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Abstract

In this paper we investigatE 1-0-maps of closed surfaces into the plane, specifically, the singular
sets of such maps. This set is the disjoint union of finitely many embedded circles in the surface;
we will determine all possible numbers of components for each surface. During this survey we will
construct singular maps of all closed surfaces into the plane which are simplest in the sense that they
have the least possible number of cusps (0 or 1) and under this condition their singular sets have
the least possible number of components (1 or 2). Additionally, we will provide a simplified and
shortened proof of the dimension 2 case of the theorem concerning the elimination of cusps (due
to Millett, and Levine for the higher-dimensional cases)2000 Elsevier Science B.V. All rights
reserved.
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1. Obstructions

Any stable mapf of an n-manifold M (n > 2) into a 2-manifold can have fold
singularities (constituting embedded arcaW) and isolated cusp singularities (see [10]).
Their sets are denoted by'0(f) and ¥11(f), respectively and the union of these by
S(f). Fold maps oz1:-maps are those without cusps. The next theorem of Thom [8] is
well known.

Theorem 1.1. Let M be a closed-dimensional manifold: > 2), N an orientable surface
and f: M — N a stable map. Then
| =) = x (M) (mod 2.
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Fig. 1. fo(N(y)) intersectsfo(S(fp)) in n + 2 disjoint segments.

Corollary 1.2. No closed surface with odd Euler characteristic can be mapped into the
plane without cusps.

As we will soon see, fold maps of surfaces with even Euler characteristic into the plane
do exist for all such surfaces (see also Propositions 2.1 and 2.4). The next theorem shows
thatthere is no further restriction on the number of cusps than the one givenin Theorem 1.1.

Theorem 1.3. Any continuous may : M" — N2, with M a connected closed manifold of
dimensiom > 2 and N an orientable surface, is homotopic to a stable map with at rhost
cusp(l, if x(M) is odd and0 otherwisg.

This is a result of Levine [4] for > 3 and was shown by Eliasberg [1] and Millett [7]
for n = 2. This latter case is obviously a consequence of the lemma below, stating that a
pair of cusps can always be eliminated by a homotopy.

Lemma 1.4.Let F and S be arbitrary surfaces,fo: F — S a stable mapxo, x1 €
E“(fo) different points andy :[0,1] — F an embedded curve transversal §@ fo)

with y(0) = xo and y (1) = x1 but y((0, 1)) N Z+1(fo) = . Assume thafy, fo(y'(0))

and —Ty, fo(y'(1)) point to the same region as the respective cusps themselves. Let
N(y) be a tubular neighborhood of the image jfin F. Then there exists a homotopy
H:F x[0,1] — S suchthatH | 7\ n(y))x[0,1] = foo Pr (i.e., we only changgp in N(y))

and the mapfy = H|rx 1 has no cusps iV (y) x {1}.

Proof. Of course ifF is connected angp andx; are given then there is always an arc
with the above properties; we will call such an arc suitable. Letl@<m <--- <1, <1
be they ~1-images of the points i ((0, 1)) N S(fo). The image ofN(y) can be seen on
Fig. 1.

Apply the operation visualized on Fig. 2 to thistimes bent band. Thus we obtain a
map f1,3 homotopic to fo which no longer has the “original” cusps and which maps a
neighborhoodJ; C N(y) of y(t;) as it can be seen on Fig. 3 (imagine the right hand part
of Fig. 2 fold in two). This mag@/; — S can be approximated by a stable map (see Fig. 3)
in such a way that the two coincide in a neighborhood©f.

The latter has two cusps, but these two can be joined by a suitable &yconsisting
only of regular points, so they can be eliminated with no new cusps emerging.

Recall the following theorem of Hopf [2,3]:
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Fig. 3. The change of the map in a neighborhood of an intersection point(ef)iamd the singular
set.

Lemma 1.5. Let M be a2k-dimensional compact manifold with boundagy,M — R%*
an immersion ana : M — S%~1 the normal map of the immersigiy s (for x € 9M let
v(x) denote the outward pointing unit normal vectorftpg (T, d M)). Orient M by pulling
back the orientation oR% and set an orientation fofM by the outward normal first
convention. Thedegv) = x (M).

Remark 1.6. We have de(y) = deg—v) since the antipodal mag*—1 — §%-1 has
degree 1. We assume throughout that there are fixed orientations for the Bjaand
thus forD” c R” ands"~1 =3 D",

Proposition 1.7. Let F be an orientable closed surface afid F — R? a fold map. Then
the number of components$(f) is of the same parity a%X(F).

