lemma 4.12 as the greedy hypertree of the given order.

Proposition 4.14. The set of greedy hypertrees for all possible orders of S is exactly the vertex
set of QH .

Proof. Compare (7) to [6, Equation (44.49)]. �

The next notion will be fundamental in the rest of the paper.

Definition 4.15. Let H = (V, E) be a hypergraph, f: E → N a hypertree and a, b ∈ E hy-
peredges. We say that f is such that a transfer of valence is possible from a to b if the function
obtained from f by reducing f(a) by 1 and increasing f(b) by 1 is also a hypertree.

Lemma 4.16. For any non-empty collection E ′
⊂ E of hyperedges, there exists a hypertree

f: E → N so that (3b) is sharp for f and E ′. If E ′ and f are so that (3b) is not sharp, then f is
such that it is possible to transfer valence from some element of E \ E ′ to some element of E ′.

Proof. Choose any order in which the elements of E ′ are the smallest and construct its greedy
hypertree g: E → N. By Lemma 4.12, g has the required property.

To prove the second claim, we give an indirect argument using Propositions 4.7 and 4.5. Let
f be a hypertree and E ′

⊂ E a subset so that no transfer of valence is possible from an element
of E \ E ′ to an element of E ′. By Theorem 3.4, this implies that for any a ∈ E ′ and b ∈ E \ E ′,
there exists a subset Ua,b ⊂ E of hyperedges so that with the set function µ of (4), we have

a ∈ Ua,b, b ∉ Ua,b, and


x∈Ua,b

f(x) = µ(Ua,b).

In other words, Ua,b is tight at f. Then so is E ′
=


a∈E ′


b∈E\E ′ Ua,b


, i.e., (3b) is sharp for

E ′ and f. �

Lemma 4.17. Let H = (V, E) be a hypergraph with its hyperedges ordered as above. Let
f: E → N be a hypertree and e ∈ E a hyperedge so that f(e) > g(e), where g is the greedy
hypertree of the order. Then there exists a hyperedge x < e so that f is such that a transfer of
valence is possible from e to x.

Proof. Assume the contrary. Then for all x < e, there exists a set Ue,x of hyperedges that is
tight at f, contains x , and does not contain e. Let U =


x<e Ue,x . Then we have e ∉ U and

{ x | x < e } ⊂ U while, by Proposition 4.5, U is also tight at f.
Now define a new order <′ on E by letting the elements of U be smallest while keeping

the original order among them. (It does not matter how the rest of E gets ordered.) Let g′ be
the greedy hypertree of <′. By Lemma 4.12, both { x | x < e } and U are tight at g′. Fix
realizations Γ ′ of g′ and Γ of f. By Lemma 4.11, these are such that both Γ ∩ (Bip H |U ) and
Γ ′

∩ (Bip H |U ) are spanning forests in Bip H |U . If in Γ we replace the former with the latter,
the result, again by Lemma 4.11, is a spanning tree in Bip H . Now for the hypertree f′ realized
by this spanning tree, we have

x≤e
f′(x) = f′(e) +


x<e

f′(x) = f(e) +


x<e

g′(x) = f(e) +


x<e

g(x)

> g(e) +


x<e

g(x) =


x≤e

g(x) = µ({ x | x ≤ e }),

which contradicts Theorem 3.4. �
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Fig. 4. A rhombus of hypertrees.

5. Interior and exterior polynomials

5.1. Activities

Let H = (V, E) be a hypergraph so that Bip H is connected. Just as in Sections 2.1 and
4.2, we order the set E arbitrarily. With regard to a fixed hypertree f, we make the following
definitions.

Definition 5.1. A hyperedge e ∈ E is internally active with respect to the hypertree f if it is not
possible to decrease f(e) by 1 and increase f at a hyperedge smaller than e by 1 so that another
hypertree results.

A hyperedge e ∈ E is externally active with respect to f if it is not possible to increase f(e)
by 1 and to decrease f at a smaller hyperedge by 1 so that another hypertree results.

Recall that in Definition 4.15, the operation on hypertrees used above was called a transfer of
valence. Hence a hyperedge is internally active with respect to a hypertree if it cannot transfer
valence to smaller hyperedges, and it is externally active if valence cannot be transferred to it
from smaller hyperedges. Regarding transfers of valence, we will need the following lemma
later.

Lemma 5.2. Let a, b, and c be hyperedges in H = (V, E) and f such a hypertree that a can
transfer valence to b and b can transfer valence to c. Then f is also such that a can transfer
valence to c. In other words, regarding the rhombus of Fig. 4 (explained below), if the three
lattice points indicated by full dots are hypertrees then so is the one marked by the hollow dot.

Proof. This is immediate from Lemma 3.10 but we think it worthwhile to examine the picture.
In RE , the three-dimensional affine subspace through f spanned by { i{a}, i{b}, i{c}} forms a two-
dimensional intersection Q0 with QH . The triangle we labeled with abc in Fig. 4 is in fact
spanned by the vectors whose a, b, and c-components are equal to (f(a) + f(b) + f(c), 0, 0),
(0, f(a)+f(b)+f(c), 0), and (0, 0, f(a)+f(b)+f(c)), respectively, whereas their other components
are identical to those of f.

The assumptions in the lemma are that f, f1, and f2 are in QH and the conclusion is that so
is f̂. Now this is obvious from the fact (Theorem 3.4) that Q0 is cut out from the plane by lines
parallel to the sides of the triangle. �

It is easy to see that the notions of Definition 5.1 generalize the ones found in Definition 2.1.
It will be slightly more convenient for us to work with their negations in what follows.
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Fig. 5. Two ‘staples’ formed by hypertrees.

Definition 5.3. Let H = (V, E) be a hypergraph so that Bip H is connected. With respect
to a given hypertree f: E → N and some order of the hyperedges, let the number of internally
inactive hyperedges of H be denoted with ῑ(f) and the number of externally inactive hyperedges
be denoted with ε̄(f). Then, let the interior polynomial and the exterior polynomial of H be
defined as

IH (ξ) =


f

ξ ῑ(f) and XH (η) =


f

ηε̄(f), (8)

respectively, where both summations are over all hypertrees f in H .

These notions generalize the valuations

ξ |V |−1TG(1/ξ, 1) and η|E |−|V |+1TG(1, 1/η), (9)

respectively, of the classical Tutte polynomial TG of the graph G = (V, E).
There are two ways of treating hypergraphs when their associated bipartite graphs are

disconnected. One is to assign to them the product of the polynomials associated to their
connected components. The other is to extend the definition verbatim, which results in the value
0 for both polynomials because a disconnected graph has no spanning trees and therefore the set
of hypertrees is empty. In this paper we take the latter approach. This will hardly matter since we
almost always assume Bip H to be connected.

Our first order of business, however, is to address well definedness.

Theorem 5.4. The formulas (8) for the interior and exterior polynomials do not depend on the
chosen order of the hyperedges.

We will need the following statement.

Lemma 5.5. Let e1 ≠ e2 be hyperedges in the hypergraph H = (V, E) and let E0 =

E \ { e1, e2 }. Fix a function f0: E0 → N and consider its extensions to E that are hypertrees in
H . Among these, let f1 and f2 be such that f1(e1) > f2(e1) and let also x ∈ E0 be a hyperedge.

1. If f1 is such that valence can be transferred from e1 to x then f2 is such that valence can be
transferred from e2 to x.

2. If f1 is such that valence can be transferred from x to e2 then f2 is such that valence can be
transferred from x to e1.
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Fig. 6. Hypertrees with associated (ῑ, ε̄) values in a pair of abstract dual hypergraphs. Hollow shapes are internally
inactive and full ones are internally active; circles are externally inactive while squares are externally active.

In other words, regarding both ‘staples’ of Fig. 5, if the three lattice points indicated by full dots
are hypertrees then so is the fourth one represented by the hollow dot.

Proof. The argument is similar to the proof of Lemma 5.2. From Fig. 5, it is easy to see that if
f1, f2, and g1 satisfy all constraints of Theorem 3.4, then so does ĝ1. Likewise, if f1, f2, and g2
are in QH then so is ĝ2. �

Proof of Theorem 5.4. We will emulate Tutte’s original proof, i.e., analyze the effect of
changing the relative position in the order of two adjacent hyperedges. Let a, b ∈ E and assume
that <1 is an order on E so that a <1 b with no other hyperedge in between, whereas the order
<2 only differs from <1 in that b <2 a. The rest of the hyperedges are split in two sets so that in
both orders, elements of E− are smaller than a and b while elements of E+ are larger than both.

Let f: E → N be a hypertree. Our goal is to compare the values ῑ1(f) and ῑ2(f) (as well as
ε̄1(f) and ε̄2(f)) resulting from the two orders. If a hyperedge differs from both a and b, then it is
easy to check that (in the internal as well as in the external sense) it is active with respect to f in
<1 if and only if the same holds in <2. Let us now separate three cases.

I. If f is such that no transfer of valence is possible between a and b, then the activity statuses
of a and b are also unaffected by the change in the order. Hence in such cases ῑ1(f) = ῑ2(f)
and ε̄1(f) = ε̄2(f).

II. Next, assume that f is such that valence can be transferred between a and b in both directions.
Then in the order <1 the hyperedge b is not active whereas with respect to <2, the hyperedge
a is not active. (This holds in both the internal and external senses.) Now according to
Lemma 5.2, if a is not active in <1 (i.e., there is some x ∈ E− so that valence can be
transferred from a to x (internal case) or from x to a (external case)), then b is not active in
<2 and vice versa. Therefore we again have ῑ1(f) = ῑ2(f) and ε̄1(f) = ε̄2(f).

III. Lastly, let f be such that valence can be transferred between a and b but only in one direction.
Before analyzing activities, let us establish that these kinds of hypertrees are grouped into
pairs. Indeed, the line

g: E → R
g|E\{a,b} = f|E\{a,b},


e∈E

g(e) = |V | − 1


⊂ RE
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intersects the polytope QH in a segment. Among the lattice points of the segment, f
represents one extreme; let the other extreme be denoted with f∗.1 This is necessarily
different from f by our assumption and if a transfer of valence is possible only from a to
b (and not in the other direction) at one of f and f∗, then the opposite transfer (and only
that) is possible at the other one. It is also clear that (f∗)∗ = f, so we get the desired pairs.
(The lattice points between f and f∗ were discussed in case II, whereas case I deals with the
degenerate situation when f = f∗.)

We are going to study ῑ and ε̄ values associated to f and f∗ simultaneously. Without loss of
generality we may assume that f is such that a can transfer valence to b and the opposite transfer
is possible at f∗. Let us first examine the hyperedges a and b themselves. We will start with their
internal activities.

(a) Assume that ῑ1(f) = ῑ2(f). We will show that in this case ῑ1(f∗) = ῑ2(f∗) holds, too. As
the activity status of b with respect to f is the same in <1 as in <2, a similar property has
to hold for a. Since a is not active with respect to f in <2, this is only possible if there
exists a hyperedge x ∈ E− so that f is such that valence can be transferred from a to x . By
Lemma 5.5, this implies that b is inactive with respect to f∗ in both <1 and <2. Whether a is
active with respect to f∗ depends on the same thing in both orders: namely, on whether f∗ is
such that valence can be transferred from a to some element of E−.

(b) The only way ῑ1(f) and ῑ2(f) can be different is if f is such that a cannot transfer valence to any
element of E−. In such cases b has the same property by Lemma 5.2 so that ῑ1(f) = ῑ2(f)− 1
(b is active with respect to f in both orders and a is active only in <1). Examining f∗ now,
by Lemma 5.5 we see that it has to be such that b cannot transfer valence to any element
of E−. This implies, using Lemma 5.2, that a has the same property. Therefore we have
ῑ1(f∗) = ῑ2(f∗) + 1 as a is active with respect to f∗ in both orders and b is active in <2 only.

External activities can be handled in almost the same way.

(a’) If ε̄1(f) = ε̄2(f), then (since the activity status of a with respect to f is independent of
order) there must be some x ∈ E− so that valence can be transferred from x to b. Then by
Lemma 5.5, f∗ is such that valence can be transferred from x to a, making a inactive with
respect to f∗ in both orders. Since the activity status of b with respect to f∗ is the same in
both orders, we obtain ε̄1(f∗) = ε̄2(f∗).

(b’) If ε̄1(f) ≠ ε̄2(f), that is if f is such that no x ∈ E− can transfer valence to b, then the
same holds for transfers of valence from x to a by Lemma 5.2. Therefore a is active with
respect to f in both orders, whereas b is active in <2 and inactive in <1. By the preceding
paragraph, a similar analysis has to apply to f∗, i.e., b is active with respect to f∗ in both
orders, whereas a is active in <1 and inactive in <2. So we have obtained ε̄1(f) = ε̄2(f) + 1
and ε̄1(f∗) = ε̄2(f∗) − 1.

The only hypertrees whose ῑ or ε̄ values actually changed as a result of switching from <1 to
<2 were described in the cases (b) and (b’) above. We saw that they occur in pairs of the form
{f, f∗}. Now to complete our proof it suffices to show that for such a pair and any hyperedge y
different from a and b, the activity status of y with respect to f is the same as with respect to f∗.
(We saw that the choice between <1 and <2 does not matter for y, only for a and b. Switching

1 The points f and f∗ are actually the endpoints of the segment. This is easy to see from Theorem 3.4 and the fact that
for any subset of the coordinates, the sum of those coordinates is either constant along the segment or takes integer values
that change by 1 between neighboring lattice points.
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to a new hypertree, on the other hand, could in principle make a big difference.) Indeed, that will
imply ῑ1(f) = ῑ2(f∗) and ῑ2(f) = ῑ1(f∗) in case (b), as well as ε̄1(f) = ε̄2(f∗) and ε̄2(f) = ε̄1(f∗)
in case (b’) so that, regardless of order, the generating functions IH and XH always encode the
same information.

