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Stable maps of surfaces into the plane
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Abstract

In this paper we investigateΣ1,0-maps of closed surfaces into the plane, specifically, the singular
sets of such maps. This set is the disjoint union of finitely many embedded circles in the surface;
we will determine all possible numbers of components for each surface. During this survey we will
construct singular maps of all closed surfaces into the plane which are simplest in the sense that they
have the least possible number of cusps (0 or 1) and under this condition their singular sets have
the least possible number of components (1 or 2). Additionally, we will provide a simplified and
shortened proof of the dimension 2 case of the theorem concerning the elimination of cusps (due
to Millett, and Levine for the higher-dimensional cases). 2000 Elsevier Science B.V. All rights
reserved.
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1. Obstructions

Any stable mapf of an n-manifold M (n > 2) into a 2-manifold can have fold
singularities (constituting embedded arcs inM) and isolated cusp singularities (see [10]).
Their sets are denoted byΣ1,0(f ) andΣ1,1(f ), respectively and the union of these by
S(f ). Fold maps orΣ1,0-maps are those without cusps. The next theorem of Thom [8] is
well known.

Theorem 1.1. LetM be a closedn-dimensional manifold(n> 2),N an orientable surface
andf :M→N a stable map. Then∣∣Σ1,1(f )

∣∣≡ χ(M) (mod 2).
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Fig. 1.f0(N(γ )) intersectsf0(S(f0)) in n+ 2 disjoint segments.

Corollary 1.2. No closed surface with odd Euler characteristic can be mapped into the
plane without cusps.

As we will soon see, fold maps of surfaces with even Euler characteristic into the plane
do exist for all such surfaces (see also Propositions 2.1 and 2.4). The next theorem shows
that there is no further restriction on the number of cusps than the one given in Theorem 1.1.

Theorem 1.3. Any continuous mapf :Mn→N2, withM a connected closed manifold of
dimensionn> 2 andN an orientable surface, is homotopic to a stable map with at most1
cusp(1, if χ(M) is odd and0 otherwise).

This is a result of Levine [4] forn> 3 and was shown by Èliašberg [1] and Millett [7]
for n = 2. This latter case is obviously a consequence of the lemma below, stating that a
pair of cusps can always be eliminated by a homotopy.

Lemma 1.4. Let F and S be arbitrary surfaces,f0 :F → S a stable map,x0, x1 ∈
Σ1,1(f0) different points andγ : [0,1] → F an embedded curve transversal toS(f0)

with γ (0) = x0 and γ (1) = x1 but γ ((0,1)) ∩ Σ1,1(f0) = ∅. Assume thatTx0f0(γ
′(0))

and −Tx1f0(γ
′(1)) point to the same region as the respective cusps themselves. Let

N(γ ) be a tubular neighborhood of the image ofγ in F . Then there exists a homotopy
H :F ×[0,1]→ S such thatH |(F\N(γ ))×[0,1] = f0 ◦Pr1 (i.e., we only changef0 in N(γ ))
and the mapf1=H |F×{1} has no cusps inN(γ )× {1}.

Proof. Of course ifF is connected andx0 andx1 are given then there is always an arcγ
with the above properties; we will call such an arc suitable. Let 0< t1< t2< · · ·< tn < 1
be theγ−1-images of the points inγ ((0,1))∩ S(f0). The image ofN(γ ) can be seen on
Fig. 1.

Apply the operation visualized on Fig. 2 to thisn times bent band. Thus we obtain a
mapf1/3 homotopic tof0 which no longer has the “original” cusps and which maps a
neighborhoodUi ⊂N(γ ) of γ (ti ) as it can be seen on Fig. 3 (imagine the right hand part
of Fig. 2 fold in two). This mapUi→ S can be approximated by a stable map (see Fig. 3)
in such a way that the two coincide in a neighborhood of∂Ui .

The latter has two cusps, but these two can be joined by a suitable arc inUi consisting
only of regular points, so they can be eliminated with no new cusps emerging.2

Recall the following theorem of Hopf [2,3]:
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Fig. 2. Elimination of two cusps.

Fig. 3. The change of the map in a neighborhood of an intersection point of im(γ ) and the singular
set.

Lemma 1.5. LetM be a2k-dimensional compact manifold with boundary,g :M→ R2k

an immersion andν : ∂M→ S2k−1 the normal map of the immersiong|∂M (for x ∈ ∂M let
ν(x) denote the outward pointing unit normal vector toTxg(Tx∂M)). OrientM by pulling
back the orientation ofR2k and set an orientation for∂M by the outward normal first
convention. Thendeg(ν)= χ(M).

Remark 1.6. We have deg(ν) = deg(−ν) since the antipodal mapS2k−1→ S2k−1 has
degree 1. We assume throughout that there are fixed orientations for the spacesRn and
thus forDn ⊂Rn andSn−1= ∂Dn.

