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Credits

Everything in this talk is joint work with Tobias Ekholm and Ko
Honda.



Goals

1. Build Lagrangian surfaces with a given boundary condition.

2. Distinguish them by the holomorphic curves whose boundaries
lie on the Lagrangians.

3. Make this all readily computable.



Context

Homology theories where the differential is defined by a count of
holomorphic curves (so called “Floer theories”) are hard to work
with in practice.

There is much effort to reduce the analysis in these theories down
to combinatorics.

Eliashberg and Hofer’s symplectic field theory (SFT) is an instance
of Floer theory. It associates invariants to contact manifolds and
to their Legendrian submanifolds.

Chekanov provided the combinatorial formulation in a very special
(but also the most classical) case: contact homology of Legendrian
knots in R3 (the Darboux ball).



Cobordisms

We will focus on a certain piece in the “SFT package,” namely the
idea that cobordisms should induce maps between the homologies
associated to their ends.

Cobordisms between contact manifolds will be symplectic and
cobordisms between Legendrians will be (exact) Lagrangian.

For certain cobordisms, we will explicitly write down the associated
map.



Contact geometry

A contact manifold is a smooth (2n + 1)–dimensional manifold M
along with a maximally non-integrable field ξ of hyperplanes.

In other words, if ξ is given (locally) as the kernel of the 1–form α,
then α ∧ (dα)n is a volume form.

Note that for the same ξ to be a foliation by 2n–dimensional
submanifolds, the condition would be that α ∧ (dα)n is identically
zero.

Indeed, maximal non-integrability implies that the largest possible
dimension of a submanifold L ⊂ M that is everywhere tangent to ξ
is dim L = n. Such submanifolds are called Legendrian.



Symplectic field theory (SFT)

SFT is an invariant of contact manifolds up to contactomorphism
(absolute version) or of Legendrian submanifolds within contact
manifolds up to isotopy through Legendrians (relative version).

By restricting the types of holomorphic curves considered, we
arrive at the “sub-theories” known as (absolute or relative) contact
homology.



Reeb trajectories

Let the contact structure ξ be globally defined as ξ = kerα. Then,
the Reeb vector field Rα is determined by the conditions

dα(Rα, · ) = 0 and α(Rα) = 1.

SFT is defined in terms of integral curves of Rα. However the end
result does not depend on α, only on its kernel ξ.

The generators of SFT are the closed Reeb orbits in the absolute
case and the so-called Reeb chords in the relative case.
Reeb chord: integral trajectory of Rα which starts and ends on the
Legendrian L.

For contact homology, the chain complex is a polynomial algebra
freely generated by these Reeb trajectories. In the relative case, we
consider non-commutative polynomials in the Reeb chords. For
coefficients, today we will only use Z/2Z.



A class of holomorphic curves

The holomorphic curves we need live in the symplectization

M × Rt with symplectic form ω = d(etα).

(We choose an R–invariant compatible almost complex structure
too. This choice does not influence the invariants.)

For contact homology, the domains of the curves are punctured
spheres (absolute case) or boundary-punctured disks (relative
case). In the relative case, their boundaries lie on the Lagrangian
cylinder L× R ⊂ M × R.

As t →∞, exactly one of the punctures (the positive puncture) is
mapped asymptotically to a cylinder over a Reeb orbit/chord. All
other punctures are negative: they are asymptotic to similar
cylinders/strips, but as t → −∞.



The differential

To compute the differential ∂a of a generator a (Reeb
orbit/chord), we enumerate all those curves whose positive
puncture goes to a and that are rigid: that is, their only moduli is
from the R–symmetry.

Each such curve contributes the product of (the images of) its
negative punctures to ∂a and we sum these contributions.

To the rest of the algebra (generated by the orbits/chords) ∂ is
extended by linearity and the Leibniz rule.



A schematic picture of the differential
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In blue: M and M × R. In green: L and L× R.
In red: Reeb trajectories. In black: holomorphic curve.