As we are about to relate activities with respect to different hypertrees, this last part of the
proof is where we will rely most heavily on our assumptions. What we need is essentially
Lemma 4.6 but we chose to spell the argument out without an explicit reference to it. It will
be convenient to branch into several cases again.

(1) We will deal with internal activities first. Recall that we are under the assumptions of the case
III(b), in particular f and f∗ are such that neither a nor b can transfer valence to any element
of E−. Let y be a hyperedge which is internally inactive with respect to f. Our goal is to show
that y is also internally inactive with respect to f∗.
i. Assume y ∈ E+. If f is such that y can transfer valence to a or b, then Lemma 5.2 implies

that it can definitely transfer to b and then Lemma 5.5 says that f∗ is such that y can
transfer valence to a. Therefore y is inactive with respect to f∗.

If y ∈ E+ but f is such that y can transfer valence neither to a nor to b, then f∗ has
to have the same property by the usual combination of Lemmas 5.2 and 5.5. Because y is
inactive with respect to f, the hypertree f must be such that y can transfer valence to some
x < y with a ≠ x ≠ b. We will show that f∗ is also such that y can transfer valence to
x . Suppose the opposite is true. Then there are sets of hyperedges Ua ∋ a, Ub ∋ b, and
Ux ∋ x so that all three are tight at f∗ and none of the three contains y. (Here tightness
is in the sense of Definition 4.4 with regards the set function µ of Proposition 4.7.) By
Proposition 4.5, the union of the three subsets is also tight at f∗. Since the union contains
both a and b, the sum of the f∗-values over it agrees with the sum of the f-values. Therefore
Ua ∪Ub∪Ux is also tight at f, which contradicts our assumption that f is such that y (which
is not in the union) can transfer valence to x (which is).

ii. Let now y ∈ E−. Then of course there is a hyperedge x ∈ E− so that f is such that y can
transfer valence to x . We will show that f∗ is also such that y can transfer valence to x .
Assuming the contrary, we find sets of hyperedges Uy ∌ y, Ua ∌ a, and Ub ∌ b which
are tight at f∗ and contain x . Their intersection is also tight at f∗ by Proposition 4.5. As
Ua ∩ Ub ∩ Uy contains neither a nor b, it is also tight at f. But that is a contradiction with
the transfer of valence from y ∉ Ua ∩Ub ∩Uy to x ∈ Ua ∩Ub ∩Uy which is possible at f.

(2) In the external case, the assumptions of III(b’) were that f and f∗ are both such that no
transfer of valence is possible from elements of E− to a or to b. In such a situation, let y be
externally inactive with respect to f. We wish to prove that y is also externally inactive with
respect to f∗.
i’. If y ∈ E+, then it may be that f is such that a or b can transfer valence to y. If b can, then

so can a by Lemma 5.2. Thus in either case we can apply Lemma 5.5 to conclude that f∗

is such that b can transfer valence to y.
Suppose now that y ∈ E+ but f (and consequently f∗) is such that neither a nor b

can transfer valence to y. Then some other hyperedge x < y can and we will prove that
the same transfer is also possible at f∗. If not, then there are sets of hyperedges Ua ∌ a,
Ub ∌ b, and Ux ∌ x , all containing y, that are tight at f∗. Their intersection has the same
property by Proposition 4.5 and moreover, as it contains neither a nor b, it is tight at f
as well. That contradicts the assumption that at f, a transfer of valence is possible from
outside of the set (from x) to one of its elements (namely y).
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ii’. Assuming y ∈ E−, it being externally inactive implies the existence of another hyperedge
x ∈ E− so that f is such that x can transfer valence to y. If the same transfer is not possible
at f∗, that means that there are sets of hyperedges Uy ∋ y, Ua ∋ a, and Ub ∋ b that are
tight at f∗ and none of them contains x . Then their union has the same properties and it
is also tight at f, which yields the usual contradiction.

This completes the proof. �

Example 5.6. We revisit the hypertrees that were discussed in Example 3.9. They are shown
in Fig. 6 with an actual spanning tree realization for each. For the orders a < b < c and
p < q < r < s, respectively, we also indicated the internal and external activity status of each
hyperedge with respect to each hypertree, as well as the resulting (ῑ, ε̄) values. Thus, we find that

IG0(ξ) = 1 + 3ξ + 3ξ2 and XG0(η) = 1 + 3η + 3η2, (10)

whereas

IG1(ξ) = 1 + 3ξ + 3ξ2 and XG1(η) = 1 + 2η + 3η2
+ η3. (11)

These values are in line with Proposition 6.2 and Theorem 6.3 below, as well as with
Conjecture 7.1.

Up to isomorphism there is only one order on the three-element set V0. The four-element set
V1, on the other hand, has four essentially different orders depending on the position of q. The
reader may check that the other three give rise to the same interior and exterior polynomials as
in (11).

Note the lack of similarity between our polynomials and the one shown in Example 2.4.
Indeed, the author is not aware of any formula relating the Tutte polynomial TG(x, y) of a
bipartite graph G and the interior and exterior polynomials of its induced hypergraphs.

Remark 5.7. Unfortunately, for a hypergraph that is not a graph, the two-variable polynomial
f ξ ῑ(f)ηε̄(f) (cf. Definition 2.2) does depend on the choice of order. For instance, for the

hypergraph G1 of the previous example, the order that we used there gives rise to the two-variable
generating function η3

+ 3ξη2
+ 2ξ2η + ξ2 (this is directly read off of the bottom row of Fig. 6),

whereas the order p < r < s < q gives ξη3
+ ξ2η2

+ ξη2
+ η2

+ 2ξ2η + ξ . (Note how the two
polynomials do coincide after setting ξ = 1 or η = 1.)

5.2. Extension to polymatroids

The interior and exterior polynomials are constructed from the hypertree polytope. The
same procedure can be carried out after replacing QH with the base polytope Bµ of an
integer extended polymatroid. Because of Lemma 4.2 and the fact that integer polymatroids can
always be defined by integer-valued non-decreasing submodular set functions, we immediately
obtain invariants of integer polymatroids as well. In this subsection we outline the minimal
modifications that are needed in our arguments to get the generalization.

Let S be a finite set and µ: P(S) → R a submodular set function with base polytope
Bµ ⊂ E Pµ. We say that the base x ∈ Bµ ∩ ZS is such that a transfer is possible from s1 ∈ S to
s2 ∈ S if by decreasing the s1-component of x by 1 and increasing its s2-component by 1, we get
another base.

Now order S arbitrarily. Call an element s ∈ S internally active with respect to the base
x ∈ Bµ ∩ ZS if x is such that no transfer is possible from s to a smaller element of S. We say that
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Fig. 7. The geometry of the interior polynomial.

s is externally active with respect to x if it is such that no transfer is possible to s from a smaller
element of S.

For x ∈ Bµ ∩ ZS , define ῑ(x) to be the number of elements of S that are not internally active
with respect to x. Similarly, let ε̄(x) denote the number of elements of S that are not externally
active with respect to x.

Definition 5.8. Let µ: S → Z be an integer-valued submodular set function. Define

Iµ(ξ) =


x∈Bµ∩ZS

ξ ῑ(x) and Xµ(η) =


x∈Bµ∩ZS

ηε̄(x)

and call these quantities the interior polynomial, respectively the exterior polynomial of µ.

The fact that these polynomials do not depend on the order that was used to define them can
be shown just like in the proof of Theorem 5.4. Indeed, the first half of that argument depended
on the elementary Lemma 5.2 (rhombus lemma) and 5.5 (staple lemma) where we only used the
fact that QH is cut out by placing upper bounds on each partial sum of the components of its
elements. We also used the triviality that lines intersect bounded convex sets in segments. Then
in the second half of the proof we relied on Proposition 4.5 and the fact that our upper bounds
are values of a tight set function.

To illustrate the geometry underlying our polynomials, we show in Fig. 7 the hypothetical base
polytope of a polymatroid Pµ with a ground set S = { a, b, c, d } of four elements. It sits in a
tetrahedron with vertices a(µ(S), 0, 0, 0), b(0, µ(S), 0, 0), c(0, 0, µ(S), 0), and d(0, 0, 0, µ(S)).
If we set the order a < b < c < d, then the marked vertex (which is the greedy hypertree of the
order) is the only hypertree with ῑ = 0; the other lattice points along the six thickened edges are
the ones with ῑ = 1; the rest of the lattice points that are visible (along a total of seven faces) in
our view are those with ῑ = 2; finally the invisible lattice points have ῑ = 3.

A similar picture applies to the exterior polynomial. It would be very interesting to see whether
invariants of arbitrary (i.e., not necessarily integer) extended polymatroids can be defined in a
way analogous to Definition 5.8, but replacing counts of lattice points along certain faces by
taking the volumes of those faces.
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It may also be worth it to investigate if there is a wider class of set functions (or polytopes) for
which interior and exterior polynomials are well defined. Already in the set function case some
assumption is certainly necessary, as the next example shows.

Example 5.9. Consider the tetrahedron

Q = Conv{ (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 0, 1, 1) } ⊂ R4
xyzt .

The four given points are exactly the integer solutions of the equation x + y + z + t = 2 and the
linear inequalities

x ≤ 1; x + y ≤ 2; y + z + t ≤ 2;

y ≤ 1; x + z ≤ 2; x + z + t ≤ 2;

z ≤ 1; x + t ≤ 2; x + y + t ≤ 2;

t ≤ 1; y + z ≤ 1; x + y + z ≤ 2.

y + t ≤ 1;

z + t ≤ 2;

Furthermore, each of the fourteen (fifteen) inequalities is sharp for at least one of the four
points. The right hand sides do not give a tight set function. For example, the set of the y and z
coordinates, as well as the set of the y and t coordinates is tight at the point (1, 1, 0, 0). However
the union of the two sets is not tight at the same point. We also see that Lemma 4.6 is violated:
the face along which the sum of the y and z (or the y and t) coordinates takes its maximum is a
triangle instead of a rectangle.

From the order x < y < z < t , we obtain the interior and exterior polynomials 1 + 2ξ + ξ2

and 1 + 2η + η2, respectively. If we use y < z < t < x instead, the interior polynomial becomes
2 + 2ξ2. For x < t < z < y, the exterior polynomial is 2 + 2η2.

6. Properties

6.1. Low-order terms

We first make an observation on the degrees of the interior and exterior polynomials and then
turn our attention to some individual coefficients.

Proposition 6.1. For a hypergraph H = (V, E), the degree of its interior polynomial is at most
min{ |E |, |V | } − 1, while the degree of its exterior polynomial is at most |E | − 1.

Proof. That |E | − 1 is an upper bound for both degrees is obvious from the observation that
the smallest hyperedge in an order is both internally and externally active with respect to any
hypertree.

As to deg IH ≤ |V | − 1, note that in order for a hyperedge e to be internally inactive with
respect to a hypertree f, we have to have f(e) ≥ 1. This combined with (3c) gives the result. �

For the constant term in the exterior polynomial and the two lowest-order coefficients in the
interior polynomial, the following two results offer a more direct way of seeing their order-
independence.

Proposition 6.2. Both the interior and exterior polynomials of the hypergraph H = (E, V )

have 1 for constant term.

Proof. Let us fix an arbitrary order on E and denote the greedy hypertree of Lemma 4.12 with
g. We claim that g is the unique hypertree with respect to which (and the given order) every
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hyperedge is internally active. Comparing the assertions of Lemma 4.12 and Theorem 3.4 with
the definition of internal activity, it is clear that g is indeed one such hypertree.

The fact that there are no others follows easily either from Lemma 4.16 or from Lemma 4.17.
Yet it may be interesting to see an argument that does not rely on abstract properties of
submodular functions.

To this end, let f: E → N be a hypertree different from g. We need to show that there is an
internally inactive hyperedge with respect to it. We will use constructions from Section 4.2,
in particular the subgraphs G1 ⊂ G2 ⊂ · · · ⊂ G|E | = Bip H and the sequence of
forests F1 ⊂ F2 ⊂ · · · ⊂ F|E | that was constructed in the proof of Lemma 4.12. Let ek be
the smallest hyperedge in the order so that f(ek) ≠ g(ek), which of course implies f(ek) < g(ek).
By Lemma 4.11 we may choose a realization Γ for f so that Γ ∩ Gk−1 = Fk−1.

There is at least one connected component of Gk − {ek} which is not connected to ek by any
edge in Γ , even though there is an edge α of Bip H between ek and this component (we can take
for example the one which was selected into Fk). Adding α to Γ creates a cycle which has to go
through a hyperedge el with l > k. By removing from Γ an edge of the cycle adjacent to el and
replacing it with α, we create a new spanning tree for Bip H . It induces a hypertree which only
differs from f at el (where it is one smaller than f) and ek (where it is one bigger). This shows
that el is internally inactive with respect to f.

In the case of the exterior polynomial, the unique hypertree without an (externally) inactive
hyperedge is the greedy hypertree of the reverse order. The rest of the proof can be carried out
just like above. �

Theorem 6.3. For any hypergraph H = (E, V ), the coefficient of the linear term in the interior
polynomial IH is the nullity (first Betti number) n(Bip H ) of the bipartite graph Bip H .

Proof. We will extend the analysis carried out in the proofs of Lemma 4.12 and Proposition 6.2 a
little further. After fixing an order on E , we are going to construct n(Bip H ) hypertrees. Namely,
if e is a hyperedge, then we will associate to it nj (e) hypertrees as follows.