Proof. Set an orientation foF arbitrarily. Let Fy (f) and F_(f) denote the subsets of
F\ S(f) inthe points of whichf is orientation preserving and reversing, respectively. Let
N(S(f)) be a closed tubular neighborhood%iff) and

Fii=Fi(H\NGS), FL:=F_(/)\NS).

S(f) is contained in the closure of both, (f) and F_(f), i.e., 0F+(f) = 0F_(f) =
S(f). This yields that the embeddin§(f) c F has trivial normal bundle and as a
consequenc@ F, anddF’ are diffeomorphic by the maptaking each point ob F/.

to the point in the same fibre of(S(f)). It is also clear that the immersiorﬁap+ and
(flyp) ot are regularly homotopic and that

L=F.(f) and FL=F_(f).
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Applying Lemma 1.5 we haveg (F}) = x(F) as both sides coincide with the degree
of the normal map off|3F/+. This means thag (F.(f)) = x(F-(f)) and denoting the
common value by we havey (F) =2x — x(S(f)) = 2x. On the other hand, attaching
disks to the boundary components Bf (f) we obtain an orientable surface (thus one
with even Euler characteristic). This proves th&#, (f)) = x = %X(F) and the number
of components of (f) have the same parity.0

Remark 1.8. Proposition 1.7 fails in the nonorientable case; see Proposition 2.4.

2. Constructions

In the following we show that Proposition 1.7 gives all restrictions to the number of
components of the singular set of a fold map of a closed orientable surface into the
plane (together with the easy fact that there is no stable map of that type without fold
singularities).

Proposition 2.1. Let F be an orientable closed surface aké positive integer such that
= %X(F) (mod 2. Then there exists a fold map: F — R? with its singular set being
the union ofk disjoint circles.

Proof. Let us denote by, the orientable closed surface of gemwd byA? the surface
with boundary obtained by deleting the interior of a disk frdm

First we show that for = 2m the surfaceA, can be mapped into the plane with only
fold singularities and a connected singular set.

Let (pZASl — R? be an immersion (see Fig. 4) and: A, — A, an involution with
A,/ = A (identifying A, by the the surface on Fig. 5, which is embeddedRrif
Y can be chosen to a reflection through the plane indicated). ith, — A, /vy the
factorization,, := ¢ o1 o 7 is @ map satisfying the conditions, wheret, /y» — A9 is a
diffeomorphism.

Fort =2m + 1 we haveA, = Ay,#A1 and one can easily construct a fold map
Om : A, — R? with a two-component singular set (see Fig. 4).

Finally, it is not difficult to define a homotopy that increases the number of fold
components of any stable may — R? by adding a pair of concentric circles around
an arbitrary regular point. O

As we have already mentioned, the parity of the number of components is not determined
in the nonorientable case. To illustrate this by a pair of examples first we construct two
maps of the projective plarieP? into R?.

Proposition 2.2. There exist stable maps v : R P2 — R? with one cusp each and a one-
component and a two-component singular set, respectively.

Proof. First we constructy. Let us embed a Mébius band in&® as on Fig. 6 and
compose the embedding with the orthogonal projection onto the plane of the figure.
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Fig. 4. The set<p(A9,,) = ¥m(Ap,); adding the strip bounded by the dotted lines we obtain
ﬁm(AZIn+l)-

Fig. 5. Ap,,.

Fig. 6. The embedding of the Mabius band ifitd and the image of its boundary after the projection.
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A

Fig. 7. The set/o(S(¥0)); eliminating two cusps along the dotted arc we obtairthe image of the
singular set of which can be seen on the right-hand side.

Fig. 8. Two extensions of the curve on Fig. 6 to immersion®éf

This maps the boundary of the band to the curve on the right hand side of Fig. 6 and the
image of the singular set can be seen on the left-hand side of Fig. 7.

The image of the boundary can be obtained as the boundary of an immersdoPdisc
in two different ways (see Fig. 8); choosing any of these possibilities (say the one on the
right) a mapyo:RP2 — R? can be obtained with three cusps and a connected singular
set. Join now two of the cusps by an arcid and eliminate them (see Fig. 7), obtaining
a mapyr with one cusp and a two-component singular set. The definitionydé taken
from Levine [6, pp. 155-156].