In both cases, a is a positive puncture and b and c denote negative
punctures. If the curve is rigid, then ∂a = bc + · · · .



Contact homology

Hope: ∂2 = 0 and the homology CH = ker ∂/ im ∂ is an invariant
of M or of the pair (M, L). This is not quite true without
restrictions on (the topology of) M. In many cases when we do
expect it to be true, there are still analytical difficulties with the
proof.

In the relative case which is most interesting to us, Ekholm showed:

Theorem
Let N be an n–dimensional manifold. If L is a Legendrian
submanifold of the contact manifold J1N, then the corresponding
contact homology differential does satisfy ∂2 = 0 and contact
homology is an invariant of L.



Lagrangian cobordisms

It is also “expected” that if an
exact Lagrangian surface Λ
connects the Legendrians L+

and L−, then by counting rigid
holomorphic disks we can define
a map

ΦΛ : CH(L+)→ CH(L−)

(from the chain map
ϕΛ(a) = bc + · · · ).

Λ

L+

L−

a

b c

ΦΛ “should be” invariant under deformations of Λ relative to its
boundary.

Exactness is crucial in order to rule out holomorphic disks (without
punctures) with boundary on Λ. That in turn is vital to proving
∂ϕΛ = ϕΛ∂.



Computability?

It is virtually impossible to carry out any computation of
symplectic field theory or contact homology (or a map induced by
cobordism) based on the ideas presented so far.

The most classical case of the relative theory is that of Legendrian
1–submanifolds (knots and links) in the contact manifold
M = J1R ∼= R3.

In this case:

I A combinatorial version of relative contact homology was
established by Chekanov.

I The existence and invariance of the map induced by an exact
Lagrangian cobordism are known (folklore).



Definitions in the classical case

The standard contact structure on R3
xyz is the tangent plane field

given as the kernel of the one-form

α = dz − ydx .

Its Reeb vector field is Rα = ∂
∂z .

A knot or link is Legendrian if it is everywhere tangent to the
contact structure, that is, if

dz(s)

ds
− y(s)

dx(s)

ds
≡ 0

along the curve.



Lagrangian (xy) projection

Special case of J1N → T ∗N. Reeb chords correspond to crossings.
The length of the chord is also called the height of the crossing.

A Legendrian curve has an
xy–projection so that

I it is immersed

I the area of any bounded
complementary region
equals the sum of the
heights of its corners taken
by the so-called Reeb signs. x

y

Reeb signs →

The latter implies that the signed area bounded by a Lagrangian
projection is zero. (Check: If the projection γ bounds a 2–chain F ,
then area(F ) =

∫
F dx ∧ dy =

∫
γ −ydx =

∫
γ −dz = −∆z = 0.)



Linear constraints

This is the Lagrangian diagram
of a certain Legendrian trefoil
knot. The area shaded in the
middle is expressed by the
heights as

h(a1)− h(b1)− h(b2)− h(b3).

By linear constraint we mean
that in particular, this quantity
has to be positive.

a1

a2

b1 b2 b3



Contractible crossings

A Reeb chord/crossing in a Lagrangian diagram is called
contractible if it can be shrunk to length zero with a Legendrian
isotopy while keeping all other chord lengths and areas positive.

In other words, if we substitute 0 for the length of a contractible
crossing, the linear constraints can still be satisfied.

In our trefoil example, a1 and a2 are not contractible but b1, b2,
and b3 are.



Two easy Legendrian invariants

Lagrangian diagrams are always immersed, not just generically. In
other words, Reidemeister I moves cannot occur. Thus, the
following two quantities stay invariant throughout Legendrian
isotopies:

I The rotation number is the total winding number (Whitney
index) of a Lagrangian diagram (its sign depends on choice of
orientation).

I The Thurston–Bennequin number is the writhe (algebraic
crossing number) of a Lagrangian diagram.



Chekanov’s observation

In order to compute the contact homology of a Legendrian in R3,
instead of going one dimension higher to the symplectization, we
may go one dimension lower to the Lagrangian projection.