Recall the greedy hypertree g(e) = |e| − 1 − nj (e) of Lemma 4.12 and fix one of its
realizations. If e is a hyperedge that has nj (e) > 0 with respect to the order, then add
to the realization one more edge adjacent to e. This creates a cycle which goes through
another hyperedge e′. Remove an edge of this cycle adjacent to e′ to get a new spanning tree.
Its induced hypertree is the result of a transfer of valence from e′ to e. Then add another
edge and make another transfer and so on until all edges adjacent to e are used up. The
hyperedges that we transfer valence from are all smaller than e because of Lemma 4.12 and
Theorem 3.4.

The argument in the previous paragraph shows that for all 1 ≤ i ≤ nj (e), there is an i-element
multiset of hyperedges smaller than e so that the result of reducing the g-value associated to
each of its elements by the multiplicity of the element, and simultaneously increasing g(e) to
g(e) + i , is a hypertree in H . Now define fe,i : E → N (e ∈ E , 1 ≤ i ≤ nj (e)) to be the
hypertree among these so that its associated multiset Me,i is largest in reverse lexicographical
order, i.e., if e1 < · · · < ek are all the hyperedges smaller than e, then Me,i has the highest
possible multiplicity at ek ; then among those the highest possible multiplicity at ek−1, and
so on.

We claim that the fe,i are exactly those hypertrees in H that have a unique internally inactive
hyperedge in the given order.

It is easy to see that the fe,i do have this property. Namely, e is the unique hyperedge that is not
internally active with respect to fe,i . Indeed, if e′ > e then e′ is internally active with respect to
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fe,i because


x<e′ fe,i (x) =


x<e′ g(x) is already at the largest value allowed by (3b). If e′ < e,
then it is internally active because a downward transfer of valence from e′ would contradict the
way Me,i was chosen. Finally, e itself is not active because by Lemma 3.10 applied to f1 = g and
f2 = fe,i , it can transfer valence to any element of Me,i .

Let now f be a hypertree in H so that it has a unique internally inactive hyperedge e. Our
goal is to show that f is one of the fe,i .

First we claim that (3b) is sharp for f and the set E ′
= { x ∈ E | x ≤ e′

} for all e′
≥ e: indeed

if it was not, then by Lemma 4.16 there would have to be hyperedges larger than e′ (and hence
different from e) that are internally inactive with respect to f. Because of the similar property
of g stated in Lemma 4.12, we see that f = g (and hence f = fe,i for any i) for all hyperedges
larger than e. It also follows that f(e) ≥ g(e) and in fact f(e) > g(e), for otherwise e could not
be inactive.

Next, we note that if e′ is a hyperedge smaller than e, then f(e′) ≤ g(e′) because if this was
not the case then Lemma 4.17 would imply that e′ is internally inactive. So far we have shown
that f is obtained from g by transferring valence to e from a (non-empty) multiset of hyperedges
that are smaller than e.

Assume now that f ≠ fe,i , where we set i = f(e) − g(e). Because of the way fe,i was
constructed, the largest hyperedge e′ where the two hypertrees differ is so that e′ < e and f(e′) >

fe,i (e′). We are going to argue that e′ is internally inactive with respect to f by showing that f is
such that e′ can transfer valence to at least one element of the set S = { x ∈ E | f(x) < fe,i (x) }.
(Note that S is non-empty because


y∈E f(y) =


y∈E fe,i (y) and that its elements are smaller

than e′.)
Suppose again that the opposite is true. Then by the usual argument based on Proposition 4.5,

there exists a set U of hyperedges that is tight at f, contains S, and does not contain e′. Over
E \ U , the sum of f-values is higher than the sum of fe,i -values; therefore over U , the sum of
fe,i -values is higher. But this means that fe,i and U contradict the inequality (3b) because the sum
of f-values over U is already µ(U ), where µ is as in equation (4).

Therefore e′ is internally inactive, but that contradicts our assumption on f. The only possible
conclusion, then, is f = fe,i . �

Remark 6.4. If we change the definition of fe,i in the proof above to require that Me,i have the
lowest possible multiplicity at e1, then among those choices the lowest possible multiplicity at
e2 and so on, then a similar argument reveals that this, too, is a hypertree in which e is the unique
internally inactive hyperedge. Therefore the two descriptions define the same hypertree.

It is not hard to see (cf. [6, Section 44.6.c]) that Proposition 6.2 generalizes to arbitrary integer
extended polymatroids, i.e., interior and exterior polynomials always have a constant term of 1.
Theorem 6.3, in turn, offers a way of defining the nullity of an integer extended polymatroid via
its interior polynomial. The resulting notion is a kind of ‘girth’ of the base polytope, cf. Fig. 7.

In the classical case, Proposition 6.2 translates to a well known property of the Tutte
polynomial. Theorem 6.3, however, reveals (to the best of the author’s knowledge) previously
undiscovered information.

Corollary 6.5. Let G = (V, E) be a connected graph. By summing the coefficients of its Tutte
polynomial TG(x, y) in front of terms that contain x |V |−2, we obtain the nullity of G. In other
words, under any order, the number of spanning trees that contain exactly one internally inactive
edge is the first Betti number of G as a one-dimensional cell complex.
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6.2. Product formulas

Let us now discuss situations when the interior and exterior polynomials behave multiplica-
tively. Our first claim is obvious.

Lemma 6.6. From H = (V, E), construct another hypergraph H ′ by either

(a) adding a singleton hyperedge e′
= {v} to E for some v ∈ V , or

(b) adding a new vertex v′ to V that is part of exactly one hyperedge e ∈ E.

Then IH ′ = IH and XH ′ = XH .

Proof. In both cases, new and old hypertrees are in an obvious bijection. In the first, new
hypertrees are exactly the extensions of old ones by assigning 0 to e′. The new hyperedge e′

is both internally and externally active with respect to all hypertrees regardless of the order used.
In the second case, increase f(e) by 1 in each hypertree f of H to get the collection of

hypertrees in H ′. With respect to any order, this correspondence preserves ῑ and ε̄ values. �

The main result of this subsection examines the picture when two disjoint bipartite graphs are
joined by identifying one edge from each.

Theorem 6.7. Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs so that V1 ∩ V2 = {v}.
Suppose that e1 ∈ E1 and e2 ∈ E2 both contain v and form the hypergraph

H = (V, E) =

V1 ∪ V2, (E1 \ {e1}) ∪ (E2 \ {e2}) ∪ {e}


by merging e1 and e2 into a single hyperedge e = e1 ∪ e2. For hypertrees f1 in H1 and f2 in H2,
define the function f1#f2: E → N by

(f1#f2)(e) = f1(e1) + f2(e2)

and by otherwise letting (f1#f2)|Ei \{ei } = fi , i = 1, 2. Then # defines a bijection

(QH1 ∩ ZE1) × (QH2 ∩ ZE2) ∼= QH ∩ ZE .

Consequently,

IH = IH1 IH2 and XH = XH1 XH2 .

Proof. For the claim on the sets of hypertrees, choose arbitrary elements fi ∈ QHi ∩ ZEi and
realize them with spanning trees which contain the edges connecting ei and v. This can be done
by Lemma 3.3. After merging e1 and e2, the union of the two trees becomes a spanning tree of
Bip H realizing f1#f2, which is therefore a hypertree.

Conversely, if f is a hypertree in H then we may realize it with a spanning tree that contains
the edge between e and v. This can be separated into spanning trees of Bip H1 and of Bip H2
which induce hypertrees in H1 and H2, respectively. It is easy to see that this defines an inverse
to the correspondence (f1, f2) → f1#f2.

To prove the claim on the polynomials, we make the following observation. If the hypertree
f = f1#f2 is such that valence can be transferred from a1 ∈ E1 \ {e1} to a2 ∈ E2 \ {e2}, then

(a) f1 is such that valence can be transferred from a1 to e1 and
(b) f2 is such that valence can be transferred from e2 to a2.
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Indeed, the result f′ of the assumed transfer of valence has a decomposition f′ = f′1#f′2 where
(since the entries in fi and f′i share the same sum) f′1 is a hypertree that shows the truth of (a) and
the existence of f′2 proves (b).

Let us now fix an order on E in which e is smallest and use its restrictions to order E1 and E2
(so that ei becomes the smallest element in Ei ). Then, we claim that for any pair of hypertrees fi
in Hi , we have

ῑ(f1#f2) = ῑ(f1) + ῑ(f2) and ε̄(f1#f2) = ε̄(f1) + ε̄(f2) (12)

because, both in the internal and in the external sense, the set of inactive hyperedges for f1#f2 is
the union of the sets of inactive hyperedges for f1 and for f2. (As e, e1, and e2 are smallest, they
cannot be inactive with respect to any hypertree.) The backward inclusion is obvious because
if, say, f′1 results from f1 by a single transfer of valence, then f′1#f2 and f1#f2 are related by
essentially the same transfer. The forward inclusion follows equally easily with the help of (a)
and (b) above.

Comparing (12) with the definitions of I and X completes the proof. �

The next two statements describe the situation when two bipartite graphs are joined at a single
vertex. They follow from Theorem 6.7 and Lemma 6.6 by first slightly enlarging one hypergraph
as in the Lemma and then joining it to the other hypergraph as in the Theorem.

Corollary 6.8. Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs with disjoint vertex sets.
Choose e1 ∈ E1 and e2 ∈ E2 and form the hypergraph H with vertex set V1 ∪V2 and hyperedge
set (E1 \ {e1}) ∪ (E2 \ {e2}) ∪ { e1 ∪ e2 }. Then IH = IH1 IH2 and XH = XH1 XH2 .

Corollary 6.9. Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs with disjoint vertex sets.
Choose v1 ∈ V1 and v2 ∈ V2 and form the hypergraph H by identifying them to a single vertex
v. I.e., the vertex set of H is (V1 \ {v1}) ∪ (V2 \ {v2}) ∪ {v} and its hyperedge set is identified
with E1 ∪ E2 so that v is an element of a ‘new’ hyperedge if and only if either v1 or v2 was an
element of the ‘old’ hyperedge. Then IH = IH1 IH2 and XH = XH1 XH2 .

6.3. Deletion and contraction

These operations are of special importance in the classical theory of the Tutte polynomial.
However in the hypergraph case, so far they have played surprisingly small roles.

Definition 6.10. Let H = (V, E) be a hypergraph and e ∈ E a hyperedge. Deleting e from
H means passing to the hypergraph H \ {e} = (V, E \ {e}). The result of contracting e is
the hypergraph H /e which is obtained from H \ {e} by identifying the elements of e. I.e., the
hyperedge set of H /e is essentially E \ {e} and its vertex set is (V \ e) ∪ {ē}, where the new
vertex ē belongs to the hyperedge e′

∈ E \ {e} if and only if e′
∩ e ≠ ∅.

Regarding the hypertree polytope QH and the hyperedge e, let us define the top face of QH
with respect to e as { f ∈ QH | f(e) = |e| − 1 } and let the bottom face be { f ∈ QH | f(e) = 0 }.
Because of Corollary 4.10, the top and bottom faces with respect to any hyperedge coincide with
the convex hulls of the hypertrees that they contain.

Proposition 6.11. Let H = (V, E) be a hypergraph with hypertree polytope QH . For any
hyperedge e ∈ E, the hypertree polytopes QH \{e} and QH /e are naturally isomorphic to the
bottom and top face, respectively, of QH with respect to e.
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Proof. It suffices to equate the sets of hypertrees within the polytopes.
Deletion: if we take any hypertree in H \ {e} and an arbitrary realization, then by adding

to it a single edge of Bip H adjacent to e, we realize a hypertree that lies along the bottom
face. Conversely, any realization of a hypertree from the bottom face of QH has a single edge
adjacent to e and by removing it we obtain a tree which realizes a hypertree in H \{e}. Therefore
a bijection is defined by extending hypertrees in H \{e} to e with the value zero. (It is possible for
he bottom face of QH to be empty, namely when Bip H −{e} = Bip(H \ {e}) is disconnected.
Of course in such a case QH \{e} is empty as well.)

Contraction: let ē denote the new vertex in H /e that results from the contraction of e. If f is
a hypertree in H /e then, using Lemma 3.3, construct a realization Γ for it which contains all
edges adjacent to ē. Based on this tree, we carry out the following construction in Bip H . Keep
all edges of Γ that are not adjacent to ē. If e′

∈ E \ {e} is such that e′
∩ e ≠ ∅, then connect e′ to

an arbitrarily chosen element of the intersection. Finally, add all edges that are adjacent to e. The
result is a spanning tree in Bip H so that its induced hypertree is on the one hand part of the top
face of QH , and on the other hand it agrees with f on E \ {e}.

The inverse of this correspondence is constructed as follows. Let g be a hypertree from the
top face of QH . Any of its realizations contains all edges of Bip H adjacent to e. Take one such
tree and (viewing it as a topological space) contract the union of its edges adjacent to e to a single
point. The result is another tree which naturally embeds in Bip(H /e) as a spanning tree so that
it realizes a hypertree in H /e that agrees with g over E \ {e}. �

We now turn to generalizations of the classical deletion–contraction formulas (1). Lemma 6.6
can be viewed as a trivial extension of the second formula to hypergraphs. (The reader may
wish to consult (9) to see that there is no contradiction.) The first formula also has an easy
generalization to hypergraphs as follows.

Proposition 6.12. Let H = (V, E) be a hypergraph with a hyperedge e so that Bip H is
connected but Bip H −{e} has |e| connected components. Then IH = IH /e and XH = XH /e
(and both are equal to obvious |e|-fold products).