The construction o is similar and can be found entirely at Millett [7] so we only sketch
it for completeness. Above we mapped a band into the plane following the projection of the
trefoil knot and used three twists to make it Mobius-type; now take the Milnor curve and
only one twist (Fig. 9). The singular set is again the center circle of the Mébius band and
the image of it is the Milnor curve with a cusp on it. The boundary of the band is mapped
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Fig. 9. Milnor curve;p(S(¢)); the p-image of the common boundary of the Mobius band and the
disk, the union of which i&® P2.

Fig. 10. Stable map of the Klein bottle into the plane with a two-component singular set and one cusp
on each component.

to the curve on the right side of Fig. 9 which also turns out to be the the imag®bf
under an immersio®? — R2. ThusS(y) is connected. O

Let us denote bﬁ, the nonorientable closed surface with genasd be? the surface
with boundary obtained by deleting an open disk from it.

Proposition 2.3. There exist fold mapg‘,g:;\} — R? with S(f) connected and(g)
being the union of two circles.

Proof. Itis easy to find a map as above, see, for example, [6, p. 153]. In the construction

of £ we will use the maps andy defined in the proof of Proposition 2.2. Consider

as the union of two disjoint samplesEﬁ and a cylinder, attached along their boundaries.
Map these intdR? as on Fig. 10, i.e., the Mdbius bands by restrictiong afnd ¢ and

the cylinder by a projection. Attaching these maps along boundaries we obtain a stable
mapf : A, — R? and one can do it such a way that the two cusps can be joined by an arc
through regular points of . One can check it easily thgt has a two-component singular

set with one cusp on each component. So after eliminating these along the above mentioned
suitable arc the resulting map will have no cusps and only one fold compon@nt.
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Proposition 2.4. The nonorientable closed surfade,, admits a fold map into the plane
with ak-component singular set for all positive integérs

Proof. We prove the casds= 1 andk = 2 by induction onn. Form = 1 this is just the
statement of Proposition 2.3. Assume that we have the proposition.fbtap Ay, into

the plane with a connected singular set ahby f or g of Proposition 2.3; attaching these
two maps the same way as in the previous proof we obtain a fold nﬁ@,ﬁﬁfg = Aopi2

into R? with one or two components in its singular set. We conclude with the same remark
as at the end of the proof of Proposition 2.1

Summarizing our results we state the next theorem:

Theorem 2.5. Let F be a closed surface. Jf (F) is odd then there is n&’%-map of F
into the plane. Fory (F) even we have exactly the following possibilities.
(1) If F is orientable then the singular set of any fold m&p—> R? has a number of
components of the same parity §§(F) and all such positive integers occur.
(2) If F is nonorientable then all positive integers occur as the number of components
of S(f) fora x+%-mapf: F — R2.

Remark 2.6. Using Propositions 2.2 and 2.4 one can prove easily that any closed surface
with odd Euler characteristic can be mapped into the plane with a single cusp and an
arbitrary number of components in the singular set (e.g., 1).

The mapf constructed in the proof of Proposition 2.3 can be modified by a homotopy
to obtain the symmetric curve on the right hand side of Fig. 11 as the image of the singular
set. On Fig. 12 two other fold map7§2 — R? are shown (with connected singular sets).
The left is obtained by composing (see Proposition 2.2) by a reflection before attaching
to ¢ and the right by eliminating two cusps ¢fy along a proper arc not in the disc as
before, but in its complementer.

If an immersions* — R? can be obtained ag|s, for some fold mapf : A2 — R?,
then the following theorem of Levine [5] (which we state only for our case) and the
Whitney—Graustein Theorem [9] yield that it must be regularly homotopic to the figure
eight immersion (and hence it must have an odd number of double points).

Theorem 2.7. Let F be a closed surface anfl: F — R? a stable map witls a component
of S(f). Orientc \ 11(f) such a way that the-image of its neighborhood lies always
on the left off (c). Definek. : c — ST as the composition of the normal mapfif. and the
map (cos?, sind) — (cos 29, sin29) on fold points ofc and extend it continuously ta
Then

x (M) = > deglk).

¢: ¢ a component of(f)
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Fig. 11. Fold maps of the Klein bottle into the plane with connected singular sets.

Fig. 12. Two additionalz1-0-maps of the Klein bottle into the plane with connected singular sets.

Finally we recall that for any stable magp A, — R2 the singular sef (k) represents
w1(Ap) € HY(A; Z») (of course this is true for all other surfaces as well). In fact, for the
map f of Proposition 2.35(f) is just the meridian of the Klein bottle.
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