In particular, the holomorphic disks of the definition remain
holomorphic after projecting out t and z . A puncture asymptotic
to a Reeb chord projects to a convex corner at the corresponding
crossing. Positive punctures carry the Reeb sign +, and negative
punctures carry a −.

Using the Riemann mapping theorem, holomorphic curves can be
recovered from these planar immersions.



Admissible disks

More formally: a map D2 → R2
xy is an admissible disk in the

Lagrangian diagram γ if

I it takes ∂D2 to the curve γ

I it is immersed away from finitely many convex corners on the
boundary

I exactly one of those corners covers the Reeb sign +, all others
cover a −.



Relative contact homology combinatorially I

As we said before, the chain complex has a product structure too,
i.e. it is a differential graded algebra (DGA).

“A”: A is non-commutative, associative, and unital, freely
generated over Z/2Z by the crossings of the xy–projection.

“G”: A is graded modulo 2r by the following rule: Let a be a
generator. Starting at the undercrossing at a, follow γ until we
reach a again, this time on the upper strand. Denote this path by
γa and define

|a| = −2r(γa)− 1

2
,

where r(γa) is the fractional number of rotations taken by γa (we
pretend that the strands meeting at a make a right angle). This is
extended to the rest of A multiplicatively.



Relative contact homology combinatorially II

“D”: To compute the differential ∂a of a generator a, we
enumerate all admissible disks in the diagram with positive corner
at a, and sum the products of their negative corners. We extend to
A by the Leibniz rule ∂(ab) = ∂a · b + a · ∂b.

Chekanov proved:

Theorem
The differential ∂ lowers the grading by 1 and it satisfies ∂2 = 0.
The resulting so-called relative contact homology CH(L) is itself a
graded algebra, and it is invariant under Legendrian isotopies of
the Legendrian knot L.



Example

For the trefoil knot shown previously we have r = 0, so the theory
is Z–graded. The indices (gradings) of the generators are

|a1| = |a2| = 1 and |b1| = |b2| = |b3| = 0.

Thus ∂b1 = ∂b2 = ∂b3 = 0. Further, ∂a1 =

a1 a1 a1 a1

b1 b3 b1 b2 b3

1 + b1 + b3 + b1b2b3.



Example, continued
Finally,

∂a2 = 1 + b2 + 1 + b2b3 + b1b2 + b2b3b1b2

= b2 + b2b3 + b1b2 + b2b3b1b2.

a2 a2

a2 a2 a2 a2

b2 b3 b1 b2 b1 b2 b3

b2

The six admissible disks are as follows:



Some immersed disks

The last four disks are not embedded. They can be visualized as
follows (showing the one with three corners that contributes b2b3):



Augmentations and linearization

We stopped the above computation after determining the
differential. That is because as a vector space, both A and the
quotient CH(L) are infinite dimensional, so we cannot compute
things like Betti numbers.

There is a way around this problem, namely a process called
linearization. It requires (and depends on) the choice of a so-called
augmentation of the DGA.

An augmentation is an algebra map ε : A→ Z/2Z supported in
grading 0 which vanishes on the image of ∂. Thus it descends to
an algebra homomorphism E : CH → Z/2Z, too.

In other words, an augmentation (on the chain level) is a subset of
the index 0 crossings of the Lagrangian diagram whose
characteristic function solves the set of polynomial equations
{ ∂q = 0 | q is any crossing of the diagram }.



Example

For the trefoil, we have two equations in three unknowns:

1 + b1 + b3 + b1b2b3 = 0

b2 + b2b3 + b1b2 + b2b3b1b2 = 0,

which is really only one equation if the unknowns commute.

Five of the eight possible sets of crossings are augmentations:

{ b1 }, { b3 }, { b1, b2 }, { b2, b3 }, and { b1, b2, b3 }.

These stay different on the homology level, too.