Proof. Immediate from Lemma 6.6 and Corollaries 6.8 and 6.9. �

Remark 6.13. For the abstract duals of the hypergraphs in the previous proposition, the same
argument yields the same conclusion: IH = IH /e and XH = XH /e, since both sides of each
equation agree with the obvious |e|-fold product.

Finally, let us generalize the third deletion–contraction formula from (1).

Proposition 6.14. Let H = (V, E) be a hypergraph that contains a two-element hyperedge e
so that Bip H − {e} is connected. Then we have

IH (ξ) = IH \{e}(ξ) + ξ IH /e(ξ) and XH (η) = ηXH \{e}(η) + XH /e(η). (13)

Proof. As |e| = 2, each hypertree in H lies either on the top (if its value at e is 1) or on the
bottom (if it is 0) face of QH with respect to e. Let us choose an order on E in which e is the
largest hyperedge.

With respect to hypertrees along the bottom face, e is internally active. With respect to those
on the top face, by Lemma 4.17, e is internally inactive: indeed the lemma applies because
nj (e) = 1 by our assumption which means that the value of the greedy hypertree at e is
g(e) = |e| − 1 − nj (e) = 0. With this, our first equation follows easily from Proposition 6.11.
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The second is equally easy after noticing that with respect to hypertrees of the top face, e is
externally active, whereas with respect to those along the bottom face, it is externally inactive.
The former is obvious and the latter can be argued for example like this: if f is a hypertree in H
so that f(e) = 0, then take any of its realizations and add to it the ‘other’ edge adjacent to e, too.
The cycle thus created goes through at least one more hyperedge e′ and if we break the cycle by
removing one of its edges adjacent to e′, we get a realization of a hypertree which is the result of
a transfer of valence to e from the smaller hyperedge e′. �

It would be desirable to formulate a version of the last proposition for hyperedges of arbitrary
size. Such formulas, however, are currently lacking.

7. Abstract duality

The observations on the interior polynomial contained in Proposition 6.2 and Theorem 6.3
illustrate more than just the (already proved) order-independence of the coefficients. The values
observed also remain the same if we exchange the roles of hyperedges and vertices, that is, they
are invariant under abstract duality. We conjecture that this is true for the rest of the polynomial
as well. I.e., the interior polynomial is in fact an invariant of bipartite graphs.

Conjecture 7.1. Let G = (V0, V1, E) be a connected bipartite graph which induces the
hypergraphs G0 and G1 as in (2). Then IG0 = IG1 .

So far, supporting evidence includes Postnikov’s Theorem 3.11, which says that IG0(1) =

IG1(1), and Theorem 6.3. We present some more below.
Conjecture 7.1 was certainly true in Example 5.6, where it was also illustrated that abstract

duality will usually not preserve the exterior polynomial. (Indeed, the linear terms can already
be different.) Let us work out another family of examples.

Example 7.2. We consider the complete bipartite graph (V0, V1, E), where |V0| = n and
|V1| = m. For both induced hypergraphs G0 and G1 the condition (3b) in Theorem 3.4 becomes
vacuous and we see that their hypertree polytopes are the simplices

QG0 = (m − 1)∆V0 and QG1 = (n − 1)∆V1 ,

respectively, both of which contain


n+m−2
n−1


hypertrees. (The number of lattice points in a

standard d-dimensional simplex of sidelength k is


k+d
d


.)

Fix now some order on V0. If f: V0 → N is a hypertree in G0 and e ∈ V0, then e is internally
inactive with respect to f if and only if f(e) > 0 and e is not the smallest in the order. Hence to
enumerate hypertrees in G0 with internal inactivity k, we need to

(a) choose the set of the k internally inactive hyperedges and
(b) partition the sum of hypertree entries, m − 1, between them and the smallest hyperedge so

that the latter may receive 0 but the others get a positive amount.

This is an easy exercise whose solution is


n−1
k

 
m−1

k


. As this is a symmetric expression in n

and m, Conjecture 7.1 holds for complete bipartite graphs.
We leave it to the reader to verify that the number of hypertrees in G0 with external inactivity

k is


m+k−2
k


for all 0 ≤ k ≤ n − 1. For this of course it does matter if we interchange n and m.
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Let us temporarily call a bipartite graph good if it satisfies Conjecture 7.1. Bipartite graphs
with an isomorphism that interchanges their color classes are good. We have seen a number of
operations that, when applied to good graphs, result in other good graphs. These include adding
on a new valence one point (Lemma 6.6), joining two bipartite graphs at a vertex (Corollaries 6.8
and 6.9) or at an edge (Theorem 6.7).

We will introduce one more powerful way of generating new good bipartite graphs from old.
It requires the following ‘upside down’ version of Proposition 6.14.

Proposition 7.3. Let H = (V, E) be a hypergraph with a vertex v ∈ V belonging to exactly

two hyperedges e1 and e2. Define the deletion of v as H ′
= H \ {v} and the contraction of v

as H ′′
= H /v. If Bip H − {v} is connected, we have

IH (ξ) = IH ′(ξ) + ξ IH ′′(ξ). (14)

If we also suppose that v is not the only common element of e1 and e2, we obtain the relation
XH (η) = XH ′(η) + ηXH ′′(η) as well.

Notice that (14) matches the first equation in (13) exactly. There is however a discrepancy
between the formulas concerning exterior polynomials, not to mention the extra assumption. By
the way, the assumption that v not be the only common element of e1 and e2 cannot be dropped.
If Bip H is a 2k-cycle with k ≥ 2, then (for any choice of v) we have XH (η) = 1 + (k − 1)η,
XH ′(η) = 1, and XH ′′(η) = 1 + (k − 2)η. The stated equation on exterior polynomials only
holds if k = 2, which is exactly when the extra assumption is satisfied.

In the proof of Proposition 7.3 we will use the following claim. It is true for integer bases of
arbitrary integer extended polymatroids, but for convenience we will only state it for hypertrees.

Lemma 7.4. Let x be a hypertree in the hypergraph H . Assume that the distinct hyperedges a, b
(“givers”) and c, d (“receivers”) are such that a simultaneous transfer of valence is possible at
x, i.e., that y = x − i{a} − i{b} + i{c} + i{d} is also a hypertree. Then x is such that either a can
transfer valence to c and b to d, or a can transfer valence to d and b to c.

Proof. If x is such that any giver can transfer valence to any receiver, then we are done. Assume
that one of the transfers, say from a to d, is not possible. It suffices to show that in this case a
can transfer valence to c and b can transfer valence to d .

This follows from Lemma 4.6 and some elementary geometry applied to the abcd cross-
section (through x) of QH . Namely, if the plane π through x, y, x−i{a}+i{c}, and x−i{b}+i{d} was
not a supporting plane of the cross-section, then because of the directions of the other possible
supporting planes and the presence of x and y, the point x − i{a} + i{d} would also be a hypertree.
Thus π is a supporting plane and so it forms a rectangular intersection with QH , which proves
that x − i{a} + i{c} and x − i{b} + i{d} are indeed hypertrees. �

The typical situation in which this lemma will be applied is when we know that x, x−i{a}+i{c},
and x − i{a} − i{b} + i{c} + i{d} are hypertrees and we conclude that x is such that b can transfer
valence either to d or to c; also that d can receive a transfer from a or from b.

Yet another way of phrasing the statement would be that for certain regular octahedra in ZE ,
if QH contains one pair of opposite vertices then it has to contain another pair. Note that the
polyhedron used in Example 5.9 violates this principle.

Proof of Proposition 7.3. Just like in the proof of Proposition 6.14, first we are going to split
the set of hypertrees in H in two so that the two sides are in one-to-one correspondences with
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hypertrees in H ′ and H ′′, respectively, and then study activities. The geometry however will be
different this time and therefore the argument more complex.

If f is a hypertree in H ′, define f′(e1) = f(e1) + 1 and f′(x) = f(x) for other hyperedges.
This is a hypertree in H because a realization of f in Bip H ′

= Bip H − {v} together with the
edge of Bip H between e1 and v gives a realization of f′. The association f → f′ is an isometric
embedding, in particular injective.

Note that H ′′ contains a distinguished hyperedge e where e1 and e2 merge. If g is a hypertree
in H ′′ then H has hypertrees which agree with g away from e1 and e2 because the same edges
that constitute a realization of g in Bip H ′′ form a two-component forest in Bip H which can
be turned into a spanning tree by adding to it both edges adjacent to v. The set of these,

Lg =


h ∈ QH ∩ ZE

h|E\{e1,e2} = g|E\{e1,e2}


,

is analogous to the line segments that we used in the proof of Theorem 5.4. Let us associate to g
the hypertree g′′

∈ Lg with the highest value at e2.
The sets Lg, which we will also refer to as the fibers, lie on parallel lines. Any hypertree h in

H is part of a set Lg. To see this, use Lemma 3.3 to construct a realization of h containing both
edges adjacent to v and then contract those edges to a point to obtain a spanning tree in Bip H ′′

that induces the right g.
Furthermore, if g1 ≠ g2, then the lines containing Lg1 and Lg2 are disjoint (so that the

hypertree g of the previous paragraph is uniquely determined by h). This is because E \ { e1, e2 }

represents all but one of the hyperedges in H ′′ and by (3c), the last value (at e) is uniquely
determined by the rest. In particular, the correspondence g → g′′ is also injective.

There do not exist f and g so that f′ = g′′ because

(a) For any f, the hypertree f′ is such that a transfer of valence is possible from e1 to e2: just
repeat the argument that f′ is a hypertree but with the roles of e1 and e2 reversed.

(b) At a hypertree of the form g′′, the same transfer is never possible.

On the other hand, elements of Lg\{g′′
}, i.e., all hypertrees h in H that are such that a transfer

of valence is possible from e1 to e2, are of the form f′ for some f. This is because each such h
has a realization that does not contain the edge γ of Bip H connecting e2 and v. To show this,
take any realization Ξ of h. If it does not contain γ , we are done. Otherwise, by Lemma 3.3, we
may assume that Ξ contains both edges of Bip H adjacent to v. By removing those two edges,
we separate Ξ to two smaller trees Ξ1 and Ξ2. Let E1 ∋ e1 be the set of hyperedges contained
by Ξ1 and let E2 ∋ e2 be contained by Ξ2 so that E is the disjoint union of E1 and E2.

There have to be elements of E2 that are adjacent in Bip H to vertices of Ξ1. This is because
otherwise Ξ ∩


Bip H |E2


= Ξ2 ∪ {γ } would be a spanning tree in Bip H |E2 , which by

Lemma 4.11 would mean that E2 is tight at h and that would rule out the possibility of the
assumed transfer of valence from e1 to e2. Whenever we locate this kind of element a in E2, we
‘switch it over’ to E1 by our usual method: add to Ξ an edge α connecting a to a vertex of Ξ1;
this creates a unique cycle C in Ξ ∪ {α} which necessarily contains γ ; remove the edge of C
adjacent to a which is not α.

By iterating this procedure, we move through realizations of h with smaller and smaller
associated sets E2. Therefore after finitely many steps, the hyperedge a that we operate on will
be e2 itself. The edge that we remove in that step is necessarily γ . This finishes the argument that
a hypertree in H is always either of the form f′ or of the form g′′ but never both.
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In order to study activities, let us now order E so that e1 and e2 are the smallest hyperedges.
(Later we will use e1 < e2 in the internal case and e2 < e1 in the external case, but for now we
leave this unspecified.) We will use this order in H to define ῑ and ε̄, as well as in H ′ to define
ῑ′ and ε̄′ values. In H ′′, let e be the smallest hyperedge and otherwise use the same order in the
definitions of ῑ′′ and ε̄′′. We start with two easy claims.

(i) If a hyperedge a is inactive (in either sense) with respect to f in H ′, then a is inactive with
respect to f′ in H . This is because if the hypertrees f1 and f2 in H ′ are related by a single
transfer of valence then f′1 and f′2 are related by the same transfer.

(ii) Regarding H ′′, an implication of the opposite kind is easy: if the hyperedge a ∈ E \{ e1, e2 }

is inactive with respect to some element of Lg (in H ), then a is inactive with respect to g (in
H ′′) as well. Just take the hypertree that results from the transfer of valence which ‘makes’
a inactive and notice that it is part of a fiber Lg0 ; here g0 differs from g by the single transfer
of valence which establishes the claim.

The rest of the proof is concerned with the degree to which the converses of (i) and (ii) above
are true. We start with (ii).

Lemma 7.5. If the hyperedge a ∈ E \ { e1, e2 } is inactive, in either sense, with respect to the
hypertree g in H ′′, then a is inactive with respect to any element h ∈ Lg (e.g. h = g′′) in H .

To show this, we separate two cases. Let h ∈ Lg.

I. If g is such that a transfer of valence is possible from a to e (resp. from e to a) resulting in the
hypertree g0 in H ′′, then we claim that h is such that a transfer of valence is possible from a
to e1 or e2 (resp. from e1 or e2 to a). This follows by fixing a 2-dimensional plane containing
Lg and Lg0 (so that only the e1, e2, and a-coordinates can vary) and constructing the type of
elementary argument that we used to prove Lemmas 5.2 and 5.5.

II. If g is such that no transfer of valence is possible from a to e (resp. from e to a), then by the
argument in (ii) it follows that h is such that there is no transfer of valence from a neither
to e1 nor to e2 (resp. neither from e1 nor from e2 to a). As a is inactive, there is another
hyperedge b ∈ E \ { e1, e2 }, smaller than a, so that g is such that valence can be transferred
from a to b (resp. from b to a), resulting in the hypertree g0. From Lemma 5.2 and (ii) we
obtain that h is such that valence cannot be transferred from b to e1 or e2 (resp. from e1 or
e2 to b) either. Thus Lemma 4.6, applied to p = e1, q = e2, r = a, s = b (resp. p = a,
q = b, r = e1, s = e2) implies that Lg and Lg0 are located in a rectangular cross-section of
QH so that every hypertree along Lg is such that a transfer of valence is possible from a to
b (resp. from b to a). This completes the proof of the lemma.