Proposition 1.7. LetF be an orientable closed surface andf :F →R2 a fold map. Then
the number of components ofS(f ) is of the same parity as12χ(F).

Proof. Set an orientation forF arbitrarily. LetF+(f ) andF−(f ) denote the subsets of
F \S(f ) in the points of whichf is orientation preserving and reversing, respectively. Let
N(S(f )) be a closed tubular neighborhood ofS(f ) and

F ′+ := F+(f ) \N(S(f )), F ′− := F−(f ) \N(S(f )).
S(f ) is contained in the closure of bothF+(f ) andF−(f ), i.e., ∂F+(f ) = ∂F−(f ) =
S(f ). This yields that the embeddingS(f ) ⊂ F has trivial normal bundle and as a
consequence∂F ′+ and ∂F ′− are diffeomorphic by the mapι taking each point of∂F ′+
to the point in the same fibre ofν(S(f )). It is also clear that the immersionsf |∂F ′+ and
(f |∂F ′−) ◦ ι are regularly homotopic and that

F ′+ ∼= F+(f ) and F ′− ∼= F−(f ).



310 T. Kálmán / Topology and its Applications 107 (2000) 307–316

Applying Lemma 1.5 we haveχ(F ′+) = χ(F ′−) as both sides coincide with the degree
of the normal map off |∂F ′+ . This means thatχ(F+(f )) = χ(F−(f )) and denoting the
common value byχ we haveχ(F)= 2χ − χ(S(f ))= 2χ . On the other hand, attaching
disks to the boundary components ofF+(f ) we obtain an orientable surface (thus one
with even Euler characteristic). This proves thatχ(F+(f ))= χ = 1

2χ(F) and the number
of components ofS(f ) have the same parity.2
Remark 1.8. Proposition 1.7 fails in the nonorientable case; see Proposition 2.4.

2. Constructions

In the following we show that Proposition 1.7 gives all restrictions to the number of
components of the singular set of a fold map of a closed orientable surface into the
plane (together with the easy fact that there is no stable map of that type without fold
singularities).

Proposition 2.1. LetF be an orientable closed surface andk a positive integer such that
k ≡ 1

2χ(F) (mod 2). Then there exists a fold mapf :F → R2 with its singular set being
the union ofk disjoint circles.

Proof. Let us denote byAt the orientable closed surface of genust and byA0
t the surface

with boundary obtained by deleting the interior of a disk fromAt .
First we show that fort = 2m the surfaceAt can be mapped into the plane with only

fold singularities and a connected singular set.
Let ϕ :A0

m→ R2 be an immersion (see Fig. 4) andψ :At → At an involution with
At/ψ ∼= A0

m (identifying At by the the surface on Fig. 5, which is embedded inR3,
ψ can be chosen to a reflection through the plane indicated). Withπ :At → At/ψ the
factorization,ϑm := ϕ ◦ ι ◦π is a map satisfying the conditions, whereι :At/ψ→A0

m is a
diffeomorphism.

For t = 2m + 1 we haveAt ∼= A2m#A1 and one can easily construct a fold map
ϑ̃m :At→R2 with a two-component singular set (see Fig. 4).

Finally, it is not difficult to define a homotopy that increases the number of fold
components of any stable mapAt → R2 by adding a pair of concentric circles around
an arbitrary regular point.2

As we have already mentioned, the parity of the number of components is not determined
in the nonorientable case. To illustrate this by a pair of examples first we construct two
maps of the projective planeRP 2 intoR2.

Proposition 2.2. There exist stable mapsϕ,ψ :RP 2→R2 with one cusp each and a one-
component and a two-component singular set, respectively.

Proof. First we constructψ . Let us embed a Möbius band intoR3 as on Fig. 6 and
compose the embedding with the orthogonal projection onto the plane of the figure.
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Fig. 4. The setϕ(A0
m) = ϑm(A2m); adding the strip bounded by the dotted lines we obtain

ϑ̃m(A2m+1).

Fig. 5.A2m.

Fig. 6. The embedding of the Möbius band intoR3 and the image of its boundary after the projection.
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Fig. 7. The setψ0(S(ψ0)); eliminating two cusps along the dotted arc we obtainψ , the image of the
singular set of which can be seen on the right-hand side.

Fig. 8. Two extensions of the curve on Fig. 6 to immersions ofD2.

This maps the boundary of the band to the curve on the right hand side of Fig. 6 and the
image of the singular set can be seen on the left-hand side of Fig. 7.

The image of the boundary can be obtained as the boundary of an immersed discD2

in two different ways (see Fig. 8); choosing any of these possibilities (say the one on the
right) a mapψ0 :RP 2→ R2 can be obtained with three cusps and a connected singular
set. Join now two of the cusps by an arc inD2 and eliminate them (see Fig. 7), obtaining
a mapψ with one cusp and a two-component singular set. The definition ofψ0 is taken
from Levine [6, pp. 155–156].