Our class of Lagrangians

We will consider Lagrangians Λ in the symplectization R4
xyzt with

the following properties:

I As t → ±∞, Λ is
asymptotic to Legendrians
L+ and L−, respectively.

I Intersections of Λ with
|t| ≤ const. sets are
compact.

I Λ is exact, that is a
function F : Λ→ R exists
so that dF = etα along Λ.

t � 0

t � 0

Λ

L+

L−



Stacking

It is just a technicality that we pushed the ends of Λ to infinity.

That does not stop us from stacking Λ1 and Λ2 together into a
single Lagrangian, provided that the negative end of Λ1 matches
the positive end of Λ2.

Theorem
Let Λ be a generic exact Lagrangian as above. Then there is a
well-defined map ϕΛ : A(L+)→ A(L−) (given on generators as
described before and extended as an algebra homomorphism), it is
a chain map, and its induced map (degree preserving algebra
homomorphism) ΦΛ : CH(L+)→ CH(L−) is invariant under exact
Lagrangian isotopies of Λ fixing ∂Λ. Moreover, Φ is functorial with
respect to stacking.

In particular if L− = ∅, we get an augmentation for L+:
ΦΛ : CH(L+)→ CH(∅) = Z/2Z.



Constructions

We introduce three basic building blocks.

1. Capping off unknots. The standard Legendrian unknot (as
L+) bounds a Lagrangian disk (so that L− = ∅).

2. Isotopy (Chantraine). An isotopy Ls , 0 ≤ s ≤ 1 so that
Ls ⊂ R3

xyz is Legendrian for all s can be turned into a
Lagrangian cobordism from L0 to L1.

3. Zero-resolution. If q is a
contractible crossing in a
Lagrangian diagram of the
Legendrian L+, then there
exists a Lagrangian saddle
from L+ to L−, where the

xy -diagram of L− differs from
that of L+ only as shown.

q

L+ L−



Main result

The maps induced by our three building blocks are as follows.

1. The cap on the unknot sends its only Reeb chord to zero.

2. For a generic Legendrian isotopy, the corresponding maps
agree with those in Chekanov’s proof that CH is invariant
under such isotopies. In particular, if the xy -diagram does not
undergo any Reidemeister moves in the isotopy, then the
induced map is the identity.



Main result, cont’d

3. The chain map ϕ induced by the zero-resolution at q sends q
to

ϕ(q) = 1.

If p is another crossing, then ϕ(p) is p plus the sum of the
following contributions. Find all immersed disks in the
xy -diagram of L+ with convex corners so that exactly two of
the corners are positive, and those are at p and q. Each such
disk contributes the product of its negative corners.

p

a

b

q

c
d

ϕ(p) = p + abcd + · · ·



Method of proof

Exact Lagrangians Λ can be described in terms of front projections.

A front is a graph of the potential F as a multi-valued function of
two of the four symplectic coordinates (q1 and q2) so that the
other two (p1 and p2) can be recovered as partial derivatives.

A flow tree is a tree in the q1q2–plane built out of Morse flow lines
of local differences of sheets of the front.

As we degenerate Λ by flattening out its front, holomorphic disks
with boundary on Λ converge to flow trees. So holomorphic curve
counts can be carried out in terms of flow tree counts.



The trefoil once more

The three contractible crossings of our trefoil diagram can be
resolved in any order. For example, using the order b2, b1, b3 leads
to the augmentation ϕ(b1) = 0, ϕ(b2) = ϕ(b3) = 1.

The six orders produce all five augmentations. Therefore, up to
isotopy through exact Lagrangians, the trefoil knot bounds at least
five different exact Lagrangian punctured tori.

(So which two orders gave the same augmentation? As long as b2

is present in the diagram, b1 and b3 are simultaneously
contractible. Thus, the surface from b1, b3, b2 is isotopic to that
from b3, b1, b2.)



Computing the induced map

b1 b2 b3

b1 + 1 1 b3 + 1

1 + 1 1 b3 + 1 + 1

0 1 1 + 1 + 1 = 1
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