Let us now assume that e1 and e2 have a second common vertex u ≠ v. This is equivalent
to saying that for any hypertree g in H ′′, the fiber Lg has at least two elements,2 which in turn
makes it meaningful for us to let g′′′ denote the element of Lg adjacent to g′′. (Note that g′′′ is
of the form f′ for some f.) Indeed, if u exists, then any hypertree in H is such that a transfer of
valence is possible between e1 and e2: using Lemma 3.3, force a realization to contain the edges
e1u and e2u, then replace one of them with the unique element of { e1v, e2v } that is originally
not in the realization to achieve the transfer. Conversely, if e1 ∩ e2 = {v}, then there are (greedy)
hypertrees in H which take the maximal values |e1| − 1 and |e2| − 1 at e1 and e2, respectively,
and hence form singleton fibers.

2 As an alternative to the short argument below, the equivalence can also be deduced from Postnikov’s Proposition 3.12.
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In addition to our previous assumptions (including the existence of u), we now set e2 < e1
and prove the following items.

• ε̄(g′′) = ε̄′′(g) + 1 for all hypertrees g in H ′′. It is clear that e1 is externally inactive with
respect to g′′ whereas of course e is active with respect to g. The rest follows from Lemma 7.5
and (ii).

• ε̄(f′) = ε̄′(f) for all hypertrees f in H ′. A converse of (i) is indeed true in this case. If f′ is
such that e2 can transfer valence to e1, then the same is obviously true for f. If f′ is such that
e1 or e2 can transfer valence to some other hyperedge a then, even if the result of the transfer
happens to be of the form g′′, it is because the transfer came from e1 and it is easy to see that a
transfer of valence from e2 to a turns f′ into g′′′. Finally, if f′ and a are such that no transfer of
valence is possible from e1 or e2 to a but the hyperedge b can transfer valence to a, resulting
in the hypertree h, then the usual combination of Lemmas 5.2 and 4.6 shows that the fibers of
f′ and h lie in a rectangular cross-section and therefore h is not of the form g′′ either.

The last two equations together settle the claim in the Proposition concerning exterior
polynomials.

Finally, we turn to internal activities and establish (14). For the remainder of the proof, we
will use the order e1 < e2 among the two smallest hyperedges. Under the simplifying assumption
that all fibers contain at least two hypertrees, the result follows relatively easily just like above
in the external case (with the roles of e1 and e2 suitably exchanged). Without that assumption,
both components of the argument break down: some hypertrees g′′ may be such that e2 cannot
transfer valence to e1, i.e., g′′ does not pick up an extra internally inactive hyperedge beyond
those of g; on the other hand there may also be hypertrees f′ which do pick up extra internally
inactive hyperedges beyond those of f because some transfer of valence can turn them into one
of the g′′ without a convenient g′′′ nearby. Our task is to show that the two problems cancel each
other out.

Let us call a hypertree in H lonely if it is the unique element of its fiber, i.e., if it is such that
no transfer of valence is possible between e1 and e2. We claim that if h is a lonely hypertree, then
there is a hyperedge a ∈ E \ { e1, e2 } so that h is such that both e1 and e2 can transfer valence to
a. After noting that any realization Ξ of h has to contain both edges of Bip H adjacent to v, we
proceed as earlier (on page 853) to define the subtrees and hyperedge sets Ξi ⊃ Ei ∋ ei , i = 1, 2.
Now there has to be a hyperedge a in E1 or E2 that is connected by an edge α of Bip H to a
vertex in Ξ2 or Ξ1, respectively, for otherwise removing v would disconnect the graph. Adding
α to Ξ creates a cycle through v so that by removing either edge of Bip H adjacent to v, we
realize the two desired transfers of valence to a.

If h is a lonely hypertree then select the smallest hyperedge ah with the property above and
let the hypertree t (h) be obtained from h by a single transfer of valence from e2 to ah. From the
construction it is obvious that there is a hypertree f in H ′ so that f′ = t (h). It is also clear from
Lemma 5.2 that t (h) is part of a two-element fiber; in particular it is such that e2 cannot transfer
valence to e1.

For a hypertree f in H ′, let us introduce

Tf = { h ∈ QH ∩ ZE
| h is a lonely hypertree with t (h) = f′}.

Clearly, if h ≠ j belong to the same set Tf, then ah ≠ aj because f and ah determine h via
t (h) = f′. The proof of (14) will be immediate from the following items.
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1) ῑ(g′′) = ῑ′′(g) + 1 for all hypertrees g in H ′′ so that g′′ is not lonely. This follows easily from
(ii), Lemma 7.5, and the observation that e2 is internally inactive with respect to g′′ in this
case.

2) ῑ(g′′) = ῑ′′(g) whenever g′′ is lonely. In these cases e2 is internally active; otherwise see above.
3) ῑ(f′) = ῑ′(f) + |Tf| for all hypertrees f in H ′.
4) For any hypertree f in H ′, the values of ῑ among the elements of Tf are ῑ′(f), ῑ′(f) +

1, . . . , ῑ′(f) + |Tf| − 1, each occurring exactly once.

We will prove (3) and (4) momentarily but let us first take care of (14). For each hypertree g in
H ′′, we need a hypertree in H with ῑ one higher than ῑ′′(g). If it is not lonely then g′′ can play
this role by (1); otherwise (2) says that g′′ is not good but it belongs to a unique set Tf which, by
(4), either contains an element with the desired ῑ or if it does not then, according to (3), f′ will do
the job. Also, for each hypertree f in H ′ we need a hypertree in H with the same ῑ. If Tf = ∅
then, by (3), f′ will do; otherwise (4) says that the element of Tf with the lowest ῑ will suffice. As
we used each hypertree in H exactly once, (14) follows.

To show (3), let us now fix a hypertree f in H ′. For each h ∈ Tf, the hyperedge ah is
internally inactive with respect to f′ because a transfer of valence from ah to e2 turns f′ into h.
We claim that the same hyperedges ah are internally active with respect to f, implying via (i) that
ῑ(f′) ≥ ῑ′(f)+|Tf|. For this it suffices to prove that any downward transfer of valence from ah will
turn f′ into a hypertree of the form g′′ for some g. The hypertree f′ is such that valence cannot be
transferred from ah to e1 because h was such that valence could not be transferred from e2 to e1.
A transfer of valence from ah to e2 turns f′ into h, which is lonely and therefore of the form g′′. If
f′ is such that a transfer of valence is possible from ah to some hyperedge e2 < b < ah (resulting
in the hypertree j) then, by the way ah was chosen in the definition of t (h), the hypertree h is
such that valence cannot be transferred from e1 to b. In other words, j is such that valence cannot
be transferred from e1 to e2 which, by the characterization (b), establishes our claim.

To see why ῑ(f′) ≤ ῑ′(f) + |Tf| holds too, we let x ∈ E be internally inactive with respect to f′

and show that it is either internally inactive with respect to f as well or it is one of the ah for some
h ∈ Tf. By (a), f′ is such that valence can be transferred from e1 to e2 resulting in some hypertree
k. If f′ is such that a downward transfer of valence from x turns it into f′0 for some f0 then x is
internally inactive with respect to f and we are done. By Lemma 5.2, this kind of situation arises
if f′ is such that a transfer of valence is possible from x to e1. Assume now that this is not possible
but f′ is such that valence can be transferred from x to a hyperedge e2 < y < x resulting in the
hypertree j. We may assume that j is such that valence cannot be transferred from e1 to e2. If we
apply Lemma 7.4 with x = j and e1, y as givers and e2, x as receivers, we obtain that j is such
that y can transfer valence to e2. In other words, f′ is such that a transfer of valence is possible
from x to e2 (which would have been the last case to be examined anyway). Let the result of that
transfer be the hypertree h. We may assume that h is not of the form f′0 for any f0, i.e., that h is
such that e1 cannot transfer valence to e2.

Since we have assumed that f′ was such that x cannot transfer valence to e1, we see that h is
such that e2 cannot transfer valence to e1. Hence h is lonely. Because h is such that both e1 and e2
can transfer valence to x , we have ah ≤ x . If ah = x and therefore t (h) = f′, we are done; if ah ≠

x then f′ is such that x can transfer valence to ah (the result being t (h), which is of the form f′0
for some f0), showing that x is internally inactive with respect to f. This finishes the proof of (3).

What remains is to examine the set Tf ∪ {f′} of lattice points. Recall that f′ = t (h) and the
hyperedge ah determine the hypertree h. Let us label the elements of Tf so that ah1 > ah2 > · · · >

ah|Tf|
holds. Other than the ones belonging to e2 and the ahi , i = 1, 2, . . . , |Tf|, all components
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of the elements of Tf ∪ {f′} are identical. The remaining components are almost the same too as
each hi is derived from f′ by a transfer of valence from ahi to e2. From this description it is clear
that Tf ∪ {f′} is the set of vertices of an inverted |Tf|-dimensional unit simplex. We need to show
two things about these points.

First, if a hyperedge x is not one of the ah for h ∈ Tf then it is internally active either with
respect to all elements of Tf ∪{f′} or with respect to none of those. In other words for any h ∈ Tf,
we have that x is internally inactive with respect to h if and only if it is internally inactive with
respect to f′. Let first x be internally inactive with respect to h. If h is such that a transfer of
valence is possible from x to one of the ei , then an application of Lemma 5.2 at h shows that it
is such that x can transfer valence to ah (when i = 1, we use the fact that k = f′ − i{e1} + i{e2}

is a hypertree). In other words, f′ is such that x can transfer valence to e2. If h is such that x can
transfer valence to a hyperedge e2 < y < x , then by applying Lemma 7.4 to f′ with ah and x as
givers and e2 and y as receivers, we see that x is internally inactive there.

Let now x be internally inactive with respect to f′. If f′ is such that a transfer of valence is
possible from x to e1, then by Lemma 5.2, the same is possible to e2. If f′ is such that x can
transfer valence to some e2 < y < x , then apply Lemma 7.4 at h with e2 and x as givers and
ah and y as receivers to show that h is such that either x can transfer valence to y (in which
case we are done) or x can transfer valence to e2. So what is left is to study the case when
j = f′ − i{x} + i{e2} = h − i{x} + i{ah} is a hypertree and to show that x is internally inactive with
respect to h.

The conclusion is immediate if ah < x so we assume ah > x . If j is not lonely then it is easy
to apply Lemma 7.4 (coupled with the fact that h is lonely) to show that h is such that x can
transfer valence to e1 or to e2. If j is lonely, then it has a corresponding hyperedge aj. Because j
is such that both e1 and e2 can transfer valence to x (the results being f′ and k, respectively), we
have aj ≤ x ; but in fact aj < x for otherwise we would have j ∈ Tf but we assumed x was not of
the form ah for any h ∈ Tf. Now apply Lemma 7.4 to h with x and ei as givers and ah and aj as
receivers, where i can be 1 or 2. In at least one of the two cases, ei cannot transfer valence to aj
because of the definition of ah (recall that aj < x < ah). So x can transfer valence to aj and thus
it is internally inactive with respect to h.

Second, we claim that with respect to hi , the hyperedges e2, ah|Tf|
, . . . , ahi are internally active

and ahi−1 , . . . , ah1 are internally inactive. This can again be separated into two parts. One is that
ah is internally active with respect to h for all h ∈ Tf. The other is that if h ≠ j are in Tf with
ah > aj, then ah is internally inactive with respect to j, whereas aj is internally active with
respect to h. As to the first claim, if h is such that ah can transfer valence to e1 or e2, then the
existence of f′ and k in QH and Lemma 5.2 lead to a contradiction with the fact that h is lonely.
If the transfer from ah is to some hyperedge e2 < x < ah, then again Lemma 5.2 leads to the
conclusion that h is such that both e1 and e2 can transfer valence to x , which contradicts the
definition of ah.

Let now h ≠ j be elements of Tf with ah > aj. As j is such that ah can transfer valence to
aj (the result being h), ah is indeed internally inactive with respect to j. Assume now that aj is
internally inactive with respect to h. If h is such that aj can transfer valence to e1 or e2, then
it is easy to deduce from Lemma 7.4 (applied at x = f′ or k with givers ah, aj and receivers
e1, e2) the contradiction that j or h cannot be lonely. If h is such that aj can transfer valence to
some hyperedge e2 < x < aj, resulting in the hypertree p, then we arrive at a contradiction as
follows. We may assume that p is lonely for otherwise we can apply Lemma 7.4 with x = h (the
givers are aj and one of e1 or e2, the receivers are x and the other of e1 and e2, and we use the
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loneliness of h) to show that h is such that aj can transfer valence to e1 or e2. Note also that p
can be obtained from j by a transfer of valence from ah to x .

Again from Lemma 7.4, this time applied at x = f′ with givers ah, aj and receivers e2, x , we
deduce that f′ is such that either ah or aj can transfer valence to x . A similar conclusion can be
drawn at the hypertree k (now the receivers are e1 and x). If the same option held true at both f′

and k, then we would get a contradiction with the definition of ah or aj. Let us therefore assume
that f′ is such that ah cannot transfer valence to x and that k is such that aj cannot transfer valence
to x ; the other option, with the roles of ah and aj interchanged, can be handled in the exact same
way. In other words, h is such that e1 can transfer valence to x but e2 cannot. Likewise, j is such
that e2 can transfer valence to x but e1 cannot. This means that there exists a set U1 of hyperedges
that is tight at h, contains x , and does not contain e2. By passing to a smaller set if necessary,
we may assume that U1 is such that Bip H |U1 is connected (cf. the first part of Lemma 4.11).
Because of our assumed transfers, e1 and aj are also elements of U1. Similarly, we have a set
U2 ⊂ E with Bip H |U2 connected that is tight at j, contains x , e2, and ah but does not contain e1.