The construction ofϕ is similar and can be found entirely at Millett [7] so we only sketch
it for completeness. Above we mapped a band into the plane following the projection of the
trefoil knot and used three twists to make it Möbius-type; now take the Milnor curve and
only one twist (Fig. 9). The singular set is again the center circle of the Möbius band and
the image of it is the Milnor curve with a cusp on it. The boundary of the band is mapped
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Fig. 9. Milnor curve;ϕ(S(ϕ)); theϕ-image of the common boundary of the Möbius band and the
disk, the union of which isRP 2.

Fig. 10. Stable map of the Klein bottle into the plane with a two-component singular set and one cusp
on each component.

to the curve on the right side of Fig. 9 which also turns out to be the the image of∂D2

under an immersionD2→R2. ThusS(ϕ) is connected. 2
Let us denote bŷAt the nonorientable closed surface with genust and byÂ 0

t the surface
with boundary obtained by deleting an open disk from it.

Proposition 2.3. There exist fold mapsf,g : Â2→ R2 with S(f ) connected andS(g)
being the union of two circles.

Proof. It is easy to find a mapg as above, see, for example, [6, p. 153]. In the construction
of f we will use the mapsϕ andψ defined in the proof of Proposition 2.2. ConsiderÂ2

as the union of two disjoint samples of̂A 0
1 and a cylinder, attached along their boundaries.

Map these intoR2 as on Fig. 10, i.e., the Möbius bands by restrictions ofϕ andψ and
the cylinder by a projection. Attaching these maps along boundaries we obtain a stable
mapf̃ : Â2→R2 and one can do it such a way that the two cusps can be joined by an arc
through regular points of̃f . One can check it easily that̃f has a two-component singular
set with one cusp on each component. So after eliminating these along the above mentioned
suitable arc the resulting map will have no cusps and only one fold component.2
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Proposition 2.4. The nonorientable closed surfacêA2m admits a fold map into the plane
with a k-component singular set for all positive integersk.

Proof. We prove the casesk = 1 andk = 2 by induction onm. Form= 1 this is just the
statement of Proposition 2.3. Assume that we have the proposition form. Map Â2m into
the plane with a connected singular set andÂ2 by f or g of Proposition 2.3; attaching these
two maps the same way as in the previous proof we obtain a fold map ofÂ2m#Â2= Â2m+2

intoR2 with one or two components in its singular set. We conclude with the same remark
as at the end of the proof of Proposition 2.1.2

Summarizing our results we state the next theorem:

Theorem 2.5. LetF be a closed surface. Ifχ(F) is odd then there is noΣ1,0-map ofF
into the plane. Forχ(F) even we have exactly the following possibilities.

(1) If F is orientable then the singular set of any fold mapF → R2 has a number of
components of the same parity as1

2χ(F) and all such positive integers occur.
(2) If F is nonorientable then all positive integers occur as the number of components

of S(f ) for aΣ1,0-mapf :F →R2.

Remark 2.6. Using Propositions 2.2 and 2.4 one can prove easily that any closed surface
with odd Euler characteristic can be mapped into the plane with a single cusp and an
arbitrary number of components in the singular set (e.g., 1).

The mapf constructed in the proof of Proposition 2.3 can be modified by a homotopy
to obtain the symmetric curve on the right hand side of Fig. 11 as the image of the singular
set. On Fig. 12 two other fold mapŝA2→ R2 are shown (with connected singular sets).
The left is obtained by composingψ (see Proposition 2.2) by a reflection before attaching
to ϕ and the right by eliminating two cusps ofψ0 along a proper arc not in the disc as
before, but in its complementer.

If an immersionS1→ R2 can be obtained asf |S(f ) for some fold mapf : Â2→ R2,
then the following theorem of Levine [5] (which we state only for our case) and the
Whitney–Graustein Theorem [9] yield that it must be regularly homotopic to the figure
eight immersion (and hence it must have an odd number of double points).

Theorem 2.7. LetF be a closed surface andf :F →R2 a stable map withc a component
of S(f ). Orient c \Σ1,1(f ) such a way that thef -image of its neighborhood lies always
on the left off (c). Definekc : c→ S1 as the composition of the normal map off |c and the
map(cosϑ,sinϑ) 7→ (cos2ϑ,sin2ϑ) on fold points ofc and extend it continuously toc.
Then

χ(M)=
∑

c: c a component ofS(f )

deg(kc).
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Fig. 11. Fold maps of the Klein bottle into the plane with connected singular sets.

Fig. 12. Two additionalΣ1,0-maps of the Klein bottle into the plane with connected singular sets.

Finally we recall that for any stable maph : Â2→ R2 the singular setS(h) represents
w1(Â2) ∈H 1(Â2;Z2) (of course this is true for all other surfaces as well). In fact, for the
mapf of Proposition 2.3S(f ) is just the meridian of the Klein bottle.
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