It is easy to see that both U1 and U2 remain tight at p. Let Γ be an arbitrary realization of p.
By Lemma 4.11, Γ intersects Bip H |U1 and Bip H |U2 in trees. In particular, Γ contains a path
from x to e1 which misses e2 as well as a path from x to e2 which misses e1. Since p is lonely, Γ
also contains the two-edge path from e1 to e2 through v. The union of the three paths contradicts
the assumption that Γ is a tree.

This completes the proof of (4) and hence that of the Proposition. �

Theorem 7.6. Let G be a connected bipartite graph with a vertex u that is only joined by edges
to the vertices v and w. If the graphs G − {u} (where we erase u and the edges uv and uw from
G) and G/vuw (where we contract the path vuw to a point) both satisfy Conjecture 7.1, then
so does G.

Proof. Immediate from a comparison of Propositions 6.14 and 7.3. �

Theorem 7.6 and the list of operations before Proposition 7.3 reduce Conjecture 7.1 to
connected bipartite graphs that cannot be disconnected by the removal of a vertex or two adjacent
vertices, and in which each vertex is at least trivalent. One such graph is discussed below.

Example 7.7. Consider the bipartite graph shown in Fig. 8. Both of its induced hypergraphs have
the interior polynomial

1 + 10ξ + 48ξ2
+ 146ξ3

+ 302ξ4
+ 410ξ5

+ 277ξ6
+ 49ξ7

+ ξ8.

This is a non-trivial example of Conjecture 7.1 because the structure is not symmetric: even
though both color classes have nine elements with matching valences, there is no isomorphism
that interchanges them. This is demonstrated by the slight difference between the corresponding
exterior polynomials. If the full dots play the role of hyperedges, we obtain

1 + 8η + 36η2
+ 110η3

+ 235η4
+ 344η5

+ 318η6
+ 162η7

+ 30η8,

whereas if the hollow dots represent hyperedges, we get

1 + 8η + 36η2
+ 110η3

+ 235η4
+ 348η5

+ 326η6
+ 159η7

+ 21η8.

All three polynomials are outputs of a computer code by Péter Juhász.
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Fig. 8. The graph of Example 7.7.

Fig. 9. Left: the planar dual of a plane hypergraph H of three hyperedges. Right: the planar dual of the corresponding
plane bipartite graph Bip H .

8. Planar duality

We call a hypergraph H = (V, E) planar if the corresponding bipartite graph Bip H is
planar, i.e., if it admits an embedding into the 2-sphere S2. In the rest of the paper we will
almost always assume that such an embedding is fixed, but for extra clarity, we will talk about
plane (hyper)graphs to mean a graph together with a particular embedding. A region of a plane
(hyper)graph is a connected component of the complement of the image of the embedding. The
set of regions will customarily be denoted with R. If the graph is non-empty and connected, each
region is homeomorphic to a disk.

For the rest of the paper, it will be convenient to allow multiple edges in (plane) bipartite
graphs. Such objects induce the same two hypergraphs (and therefore the same two hypertree
polytopes and the same interior and exterior polynomials) as the bipartite graph which results
from reducing each set of multiple edges to a single edge. This is all fairly natural given that a
spanning tree may contain at most one element from a set of multiple edges.

Definition 8.1. Let H = (V, E) be a plane hypergraph so that its associated bipartite graph
Bip H is connected. We define the planar dual hypergraph H ∗ of H by keeping the set E
of hyperedges and letting the new set of vertices be the set R of regions of H . We let a region
belong to a hyperedge if it is incident with the point representing it on the plane.

The planar dual hypergraph H ∗ is also planar because Bip H ∗ can be represented by a planar
diagram where we place a new vertex in each region r ∈ R and connect it to all points around
the boundary ∂r that represent elements of E . See the left panel of Fig. 9 for an example. In fact
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we will identify R and the set of points just introduced and think of the planar dual hypergraph
as the plane hypergraph with the embedding that we have just described.

It is easy to see that our notion generalizes the usual duality of plane graphs. Indeed, a plane
graph G = (V, E) is also a hypergraph. Passing to Bip G means placing a new vertex to the
midpoint of each edge. Now in G∗, these same midpoints are connected to the points which
represent the two regions on either side of the original edge. Finally, if we forget the midpoint,
these two connections merge to form the usual dual edge.

Proposition 8.2. For a plane hypergraph H , the planar dual of the planar dual of H is
naturally isomorphic to H .

Proof. By an examination of the left panel of Fig. 9. We explained after Definition 8.1 how
Bip H ∗ is embedded in S2. Each point representing a vertex v ∈ V is in some region of Bip H ∗.
It is easy to see that this correspondence is onto and one-to-one. �

The hypertree polytopes QH and QH ∗ of a planar dual pair are subsets of the same Euclidean
space RE . Next, we address the effect of planar duality on the hypertree polytope, as well as the
interior and exterior polynomials.

Theorem 8.3. Let the hypergraphs H = (V, E) and H ∗
= (R, E) be planar duals. Then

QH and QH ∗ are reflections of each other in a point. Furthermore, we have IH ∗ = XH and
XH ∗ = IH .

In Fig. 9, left panel we see that the hypergraph G0 of our earlier examples is planar and in fact
planar self-dual. This explains why (10) showed its interior and exterior polynomials to coincide.

The following argument contains simplifications made by A. Bene.

Proof of Theorem 8.3. Proposition 8.2 implies that for the claim on the polytopes, it suffices to
show that if f: E → N is a hypertree in H then f∗(e) = |e| − 1 − f(e) defines a hypertree in
H ∗. (So the center in which QH and QH ∗ are symmetric is the point whose e-coordinate is
1
2 (|e| − 1) for all e ∈ E .)

To this end, choose a spanning tree Γ ⊂ Bip H that realizes f. Form its planar dual Γ d in
the classical sense, i.e., put a vertex in each element of R and connect these by edges that bisect
each edge of Bip H that is not an edge in Γ . This is well known to be a spanning tree in the
dual graph, in particular it is cycle-free, connected, and contains all points of R. We are going
to use a continuous deformation followed by some discrete steps to turn Γ d into a spanning tree
Γ ∗

⊂ Bip H ∗ that realizes f∗.
Each edge γ d of Γ d bisects an edge γ of Bip H and γ has exactly one end e in E . Let us

push the midpoint of γ d along γ so that it gets very close to e. If r ∈ R and e ∈ E are adjacent
with two edges γ1, γ2 of Bip H , then we merge the halves of γ d

1 and γ d
2 adjacent to r , as shown

in the right side of Fig. 10. The result of the modifications so far is still a plane tree which we
will continue to denote with Γ d .

Now let e ∈ E be arbitrary. Write the edges of Bip H emanating from e, in a cyclic order
determined by the embedding, as γ1, . . . , γ|e|. Let the edges among these that do not belong to
Γ form k maximal subsequences of consecutive elements. Let the lengths of these subsequences
be s1, . . . , sk . In our construction so far, each of these k groups resulted in a point ei near e with
si +1 edges connecting it to elements of R. See Fig. 10, which shows k = 3 with s1 = 2, s2 = 1,
and s3 = 4. We wish to push these points e1, . . . , ek all the way to e so that the edges adjacent to
them become edges of Bip H ∗.
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Fig. 10. Modifying a tree Γ d in (Bip H )∗ toward a tree Γ∗ in Bip H ∗. Solid edges represent Bip H ; the thick ones
are in Γ and the thin ones are not.

The simplest case is that of k = 1 when we can just identify e1 with e. Note that after this, the
number of edges of Γ d adjacent to e is s1 + 1 = |e| − (f(e) + 1) + 1 = f∗(e) + 1. When k ≥ 2,
we still start with pushing e1 to e. When we do the same to e2, however, a unique cycle is created
in Γ d and we remove one of its two edges adjacent to e in order to have a tree again. Then we
push e3 to e and remove another edge, and so forth until the last point ek . In the tree that results
at the end, the valence of e is (s1 + 1) + s2 + · · · + sk = |e| − (f(e) + 1) + 1 = f∗(e) + 1. After
applying this procedure to all elements of e ∈ E with k ≥ 1, we arrive at a tree that is adjacent
to all such hyperedges as well as to all elements of R.

We intentionally left out the case k = 0 which of course corresponds to f∗(e) = 0. To finish
the construction of the spanning tree Γ ∗

⊂ Bip H ∗ realizing f∗, we add one more edge for each
such hyperedge so that it is connected to an arbitrarily chosen adjacent element of R.

The claim on the polynomials is now easily obtained by the following observation. The
correspondence f ↔ f∗ is a bijection between hypertrees in H and H ∗. The hypertree f can be
transformed into g by a single transfer of valence if and only if f∗ can be transformed into g∗ by
the opposite transfer. Therefore with respect to any order of the hyperedges, we have ῑ(f∗) = ε̄(f)
and ε̄(f∗) = ῑ(f). �

Definition 8.4. If the hypertree f in the plane hypergraph H and the hypertree f∗ in H ∗ are
related as above (namely, f(e) + f∗(e) = |e| − 1 for all hyperedges e), then we will call them
planar dual hypertrees.

9. Trinities

9.1. Basic observations

Starting from a plane hypergraph and iterating the constructions of planar and abstract duality,
a total of six plane hypergraphs can be built. The corresponding bipartite graphs form a triple;
see Fig. 11 for an example. The picture thus obtained has a rich combinatorics and admits
several equivalent definitions (cf. Remark 9.5). To highlight the perfect symmetry between the
constituent parts, we chose to build our discussion around the following notion.

Definition 9.1. A trinity is a triangulation of the sphere S2 together with a three-coloring of
the 0-simplices. (I.e., 0-simplices joined by a 1-simplex have different colors.) According to
dimension, we will refer to the simplices as points, edges, and triangles.
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Most claims of this subsection can be repeated for three-colored triangulations of other closed,
orientable surfaces. The material in the rest of the section, however, is quite specific to the sphere.
We hope to return to this point in our forthcoming paper with Bene.

We will use the names red, emerald, and violet for the colors in the trinity and denote the
respective sets of points with R, E , and V . Let us color each edge in the triangulation with the
color that does not occur among its ends. Then E and V together with the red edges form a
bipartite graph that we will call the red graph and denote with G R . Each region of the red graph
contains a unique red point. Likewise, the emerald graph G E has red and violet points, emerald
edges, and regions marked with emerald points. Finally, the violet graph contains R and E as
vertices, violet edges, and a violet point in each of its regions.

Definition 9.2. We will refer to the plane bipartite graphs G R , G E , and GV above as the
constituent bipartite graphs of the trinity. The hypergraphs induced by the constituent bipartite
graphs are said to be contained in the trinity.

A trinity contains six plane hypergraphs. It can be uniquely reconstructed from each of the six
as follows.

Proposition 9.3. Given a trinity with point set R ∪ E ∪ V as above, let H = (V, E) be the
hypergraph with emerald hyperedges and violet vertices so that Bip H = G R . Then we also

have (R, E) = H ∗, (E, R) = H ∗, (V, R) =


H ∗

∗

=


H
∗

, (R, V ) =


H
∗

, and

(E, V ) = H .

Proof. Obvious from an examination of Fig. 11. �

The triangles of a trinity can also be colored but not with the original three colors. Notice that
each triangle is adjacent with exactly one edge and one point of each color. Compared to the
orientation of the sphere, the cyclic order of the colors around each triangle may be positive or
negative. If two triangles share an edge, these orientations are opposite. Hence the triangles have
a black and white checkerboard coloring according to orientation, cf. Fig. 11. In particular, the
dual graph of a trinity is a plane bipartite cubic (i.e., uniform trivalent) graph. (We remark that
the graph used in Example 7.7 belongs to this class.) It turns out that the converse is also true.

Proposition 9.4. Planar duals of plane bipartite cubic graphs are three-colorable.

Proof. Let θ be a plane bipartite cubic graph and let us call its color classes black and white.
Direct each edge in θ from its black to its white endpoint. Now if we assign the modulo 3
coefficient 1 to the thus directed edges, the result is a cycle C and hence a homology class in
H1(S2, Z3) = 0. Therefore the modulo 3 intersection number of any closed loop with C is zero.

Choose a base region of θ and assign the remainder class 0 ∈ Z3 to it. Given any other region,
connect it to the base with a path in S2 and assign to the region the modulo 3 intersection number
of the path and C . By the above, this is well defined and it is clearly a three-coloring with the
colors 0, 1, and 2. �

Remark 9.5. According to Proposition 9.4 and the paragraph above it, the notion of a trinity is
equivalent to that of a plane bipartite cubic graph.

Finally, notice that the sets of red edges, emerald edges, violet edges, white triangles, and
black triangles all have the same cardinality n. In particular, adjacency defines natural bijections
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Fig. 11. A trinity of plane bipartite graphs.

between white triangles and edges of each color. Now if we apply Euler’s formula to the trinity,
we get |R| + |E | + |V | − 3n + 2n = 2, that is that in any trinity,

the total number of points exceeds that of the white triangles by 2. (15)

9.2. The Tree Trinity Theorem

Let T be a trinity. Let us take the planar dual G∗

R of the red graph G R in the classical sense,
i.e., the vertex set of G∗

R is R and its edges are in a one-to-one correspondence with the red edges
of the trinity. This graph has a natural orientation (more precisely, two natural orientations that
are opposites of each other), defined as follows. Put a positive spin (as in a small spinning top) to
the emerald points and a negative spin to the violet points. If e ∈ E and v ∈ V are connected by
a (red) edge, then the two spins induce the same orientation on the dual edge. See the right panel
of Fig. 9 for an illustration. Notice that at each red point r , the edges of G∗

R that are adjacent to
it are oriented toward and away from r in an alternating fashion. In particular, each vertex of G∗

R
has the same number of incoming and outgoing edges.

Similar properties hold for the graphs G∗

E and G∗

V . It is in fact this triple of directed graphs
that Tutte called a trinity. In [7], he proved a general property of directed graphs which will be
stated after the next definition.

Definition 9.6. Let D be a finite directed graph (possibly with multiple edges) and fix a vertex
r ∈ D, called the root. A spanning tree in D is called a (spanning) arborescence with respect to
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r (or rooted at r ) if the unique path in the tree from r to any other vertex is oriented toward that
vertex.

A directed graph is called balanced if each of its points has the same in-degree as its out-
degree.

Theorem 9.7 (Tutte). Let D be a finite, balanced directed graph. The number of its spanning
arborescences does not depend on the choice of root. The same holds for trees that are oriented
toward the root and the counts of the two kinds of tree coincide.

The resulting invariant of balanced directed graphs is denoted with ρ(D) and called the
arborescence number. The following will be a useful characterization.

Lemma 9.8. Spanning arborescences of a finite directed graph with root r are exactly those
cycle-free subgraphs which also have the property that for any vertex other than r, exactly one
edge of the subgraph is directed toward that vertex.

Proof. Let D = (V, E) be a finite directed graph. If it is disconnected then both properties above
describe the empty set. If D is connected and A is a spanning arborescence with respect to r , then
of course it is cycle-free and it has at least one edge directed into any vertex other than r , namely
the last edge on the path from r to that vertex. But because A contains exactly |V | − 1 edges,
these already exhaust all of them.

Conversely, if a subgraph is cycle-free than it may have at most |V | − 1 edges. If it has one
incoming edge for all points other than r , then it has to have exactly |V | − 1 of them (so it is a
spanning tree) and none can be directed into r . For any vertex v ≠ r , the first edge of the unique
path from r to v has to be directed toward v. The same holds for the second edge lest they share
terminal points with the first. Etc. �

Let us now return to trinities and recall a beautiful result by Tutte.

Theorem 9.9 (Tree Trinity Theorem). The arborescence numbers of the three directed graphs
associated to a trinity are the same: ρ(G∗

R) = ρ(G∗

E ) = ρ(G∗

V ).

We will call this common value the arborescence number of the trinity and denote it with
ρ(T ). We quickly sketch a proof, based on [9], as elements of it will be relevant later.

Proof. Recall that the triangles of a trinity have a black-and-white color scheme. We may
concretize our choice of orientation in the three directed graphs by requiring that the head of
each edge be in a white triangle while the tail end of each is in a black triangle. Compare Fig. 9
(right panel) and 12. Then by Lemma 9.8, a spanning arborescence in one of our directed graphs,
say G∗

R , is an assignment of an adjacent white triangle to each non-root red point (the unique
incoming edge will reach the point through the chosen triangle). We adapt this point of view for
the rest of the proof.

Let us now distinguish a white triangle t0 (called the outer triangle) and choose its adjacent
points r0 ∈ R, e0 ∈ E , and v0 ∈ V as the roots in the three directed graphs. Then t0 can never be
selected into an arborescence of any color. Notice that by (15), the rest of the triangles and the
rest of the points form equinumerous sets.

Fix a spanning arborescence A in G∗

R . We are going to associate to it two other spanning
arborescences, in G∗

E and G∗

V respectively, so that

the union of the three mappings is a bijection from the set of non-root points to

the set of non-outer white triangles.
(16)
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Fig. 12. The trinity of Fig. 11 and the directed graph G∗
R .

In other words, no white triangle will get assigned to two different points. We also claim that,
given A, there is a unique way to do this.

The dual A∗ of A is a spanning tree in G R . This tree A∗ consists of those edges whose duals
are not in A, in other words of those red edges whose adjacent white triangles have not been
assigned to a red point. Note that the edge connecting e0 and v0 is part of A∗.

As A∗ is a tree, it has at least two leaves, i.e., valence one points. If those are e0 and v0, then
A∗ consists of a single edge. Hence there cannot be any other emerald or violet points and we
have no assigning to do. Otherwise, as each leaf is adjacent to a unique white triangle that has
not yet been assigned, it makes sense to pick a leaf in A∗ that is neither e0 nor v0, make the
obvious assignment, and delete the leaf (with its single adjacent edge) from A∗. We continue this
procedure until A∗ is reduced to the single edge of t0 between e0 and v0. By that time, as A∗ is
spanning, all other emerald and violet points have been associated to an adjacent white triangle
so that no white triangle was used twice.

We have to check (cf. Lemma 9.8) that the subgraphs we constructed in G∗

E and G∗

V are cycle-
free. This is shown using proof by contradiction, arguing that a violet or emerald cycle would
prevent some red point from being connected to the red root r0 in A. See [9] for details.

As the color red played no special role above, any triple of spanning arborescences satisfying
(16) can be uniquely reconstructed from any of its three members. In particular, we see that the
choice of t0 specifies a bijection between any two of the three sets of arborescences. �

A mapping satisfying (16) will be called a Tutte matching (with respect to some fixed outer
white triangle t0). Tutte matchings are exactly the non-zero expansion terms of a determinant
that first appeared in the work of Berman.

Theorem 9.10 (Berman). The common arborescence number of the three directed graphs of a
trinity is the absolute value of the determinant of the adjacency matrix between non-outer white
triangles and non-root points.

This is a square matrix by the observation (15). In his proof, Berman [1] checks that any Tutte
matching is the union of three spanning arborescences (which boils down to cycle-freeness and
another argument by contradiction) and that all non-zero expansion terms have the same sign.
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Example 9.11. The adjacency matrix associated with the trinity (and triangle t0) of Fig. 11 is

M =



t1 t2 t3 t4 t5 t6 t7 t8

r1 0 0 0 0 1 0 1 0
r2 1 1 0 0 0 0 0 0
r3 0 0 1 1 0 0 0 0
e1 0 0 0 1 0 0 1 1
e2 1 0 0 0 1 1 0 0
v1 0 1 0 1 1 0 0 0
v2 0 0 1 0 0 0 0 1
v3 0 0 0 0 0 1 1 0.


Its determinant is 7, which equals the number of spanning arborescences in each of the three dual
directed graphs, such as the one shown in Fig. 12.

10. Hypertrees in a trinity

10.1. Hypertrees and arborescences

The main result of this last section is the following.

Theorem 10.1. Let G = (V0, V1, E) be a plane bipartite graph. The arborescence number of
its planar dual G∗ agrees with the number of hypertrees in the hypergraphs G0 = (V1, V0) and
G1 = (V0, V1) induced by G. I.e.,

ρ(G∗) = |QG0 ∩ ZV0 | = |QG1 ∩ ZV1 |.

Proof. Let us denote the vertex set of G∗ with R and fix a root r0 ∈ R. Any spanning
arborescence A rooted at r0 has a planar dual spanning tree A∗ in G and that in turn induces
a hypertree fA: V0 → N. We will show that the mapping A → fA is one-to-one and onto. (A
similar statement holds of course for hypertrees in G1 instead of G0. Thus what we find as a
byproduct is a set of spanning trees in G that simultaneously realize all hypertrees in G0 and G1.)

For any v ∈ V0, the edges of G adjacent to it give rise to a directed cycle Cv in G∗ and the
edge set of G∗ is the disjoint union of these cycles. Note that each cycle Cv travels around the
corresponding point v following the same orientation.

First we show that if two arborescences A and B contain the same number of edges from
each Cv (which is equivalent to fA = fB), then A = B. Assume this is not so. Then at least one
cycle Cv1 contains an edge α1 of A that is not an edge in B. Let the head of α1 be r1. Obviously
r1 ≠ r0 because A has an edge pointing to it. The other arborescence B also has to have an
edge β1 pointing to r1 but that has to be part of a different cycle Cv2 . The edge β1 cannot belong
to A because then A would have two edges pointing to r1. Then, because A and B intersect Cv2

in the same number of edges, Cv2 also contains an edge α2 which belongs to A but does not
belong to B.

Iterating our argument, we find cycles Cv1 , Cv2 , Cv3 , . . . in G∗, along with edges αi ∈

Cvi ∩ (A \ B) and βi ∈ Cvi+1 ∩ (B \ A), until the first repetition occurs. After discarding
some cycles at the beginning and relabeling the rest, we may assume that Cvk+1 = Cv1 (and
αk+1 = α1) was the first such coincidence. The situation is depicted in Fig. 13. The interiors of
the cycles Cvi are disjoint from G∗, hence the non-root points r1, . . . , rk separate G∗ into the
smaller directed graphs D1 and D2, see Fig. 13, which have only those points in common. Both
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Fig. 13. A cycle of cycles in the directed graph G∗.

D1 and D2 have to contain vertices other than r1, . . . , rk because otherwise A would contain the
cycle α1, . . . , αk or B would contain the cycle βk, . . . , β1. Only one of D1 or D2, however, can
contain the root r0. Now the contradiction is apparent from the fact that no directed path in A can
pass from D1 to D2 and no directed path in B can pass from D2 to D1.

To prove that any hypertree f: V0 → N can be obtained in the form f = fA, we employ the
following strategy. Start from an arbitrary spanning tree Γ in G that realizes f and take its dual
tree Γ ∗

⊂ G∗. We are going to change Γ step-by-step through other realizations of the same
hypertree f so that the dual moves closer and closer to being an arborescence. It is sufficient to
keep track of the changes made to the dual tree Γ ∗. The condition that we preserve the hypertree
translates to requiring that for each v ∈ V0, the number of edges in Cv ∩ Γ ∗ stays invariant
throughout the process.

It is of course crucial to describe carefully what we mean by getting closer to an arborescence.
In a rooted tree, edges γ have a well defined distance d(γ ) ∈ N to the root (those adjacent to
the root have d = 0 etc.). If the tree is directed, then there is also a clear sense for each edge to
be directed toward the root or away from the root. The first kind of edge will be called bad and
the second kind good. The tree is an arborescence if and only if all of its edges are good. Let us
associate the following quantities to a finite, directed, rooted tree (T, r).

• Let n(T, r) denote the smallest value of d among bad edges. (So that within a radius of n(T, r)

from the root, the tree is an arborescence.) If there are no bad edges, let n(T, r) be the maximal
distance from r to any point in T .

• For 1 ≤ m ≤ n(T, r), let λT,r (m) be the number of edges γ with d(γ ) = m −1. These values
are positive. For m > n(T, r), we define λT,r (m) = 0.

Then, for a pair of rooted trees we write (T1, r1) ≺ (T2, r2) if either

1. the sequence λT1,r1(1), λT1,r1(2), λT1,r1(3), . . . is smaller than the sequence λT2,r2(1), λT2,r2

(2), λT2,r2(3), . . . in lexicographic order, or
2. the two sequences coincide (implying n(T1, r1) = n(T2, r2) = n) but the number of bad edges

with d = n is higher in T1 than in T2.

It is easy to see that ≺ is a partial order of rooted trees.
This may sound complicated but the actual idea of the proof is very simple. If Γ ∗ is not a

spanning arborescence already, then it contains a bad edge γ with d(γ ) = n(Γ ∗, r0). If we
remove γ from Γ ∗, then the tree falls apart into a root component and a non-root component.
Now γ is part of a cycle Cv which contains points from both components. Therefore Cv also has
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an edge γ ′ that goes from a point of the root component to a point of the non-root component.
Let Γ ∗′ denote the tree obtained from Γ ∗ by replacing γ with γ ′.

Note that γ ′ is a good edge of the new tree. The difficulty is that in what used to be the non-
root component, distances to the root and relative orientations may have changed. What we do
know though is that each of those edges is farther away from the root than γ ′. Let us separate
two cases according to whether the non-root component is reattached ‘close to’ or ‘far from’ the
root.

(i) If d(γ ′) < n(Γ ∗, r0) (where d(γ ′) is of course measured in Γ ∗′), then (Γ ∗, r0) ≺ (Γ ∗′, r0)

by (1). Indeed, with the addition of γ ′, λ(d(γ ′)+1) went up by 1 whereas the λ values before
it stayed the same.

(ii) If d(γ ′) ≥ n(Γ ∗, r0), then (Γ ∗, r0) ≺ (Γ ∗′, r0) either by (1) (if γ was the unique bad edge
of Γ ∗ with d(γ ) = n(Γ ∗, r0), in which case λ(n(Γ ∗, r0) + 1) moves from 0 to a positive
value) or by (2).

We conclude that if the dual of a realization of f is not a spanning arborescence, then it is
possible to change it to another tree, dual to another realization, that is larger in the sense of
≺. Because there are altogether finitely many spanning trees in G∗, it is now obvious that a
spanning arborescence will be reached after finitely many improvements. Thus we find that our
map A → fA is onto. �

Theorem 10.1 of course verifies Postnikov’s Theorem 3.11 in the case of a planar bipartite
graph G. Postnikov [4, Lemma 12.6] describes a sufficient condition on a set of spanning trees of
G in order for them to define a triangulation of the root polytope and therefore to simultaneously
realize all hypertrees of the two induced hypergraphs. It is interesting to note that our set of
spanning trees satisfies his condition, as follows.

Proposition 10.2. Let G be a plane bipartite graph with (classical) dual G∗ as before. Let A
and B denote two spanning arborescences of G∗ with respect to the same root. Then there is no
cycle α1, β1, α2, β2 . . . , αk, βk in G composed of edges α1, α2, . . . , αk of A∗ and β1, β2, . . . .βk
of B∗.

Proof. It is easy to see that edges of A could only cross such a cycle in one direction and edges
of B could only cross it in the opposite direction. That leads to the usual contradiction of some
points becoming inaccessible from the root for one of the two arborescences. �

Tutte’s Theorem 9.9 says that the three directed graphs in a trinity have the same number of
spanning arborescences, just like the two graphs in a planar dual pair have the same number of
spanning trees. We may now add that the six hypergraphs contained in the trinity have the same
number of hypertrees. Namely, the following is immediate from Theorem 10.1.

Corollary 10.3. The arborescence number ρ associated to a trinity is also the number of
hypertrees in any of the six hypergraphs contained in the trinity.

Let us make one more observation. We saw how each Tutte matching contains three spanning
arborescences (one for each of G∗

R , G∗

E , and G∗

V ) and how the (classical) planar duals of these
realize hypertrees in each of the six hypergraphs. This way, each hypertree turns up in relation to
exactly one Tutte matching. In fact we also have the following.

Proposition 10.4. In any trinity, the six hypertrees induced by a Tutte matching form three pairs
of planar duals (in the sense of Definition 8.4).
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Proof. Pick an arbitrary, say emerald point from the trinity and denote it with e. It is matched to
one adjacent white triangle (if the point is the root, substitute the outer white triangle here). Out of
its other |e|−1 adjacent white triangles, suppose that m are matched to red points and |e|−1−m
to violet points. Then there are |e|−m red edges and m +1 violet edges adjacent to e that belong
to the spanning trees of G R and GV , respectively, induced by the Tutte matching. This causes
the e-coordinates of the corresponding hypertrees to be |e| − m − 1 and m, respectively, the sum
of which is indeed |e| − 1. �

10.2. Determinant formulas

We are going to extend Berman’s Theorem 9.10 to write hypertree polytopes associated with
plane hypergraphs in determinant form. Let M denote the adjacency matrix with rows indexed
by the non-root points and columns indexed by the non-outer white triangles. If a triangle ti is
adjacent to the emerald point e j and the non-root violet point vk , then at the intersection of row
vk and column ti , change the entry 1 to e j . (After it becomes a matrix entry, we will treat e j as
an indeterminate associated with the original point.)

Call this matrix the enhanced adjacency matrix and denote it with Me→v . By varying the
colors, altogether six such matrices can be associated to a trinity. Notice that even though M
contains no row indexed by a root, indeterminates belonging to roots do appear in enhanced
adjacency matrices.

It would be rather pointless to write the symbol e j in the row indexed by e j because that
would simply multiply the determinant by e j . The twist that we introduced, on the other hand,
turns out to be quite useful.

Theorem 10.5. Let the plane bipartite graphs G R , G E , and GV be the constituents of a trinity.
Fix an outer white triangle t0 which is adjacent to the roots r0 ∈ R, e0 ∈ E, and v0 ∈ V and
form the enhanced adjacency matrix Me→v as above. Then for the hypergraph H = (V, E)

and its hypertree polytope, we have

QH ∩ ZE
= det Me→v

in the following sense. The determinant on the right hand side is a sum of monomials in the
indeterminates e ∈ E. Either each monomial has coefficient +1 or each has −1. If we write the
exponents in the monomials as vectors, the set we obtain is exactly the left hand side.

As a special case, we may use this theorem to write the vertices of the spanning tree polytope
of a plane graph as a determinant, too. To avoid abuse of notation, we may re-state the result as

± det Me→v =


f∈QH ∩ZE


e∈E

ef(e).

However it is unlikely that the first form will lead to confusion.

Proof. The claim on the uniform signs of course follows from Berman’s Theorem 9.10 on the
adjacency matrix M . There and in the proof of Theorem 9.9 we saw that the non-zero terms in
the expansion of det M , i.e., the Tutte matchings (of non-root points in the trinity to adjacent
non-outer white triangles), are also triples of spanning arborescences in the directed graphs G∗

R ,
G∗

E , and G∗

V . Furthermore, all spanning arborescences from each of the three directed graphs
occur as part of exactly one triple.

Then in the proof of Theorem 10.1 we found that the planar duals A∗ of the spanning
arborescences A of G∗

R realize each hypertree in QH exactly once. Recall that the value of
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the hypertree fA at an emerald point e j is the number of adjacent (to e j ) edges of A∗ minus one.
A red edge is in A∗ if and only if its adjacent white triangle is not assigned to its red point, i.e., if
the triangle is the outer one or if it is assigned to an emerald or violet point.

If e j ≠ e0 then e j is not adjacent to t0 and out of all white triangles adjacent to e j , exactly
one is assigned to an emerald point (namely, e j ). Thus fA(e j ) is the number of white triangles
that are adjacent to e j and which are assigned to their violet points. The same holds for e0 where
now t0 plays the role of the correction term −1.

Finally, we just have to check the effect of enhancing M into Me→v on the expansion term
that corresponds to A. In that monomial, by definition, the indeterminate e j will appear once for
each time that a (non-outer) white triangle ti , which is adjacent to the point e j , gets assigned to
its adjacent violet point vk . This completes the proof. �

Example 10.6. The hypertree polytopes of Example 3.9 can be recomputed as the determinants
of the following two matrices Me→v and Mv→e (warning: the labels of the points have changed,
cf. Fig. 11):



t1 t2 t3 t4 t5 t6 t7 t8

r1 0 0 0 0 1 0 1 0
r2 1 1 0 0 0 0 0 0
r3 0 0 1 1 0 0 0 0
e1 0 0 0 1 0 0 1 1
e2 1 0 0 0 1 1 0 0
v1 0 e0 0 e1 e2 0 0 0
v2 0 0 e0 0 0 0 0 e1
v3 0 0 0 0 0 e2 e1 0


;



t1 t2 t3 t4 t5 t6 t7 t8

r1 0 0 0 0 1 0 1 0
r2 1 1 0 0 0 0 0 0
r3 0 0 1 1 0 0 0 0
e1 0 0 0 v1 0 0 v3 v2
e2 v0 0 0 0 v1 v3 0 0
v1 0 1 0 1 1 0 0 0
v2 0 0 1 0 0 0 0 1
v3 0 0 0 0 0 1 1 0


.

The first is equal to e2
0e1 + e0e2

1 + e2
0e2 + e0e1e2 + e2

1e2 + e0e2
2 + e1e2

2, and the second one is
v0v1 +v2

1 +v0v2 +v1v2 +v0v3 +v1v3 +v2v3. Observe that the sequences of exponents ((2, 1, 0)

etc. and (1, 1, 0, 0) etc., respectively) are exactly the hypertrees that we saw earlier.

Of course, as we have already done in the example above, we may use Theorem 10.5 to
compute any of the six hypertree polytopes associated to a trinity. This leads to another proof
of Theorem 8.3 in terms of manipulating determinants. It is quick but it is probably much less
instructive than the proof given in Section 8.

Indeed, starting from Me→v , pull out e j from any column that belongs to a white triangle
adjacent to e j . Do this for all emerald points e j . Then for the non-root emerald points, pull out
e−1

j from the row indexed by e j . The result is a monomial times the enhanced adjacency matrix

Me→r but with e−1
j written everywhere where e j should appear. Therefore the determinant of

the matrix is −QH ∗ ∩ ZE .



T. Kálmán / Advances in Mathematics 244 (2013) 823–873 871

If we examine the monomial factor, we see that the exponent of e j in it is exactly |e j | − 1.
Here |e j | means the size of e j as a hyperedge, which is the same in H as in H ∗. It can also be
described as the number of violet and red points connected to e j by red, respectively violet edges
of the trinity, as well as the number of white triangles adjacent to e j . The claim is obvious for
the non-root emerald points and the exponent of e0 is |e0| − 1 because e0 is adjacent to the outer
white triangle t0 which had no column in the matrix.

10.3. Summary and two final notes

Let us summarize our findings on hypertree polytopes and interior and exterior polynomials
associated to the six hypergraphs contained in a trinity. The six polytopes form three centrally
symmetric pairs by Theorem 8.3, i.e., there are only three ‘shapes’ associated to the trinity.
These polytopes have different dimensions but by Corollary 10.3 each contains the same number
of integer lattice points, namely ρ, where ρ is the arborescence number of the trinity.

A priori, there are twelve interior and exterior polynomials associated to the six hypergraphs.
But again by Theorem 8.3, that number is reduced to six, as indicated in the table below. These
polynomials all have non-negative integer coefficients with their sum equal to ρ. Furthermore, if
Conjecture 7.1 holds, then I = I ′, X = X ′, and Y = Y ′, so there are in fact only three different
polynomials.

Hypergraph (V, E) (R, E) (E, R) (V, R) (R, V ) (E, V )

Interior p. I X X ′ Y Y ′ I ′

Exterior p. X I Y X ′ I ′ Y ′

Polytope Q(V,E)
∼= −Q(R,E) Q(E,R)

∼= −Q(V,R) Q(R,V )
∼= −Q(E,V )

Note the cyclic nature of the table: alternately, each hypergraph is either the planar dual or the
abstract dual of the one to its left, and the pattern wraps up (so that (V, E) naturally follows after
(E, V )). Cf. Proposition 9.3.

Our first ‘final note’ is that Q(V,E) ∩ ZE , Q(E,R) ∩ ZR , and Q(R,V ) ∩ ZV (that is, the three
different arrangements of hypertrees that can be derived from the trinity) are all projections of a
single set Q of lattice points. This can be defined by superimposing Me→v , Mr→e, and Mv→r to
obtain the matrix Me→v→r and taking its determinant. In our running example, the result is

Me→v→r =



t1 t2 t3 t4 t5 t6 t7 t8

r1 0 0 0 0 v1 0 v3 0
r2 v0 v1 0 0 0 0 0 0
r3 0 0 v2 v1 0 0 0 0
e1 0 0 0 r3 0 0 r1 r0
e2 r2 0 0 0 r1 r0 0 0
v1 0 e0 0 e1 e2 0 0 0
v2 0 0 e0 0 0 0 0 e1
v3 0 0 0 0 0 e2 e1 0


,

with determinant e2
0e1r2

0v0v
2
1+e0e2

1r0r3v0v1v2+e2
1e2r1r2v

2
1v2+e2

0e2r0r1v0v1v3+e0e2
2r0r2v

2
1v3+

e0e1e2r1r3v0v2v3 +e1e2
2r2r3v1v2v3. It is obvious that Q(V,E) ∩ZE

= det Me→v , Q(E,R) ∩ZR
=

det Mr→e, and Q(R,V ) ∩ ZV
= det Mv→r are all obtained from det Me→v→r by substituting 1

for the unneeded variables. In particular, all four determinants contain the same number of lattice
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Fig. 14. Collapsing moves used in the definition of Jaeger’s polynomial.

points, which is the arborescence number of the trinity. It is not yet clear, however, whether
Q = det Me→v→r is such that (Conv Q) ∩ (ZE

⊕ ZV
⊕ ZR) = Q.

Finally, there exists a curious relationship between our results and an invariant introduced by
Jaeger [3]. We noted in Section 9.1 that the planar dual of a trinity is a plane bipartite cubic
graph. Jaeger associated a one-variable polynomial S(u) (with non-negative integer coefficients)
to such objects. His definition does not make use of the three-coloring of Proposition 9.4 and
indeed, his polynomial is different from any of the six (three) that we introduced. (For example,
the trinity of Fig. 11 has S(u) = 6u3

+ u5.) The sum of the coefficients is, however, the same.

Proposition 10.7. Let T be a trinity. Then S(T ∗, 1) = ρ(T ), the arborescence number of T .

Proof. As the definition of S is based on a recursion, it is natural to prove our claim by induction.
Jaeger sets his initial condition S(u) = 1 at a ‘free loop,’ but an equivalent notion results if we
start by setting S(u) = u for the theta graph (which has two vertices and three edges connecting
them). The theta graph is dual to the trinity formed by one black and one white triangle with a
common boundary. Each of the three directed graphs associated to the latter has a single vertex
and one loop edge and, therefore, only one arborescence. So our claim holds for the theta graph.

The invariant S obeys two kinds of recursive ‘collapsing’ rules. Fig. 14 shows the associated
pictures, drawn not for the plane bipartite cubic graphs but for their dual trinities (with an
arbitrarily chosen local coloring). The part of the trinity outside of the emerald contour does
not change under the collapsing operations. (The red and violet points in the pictures may have
other neighbors that are not shown.) It is easy to show that if a trinity contains four or more
triangles than at least one of the moves can always be carried out.

The rules themselves are S(T ∗, u) = uS(T ∗

0 , u) for the collapsing move on the left and
S(T ∗, u) = S(T ∗

1 , u) + S(T ∗

2 , u) for the one on the right. In the first case, ρ(T ) = ρ(T0) by an
application of Corollary 10.3 and either Lemma 6.6 (if we choose to work with the red or the
violet graph) or the observation that a double edge has been removed from the emerald graph.

In the second case, separate the points of T by color into the usual sets R, E , and V . Notice
that the set V1 of violet points in T1 is obtained from V by identifying v′ and v′′ to a single
point v. The set of emerald points in both T1 and T2 is E \ {e}. Furthermore, the hypergraph
(V1, E \ {e}) contained in T1 and the hypergraph (V, E \ {e}) contained in T2 are the contraction
and deletion, respectively, of the hyperedge e from the hypergraph (V, E) contained in T . So we
get the desired conclusion from Corollary 10.3 and Proposition 6.14. �
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gratitude to László Fehér, László Lovász, Hitoshi Murakami, Richárd Rimányi, Oliver Riordan,
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